In this paper, we investigate the generalized numerical radius $ \omega_N $, associated with a matrix norm $ N $ defined by $ \omega_N(X) = \sup_{\theta \in \mathbb{R}} N(\operatorname{Re}(e^{i\theta}X)) $. We focus on matrices whose numerical ranges are contained in sectors of the complex plane (sectorial matrices) and derive upper bounds for $ \omega_N(XY) $ and $ \omega_N(X \circ Y) $ for such matrices $ X $ and $ Y $. Our results generalize and refine well-known numerical radius inequalities. Several known inequalities for $ \omega(X) $ are recovered as special cases.
Citation: Mohammad Alakhrass. General numerical radius for products of sectorial matrices[J]. AIMS Mathematics, 2025, 10(7): 15358-15369. doi: 10.3934/math.2025688
In this paper, we investigate the generalized numerical radius $ \omega_N $, associated with a matrix norm $ N $ defined by $ \omega_N(X) = \sup_{\theta \in \mathbb{R}} N(\operatorname{Re}(e^{i\theta}X)) $. We focus on matrices whose numerical ranges are contained in sectors of the complex plane (sectorial matrices) and derive upper bounds for $ \omega_N(XY) $ and $ \omega_N(X \circ Y) $ for such matrices $ X $ and $ Y $. Our results generalize and refine well-known numerical radius inequalities. Several known inequalities for $ \omega(X) $ are recovered as special cases.
| [1] | M. Alakhrass, Numerical radius of products of special matrices, JMI, 17 (2023), 997–1006. |
| [2] |
M. Alakhrass, On sectorial matrices and their inequalities, Linear Algebra Appl., 617 (2021), 179–189. https://doi.org/10.1016/j.laa.2021.02.003 doi: 10.1016/j.laa.2021.02.003
|
| [3] |
M. Alakhrass, M. Sababheh, Lieb functions and sectorial matrices, Linear Algebra Appl., 586, 308–324. https://doi.org/10.1016/j.laa.2019.10.028 doi: 10.1016/j.laa.2019.10.028
|
| [4] |
M. Alakhrass, A note on sectorial matrices, Linear Multil. Algebra, 68 (2020), 2228–2238. https://doi.org/10.1080/03081087.2019.1575332 doi: 10.1080/03081087.2019.1575332
|
| [5] |
A. Abu-Omar, F. Kittaneh, A generalization of the numerical radius, Linear Algebra Appl., 569 (2019), 323–334. https://doi.org/10.1016/j.laa.2019.01.019 doi: 10.1016/j.laa.2019.01.019
|
| [6] |
T. Ando, K. Okubo, Induced norms of the Schur multiplier operator, Linear Algebra Appl., 147 (1991), 181–199. https://doi.org/10.1016/0024-3795(91)90234-N doi: 10.1016/0024-3795(91)90234-N
|
| [7] |
Y. M. Arlinski, A. B. Popov, On sectorial matrices, Linear Algebra Appl., 370 (2003), 133–146. https://doi.org/10.1016/S0024-3795(03)00388-4 doi: 10.1016/S0024-3795(03)00388-4
|
| [8] |
P. Bhunia, F. Kittaneh, S. Sahood, Improved numerical radius bounds using the Moore-Penrose inverse, Linear Algebra Appl., 711 (2025), 1–16. https://doi.org/10.1016/j.laa.2025.02.013 doi: 10.1016/j.laa.2025.02.013
|
| [9] |
P. Bhunia, Improved bounds for the numerical radius via polar decomposition of operators, Linear Algebra Appl., 683 (2024), 31–45. https://doi.org/10.1016/j.laa.2023.11.021 doi: 10.1016/j.laa.2023.11.021
|
| [10] | F. Chen, X. Ren, B. Hao, Some new eigenvalue bounds for the Hadamard product and the Fan product of matrices, J. Math., 34 (2014), 895–903. |
| [11] |
Q. Guo, J. Leng, H. Li, Some bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Mathematics, 7 (2019), 147. https://doi.org/10.3390/math7020147 doi: 10.3390/math7020147
|
| [12] | R. A. Horn, C. A. Johnso, Topics in matrix analysis, Cambridge, England: Cambridge University Press, 1991. |
| [13] |
H. L. Gau, P. Y. Wu, Numerical radius of Hadamard product of matrices, Linear Algebra Appl., 504 (2016), 292–308. https://doi.org/10.1016/j.laa.2016.04.013 doi: 10.1016/j.laa.2016.04.013
|
| [14] |
Y. Xu, L. Shao, T. Dong, G. He, Z. Chen, Some new inequalities on spectral radius for the Hadamard product of nonnegative matrices, Japan J. Indust. Appl. Math., 42 (2025), 727–749. https://doi.org/10.1007/s13160-025-00691-9 doi: 10.1007/s13160-025-00691-9
|
| [15] | T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math., 178 (2007), 83–89. |