Research article

General numerical radius for products of sectorial matrices

  • Published: 03 July 2025
  • MSC : 47A12, 47A30, 15A45, 15A60

  • In this paper, we investigate the generalized numerical radius $ \omega_N $, associated with a matrix norm $ N $ defined by $ \omega_N(X) = \sup_{\theta \in \mathbb{R}} N(\operatorname{Re}(e^{i\theta}X)) $. We focus on matrices whose numerical ranges are contained in sectors of the complex plane (sectorial matrices) and derive upper bounds for $ \omega_N(XY) $ and $ \omega_N(X \circ Y) $ for such matrices $ X $ and $ Y $. Our results generalize and refine well-known numerical radius inequalities. Several known inequalities for $ \omega(X) $ are recovered as special cases.

    Citation: Mohammad Alakhrass. General numerical radius for products of sectorial matrices[J]. AIMS Mathematics, 2025, 10(7): 15358-15369. doi: 10.3934/math.2025688

    Related Papers:

  • In this paper, we investigate the generalized numerical radius $ \omega_N $, associated with a matrix norm $ N $ defined by $ \omega_N(X) = \sup_{\theta \in \mathbb{R}} N(\operatorname{Re}(e^{i\theta}X)) $. We focus on matrices whose numerical ranges are contained in sectors of the complex plane (sectorial matrices) and derive upper bounds for $ \omega_N(XY) $ and $ \omega_N(X \circ Y) $ for such matrices $ X $ and $ Y $. Our results generalize and refine well-known numerical radius inequalities. Several known inequalities for $ \omega(X) $ are recovered as special cases.



    加载中


    [1] M. Alakhrass, Numerical radius of products of special matrices, JMI, 17 (2023), 997–1006.
    [2] M. Alakhrass, On sectorial matrices and their inequalities, Linear Algebra Appl., 617 (2021), 179–189. https://doi.org/10.1016/j.laa.2021.02.003 doi: 10.1016/j.laa.2021.02.003
    [3] M. Alakhrass, M. Sababheh, Lieb functions and sectorial matrices, Linear Algebra Appl., 586, 308–324. https://doi.org/10.1016/j.laa.2019.10.028 doi: 10.1016/j.laa.2019.10.028
    [4] M. Alakhrass, A note on sectorial matrices, Linear Multil. Algebra, 68 (2020), 2228–2238. https://doi.org/10.1080/03081087.2019.1575332 doi: 10.1080/03081087.2019.1575332
    [5] A. Abu-Omar, F. Kittaneh, A generalization of the numerical radius, Linear Algebra Appl., 569 (2019), 323–334. https://doi.org/10.1016/j.laa.2019.01.019 doi: 10.1016/j.laa.2019.01.019
    [6] T. Ando, K. Okubo, Induced norms of the Schur multiplier operator, Linear Algebra Appl., 147 (1991), 181–199. https://doi.org/10.1016/0024-3795(91)90234-N doi: 10.1016/0024-3795(91)90234-N
    [7] Y. M. Arlinski, A. B. Popov, On sectorial matrices, Linear Algebra Appl., 370 (2003), 133–146. https://doi.org/10.1016/S0024-3795(03)00388-4 doi: 10.1016/S0024-3795(03)00388-4
    [8] P. Bhunia, F. Kittaneh, S. Sahood, Improved numerical radius bounds using the Moore-Penrose inverse, Linear Algebra Appl., 711 (2025), 1–16. https://doi.org/10.1016/j.laa.2025.02.013 doi: 10.1016/j.laa.2025.02.013
    [9] P. Bhunia, Improved bounds for the numerical radius via polar decomposition of operators, Linear Algebra Appl., 683 (2024), 31–45. https://doi.org/10.1016/j.laa.2023.11.021 doi: 10.1016/j.laa.2023.11.021
    [10] F. Chen, X. Ren, B. Hao, Some new eigenvalue bounds for the Hadamard product and the Fan product of matrices, J. Math., 34 (2014), 895–903.
    [11] Q. Guo, J. Leng, H. Li, Some bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Mathematics, 7 (2019), 147. https://doi.org/10.3390/math7020147 doi: 10.3390/math7020147
    [12] R. A. Horn, C. A. Johnso, Topics in matrix analysis, Cambridge, England: Cambridge University Press, 1991.
    [13] H. L. Gau, P. Y. Wu, Numerical radius of Hadamard product of matrices, Linear Algebra Appl., 504 (2016), 292–308. https://doi.org/10.1016/j.laa.2016.04.013 doi: 10.1016/j.laa.2016.04.013
    [14] Y. Xu, L. Shao, T. Dong, G. He, Z. Chen, Some new inequalities on spectral radius for the Hadamard product of nonnegative matrices, Japan J. Indust. Appl. Math., 42 (2025), 727–749. https://doi.org/10.1007/s13160-025-00691-9 doi: 10.1007/s13160-025-00691-9
    [15] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math., 178 (2007), 83–89.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(598) PDF downloads(33) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog