It is often desired for practical reasons to cease a life test at a predetermined period $ {{𝓽}}_{0} $. In this study, we provide sequential inspection sampling plan (SISP) for amputated life tests underlying the Burr Ⅻ (BTXII) distribution. We considered the $ \rho ^{{\rm{th}}}$ percentile lifetime of a product as the quality parameter. The sequential sampling plan is a dynamic and efficient technique to quality control and statistical decision-making. Unlike fixed sample plans, which require a predetermined number of samples before deciding, sequential plan enables ongoing analysis as a batch is examined. This flexible plan enables decisions- such as rejecting, accepting or continuing the sampling process - to be made after each sample, which is cumulative data for the number of nonconforming items. Acceptance, rejection limit lines, and optimal sample size at levels of manufacturer and customer errors were analyzed. A technique is provided for calculating the operation characteristic (OC) function and average sample number (ASN) in the suggested SISP. The effectiveness of the SISP was compared to the single, double, and repeating sampling strategies. In comparison to the single, double, and repetitive acceptance sampling plans (RASPs) the proposed sequential sampling acceptance strategy requires fewer sample resources on average for amputated life testing. The suggested method's uses are demonstrated with illustrated instances. In industrial applications, two actual sets of data are employed to demonstrate the SISP's flexibility.
Citation: Mohammad Abiad, Md. Mahabubur Rahman, Oluwafemi Samson Balogun, Yusra A. Tashkandy, Mahmoud E. Bakr, M. Yusuf, Anoop Kumar, Haitham M. Yousof, Basma Ahmed. Sequential inspection sampling plan based on Burr-Ⅻ amputated life testing with numerical illustrations and industrial applications[J]. AIMS Mathematics, 2025, 10(6): 14917-14942. doi: 10.3934/math.2025669
It is often desired for practical reasons to cease a life test at a predetermined period $ {{𝓽}}_{0} $. In this study, we provide sequential inspection sampling plan (SISP) for amputated life tests underlying the Burr Ⅻ (BTXII) distribution. We considered the $ \rho ^{{\rm{th}}}$ percentile lifetime of a product as the quality parameter. The sequential sampling plan is a dynamic and efficient technique to quality control and statistical decision-making. Unlike fixed sample plans, which require a predetermined number of samples before deciding, sequential plan enables ongoing analysis as a batch is examined. This flexible plan enables decisions- such as rejecting, accepting or continuing the sampling process - to be made after each sample, which is cumulative data for the number of nonconforming items. Acceptance, rejection limit lines, and optimal sample size at levels of manufacturer and customer errors were analyzed. A technique is provided for calculating the operation characteristic (OC) function and average sample number (ASN) in the suggested SISP. The effectiveness of the SISP was compared to the single, double, and repeating sampling strategies. In comparison to the single, double, and repetitive acceptance sampling plans (RASPs) the proposed sequential sampling acceptance strategy requires fewer sample resources on average for amputated life testing. The suggested method's uses are demonstrated with illustrated instances. In industrial applications, two actual sets of data are employed to demonstrate the SISP's flexibility.
| [1] | C. Jennison, B. W. Turnbull, Group sequential tests and repeated confidence intervals, In: Handbook of sequential analysis, Marcel Dekker, New York, 1988. |
| [2] |
P. Namvar, G. R. Sadeghi, Evaluation of sequential sampling plans for estimation of leafmines density of Liriomyza sativae Blanchard (Diptera: Agromyzidae) in cucumber greenhouses, Arch. Phytopathol. Plant Prot., 45 (2012), 2386–2394. https://doi.org/10.1080/03235408.2012.724975 doi: 10.1080/03235408.2012.724975
|
| [3] |
X. Li, J. Liu, Z. Ying, Generalized sequential probability ratio test for separate families of hypotheses, Seq. Anal., 33 (2014), 539–563. https://doi.org/10.1080/07474946.2014.961861 doi: 10.1080/07474946.2014.961861
|
| [4] |
M. S. F. Nezhad, M. Momeni, N. N. Sayani, F. Akhoondi, Optimal sequential sampling plans using dynamic programming approach, Pak. J. Stat. Oper. Res., 11 (2015), 575–586. https://doi.org/10.18187/pjsor.v11i4.583 doi: 10.18187/pjsor.v11i4.583
|
| [5] |
M. Kumar, P. C. Ramyamol, Design of optimal reliability acceptance sampling plans for exponential distribution, Econ. Qual. Control, 31 (2016), 23–36. https://doi.org/10.1515/eqc-2015-0005 doi: 10.1515/eqc-2015-0005
|
| [6] |
M. Ç. Korkmaz, H. M. Yousof, G. G. Hamedani, The exponential Lindley odd log-logistic-G family: properties, characterizations and applications, J. Stat. Theory Appl., 17 (2018), 554–571. https://doi.org/10.2991/jsta.2018.17.3.10 doi: 10.2991/jsta.2018.17.3.10
|
| [7] | B. Ahmed, H. M. Yousof, A new group acceptance sampling plans based on percentiles for the Weibull Fréchet model, Stat. Optim. Inf. Comput., 11 (2023), 409–421. |
| [8] |
Y. Tashkandy, W. Emam, M. M. Ali, H. M. Yousof, B. Ahmed, Quality control testing with experimental practical illustrations under the modified Lindley distribution using single, double, and multiple acceptance sampling plans, Mathematics, 11 (2023), 2184. https://doi.org/10.3390/math11092184 doi: 10.3390/math11092184
|
| [9] | R. E. Sherman, Design and evaluation of a repetitive group sampling plan, Technometrics, 7 (1965), 11–21. |
| [10] |
S. Balamurali, H. Park, C. H. Jun, K. J. Kim, J. Lee, Designing of variables repetitive group sampling plan involving minimum average sample number, Commun. Stat. Simul. Comput., 34 (2005), 799–809. https://doi.org/10.1081/SAC-200068424 doi: 10.1081/SAC-200068424
|
| [11] |
S. Balamurali, C. H. Jun, Repetitive group sampling procedure for variables inspection, J. Appl. Stat., 33 (2006), 327–338. https://doi.org/10.1080/02664760500446010 doi: 10.1080/02664760500446010
|
| [12] |
M. Aslam, Y. H. Yen, C. H. Jun, Variable repetitive group sampling plans with process loss consideration, J. Stat. Comput. Simul., 81 (2011), 1417–1432. https://doi.org/10.1080/00949655.2010.487826 doi: 10.1080/00949655.2010.487826
|
| [13] |
M. Aslam, C. W. Wu, C. H. Jun, M. Azam, N. Itay, Developing a variables repetitive group sampling plan based on process capability index Cpk with unknown mean and variance, J. Stat. Comput. Simul., 83 (2013), 1507–1517. https://doi.org/10.1080/00949655.2012.663374 doi: 10.1080/00949655.2012.663374
|
| [14] |
J. W. Wu, H. Y. Yu, Statistical inference about the shape parameter of the Burr type Ⅻ distribution under the failure-censored sampling plan, Appl. Math. Comput., 163 (2005), 443–482. https://doi.org/10.1016/j.amc.2004.02.019 doi: 10.1016/j.amc.2004.02.019
|
| [15] |
M. Aslam, M. Azam, C. H. Jun, A mixed repetitive sampling plan based on process capability index, Appl. Math. Model., 37 (2013), 10027–10035. https://doi.org/10.1016/j.apm.2013.05.058 doi: 10.1016/j.apm.2013.05.058
|
| [16] |
R. A. M. Marques, A. C. Maciel, A. F. B. Costa, K. R. D. S. Santos, The design of the mixed repetitive sampling plans based on the Cpk index, Int. J. Qual. Reliab. Manage., 41 (2024), 674–697. https://doi.org/10.1108/IJQRM-07-2022-0231 doi: 10.1108/IJQRM-07-2022-0231
|
| [17] |
B. Saminathan, U. Mahalingam, A new mixed repetitive group sampling plan based on the process capability index for product acceptance, Int. J. Qual. Reliab. Manage., 35 (2018), 463–480. https://doi.org/10.1108/IJQRM-11-2016-0213 doi: 10.1108/IJQRM-11-2016-0213
|
| [18] |
P. Jeyadurga, S. Balamurali, Designing of variables repetitive group sampling plan for consumer protection, J. Stat. Comput. Simul., 92 (2022), 2141–2155. https://doi.org/10.1080/00949655.2021.2022150 doi: 10.1080/00949655.2021.2022150
|
| [19] |
M. Aslam, M. Azam, C. H. Jun, Multiple dependent state repetitive group sampling plan for Burr Ⅻ distribution, Qual. Eng., 28 (2016), 231–237. https://doi.org/10.1080/08982112.2015.1068331 doi: 10.1080/08982112.2015.1068331
|
| [20] |
C. W. Wu, A. H. I. Lee, Y. S. Huang, Developing a skip-lot sampling scheme by variables inspection using repetitive sampling as a reference plan, Int. J. Prod. Res., 60 (2022), 3018–3030. https://doi.org/10.1080/00207543.2021.1909768 doi: 10.1080/00207543.2021.1909768
|
| [21] |
B. Ahmed, G. G. Hamedani, G. T. Mekiso, Y. A. Tashkandy, M. E. Bakr, E. Hussam, et al., Amputated life-testing based on extended Dagum percentiles for type of group inspection plans: optimal sample sizes, termination time ratios analysis, Sci. Rep., 14 (2024), 24144. https://doi.org/10.1038/s41598-024-74897-1 doi: 10.1038/s41598-024-74897-1
|
| [22] |
A. F. Hashem, N. Alotaibi, S. A. Alyami, M. A. Abdelkawy, M. A. A. Elgawad, H. M. Yousof, et al., Utilizing Bayesian inference in accelerated testing models under constant stress via ordered ranked set sampling and hybrid censoring with practical validation, Sci. Rep., 14 (2024), 14406. https://doi.org/10.1038/s41598-024-64718-w doi: 10.1038/s41598-024-64718-w
|
| [23] | A. Wald, Sequential analysis, John Wiley & Sons, Inc., 1947. |
| [24] | R. S. Prasad, B. Ramadevi, G. Sridevi, Detection of Burr type Ⅻ reliable software using SPRT on interval domain data, Int. J. Comput. Sci. Inf. Technol., 6 (2015), 1806–1811. |
| [25] | S. Glen, Likelihood-ratio tests, Statistics How To, 2021. Available from: https://www.statisticshowto.com/likelihood-ratio-tests/. |
| [26] |
A. Z. Afify, G. M. Cordeiro, E. M. Ortega, H. M. Yousof, N. S. Butt, The four-parameter Burr Ⅻ distribution: properties, regression model, and applications, Commun. Stat. Theory Methods, 47 (2018), 2605–2624. https://doi.org/10.1080/03610926.2016.1231821 doi: 10.1080/03610926.2016.1231821
|
| [27] |
M. Aslam, Y. Mahmood, Y. L. Lio, T. R. Tsai, M. A. Khan, Double acceptance sampling plans for Burr type Ⅻ distribution percentiles under the truncated life test, J. Oper. Res. Soc., 63 (2012), 1010–1017. https://doi.org/10.1057/jors.2011.112 doi: 10.1057/jors.2011.112
|
| [28] |
K. W. Fertig, N. R. Mann, Life-test sampling plans for two-parameter Weibull populations, Technometrics, 22 (1980), 165–177. https://doi.org/10.1080/00401706.1980.10486131 doi: 10.1080/00401706.1980.10486131
|
| [29] | J. G. Smith, Sequential analysis of statistical data: applications, New York: Columbia Univ. Press, 1946. |
| [30] |
Y. L. Lio, T. R. Tsai, S. J. Wu, Acceptance sampling plans from truncated life tests based on the BTXII percentiles, J. Chin. Inst. Ind. Eng., 27 (2010), 270–280. https://doi.org/10.1080/10170661003791029 doi: 10.1080/10170661003791029
|
| [31] | W. Nelson, Applied life data analysis, John Wiley and Sons, 1982. https://doi.org/10.1002/0471725234 |
| [32] |
W. J. Zimmer, J. B. Keats, F. K. Wang, The Burr Ⅻ distribution in reliability analysis, J. Qual. Technol., 30 (1998), 386–394. https://doi.org/10.1080/00224065.1998.11979874 doi: 10.1080/00224065.1998.11979874
|