Unified hybrid censored sampling results from the need to effectively evaluate survival data impacted by different censoring techniques, enabling researchers to use partial information and lower bias in parameter estimates. This study employs unified hybrid censored samples to examine the maximum likelihood and Bayesian estimation methods for unknown parameters of the Lindley distribution, encompassing the reliability function, hazard rate function, cumulative hazard function, and mean residual life. Initially, we estimate the model parameters via the maximum likelihood method. We also examine bootstrapped confidence intervals and asymptotic confidence intervals for unknown parameters of the Lindley distribution. We also derive the confidence interval for the mean residual life, the hazard rate function, the cumulative hazard function, and the reliability function. Moreover, using flexible gamma priors for parameters combined with a non-informative prior yields Bayes estimators based on the principles of squared error, linear exponential, and general entropy loss functions. Consequently, we identify the corresponding highest posterior density credible intervals for unknown parameters, the reliability function, the hazard rate function, the cumulative hazard function, and the mean residual lifetime. Using numerous criteria, Monte Carlo simulations help evaluate the accuracy of the given estimations. We also assess sampling techniques across different rival censoring systems, including bootstrap and censored samples. Ultimately, we investigated a medical data set to show the useful value of the suggested approaches. The numerical results confirm the efficiency of our proposed approaches.
Citation: Said G. Nassr, T. S. Taher, Tmader Alballa, Neema M. Elharoun. Reliability analysis of the Lindley distribution via unified hybrid censoring with applications in medical survival and biological lifetime data[J]. AIMS Mathematics, 2025, 10(6): 14943-14974. doi: 10.3934/math.2025670
Unified hybrid censored sampling results from the need to effectively evaluate survival data impacted by different censoring techniques, enabling researchers to use partial information and lower bias in parameter estimates. This study employs unified hybrid censored samples to examine the maximum likelihood and Bayesian estimation methods for unknown parameters of the Lindley distribution, encompassing the reliability function, hazard rate function, cumulative hazard function, and mean residual life. Initially, we estimate the model parameters via the maximum likelihood method. We also examine bootstrapped confidence intervals and asymptotic confidence intervals for unknown parameters of the Lindley distribution. We also derive the confidence interval for the mean residual life, the hazard rate function, the cumulative hazard function, and the reliability function. Moreover, using flexible gamma priors for parameters combined with a non-informative prior yields Bayes estimators based on the principles of squared error, linear exponential, and general entropy loss functions. Consequently, we identify the corresponding highest posterior density credible intervals for unknown parameters, the reliability function, the hazard rate function, the cumulative hazard function, and the mean residual lifetime. Using numerous criteria, Monte Carlo simulations help evaluate the accuracy of the given estimations. We also assess sampling techniques across different rival censoring systems, including bootstrap and censored samples. Ultimately, we investigated a medical data set to show the useful value of the suggested approaches. The numerical results confirm the efficiency of our proposed approaches.
| [1] |
B. Chandrasekar, A. Childs, N. Balakrishnan, Exact likelihood inference for the exponential distribution under generalized type-Ⅰ and type-Ⅱ hybrid censoring, Nav. Res. Log., 51 (2004), 994–1004. https://doi.org/10.1002/nav.20038 doi: 10.1002/nav.20038
|
| [2] |
N. Balakrishnan, A. A. Rasouli, N. S. Farsipour, Exact likelihood inference based on an unified hybrid censored sample from the exponential distribution, J. Stat. Comput. Simul., 78 (2008), 475–488. https://doi.org/10.1080/00949650601158336 doi: 10.1080/00949650601158336
|
| [3] |
K. Kumar, S. Kumar, R. Garg, I. Kumar, Reliability estimation for inverse Pareto lifetime model based on unified hybrid censored data, Int. J. Syst. Assur. Eng. Manag., 15 (2024), 2473–2482. https://doi.org/10.1007/s13198-024-02265-3 doi: 10.1007/s13198-024-02265-3
|
| [4] |
N. Balakrishnan, D. D. Kundu, Hybrid censoring: Models, inferential results and applications, Comput. Stat. Data Anal., 57 (2013), 166–209. https://doi.org/10.1016/j.csda.2012.03.025 doi: 10.1016/j.csda.2012.03.025
|
| [5] | W. T. Huang, K. C. Yang, A new hybrid censoring scheme and some of its properties, Tamsui Oxf. J. Math. Sci., 26 (2010), 355–367. |
| [6] | A. Rabie, J. Li, Inferences for Burr-X Model Based on Unified Hybrid Censored Data, IAENG Int. J. Appl. Math., 49 (2019), 561–567. |
| [7] |
Y. E. Jeon, S-B. Kang, Estimation of the Rayleigh distribution under unified hybrid censoring, Austrian J. Stat., 50 (2021), 59–73. https://doi.org/10.17713/ajs.v50i1.990 doi: 10.17713/ajs.v50i1.990
|
| [8] |
S. Dutta, H. K. T. Ng, S. Kayal, Inference for a general family of inverted exponentiated distributions under unified hybrid censoring with partially observed competing risks data, J. Comput. Appl. Math., 422 (2023), 114934. https://doi.org/10.1016/j.cam.2022.114934 doi: 10.1016/j.cam.2022.114934
|
| [9] |
D. V. Lindley, Fiducial distributions and Bayes' theorem, J. R. Stat. Soc. B, 20 (1958), 102–107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x doi: 10.1111/j.2517-6161.1958.tb00278.x
|
| [10] |
M. E. Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its application, Math. Comput. Simul., 78 (2008), 493–506. https://doi.org/10.1016/j.matcom.2007.06.007 doi: 10.1016/j.matcom.2007.06.007
|
| [11] |
H. S. Bakouch, B. M. Al-Zahrani, A. A. Al-Shomrani, V. A. A. Marchi, F. Louzada, An extended Lindley distribution, J. Korean Stat. Soc., 41 (2012), 75–85. https://doi.org/10.1016/j.jkss.2011.06.002 doi: 10.1016/j.jkss.2011.06.002
|
| [12] |
M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan, L. J. Al-Enezi, Power Lindley distribution and associated inference, Comput. Stat. Data Anal., 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026 doi: 10.1016/j.csda.2013.02.026
|
| [13] |
S. Nadarajah, H. S. Bakouch, R. Tahmasbi, A generalized Lindley distribution, Sankhya B, 73 (2011), 331–359. https://doi.org/10.1007/s13571-011-0025-9 doi: 10.1007/s13571-011-0025-9
|
| [14] |
M. E. Ghitany, D. K. Al-Mutairi, S. M. Aboukhamseen, Estimation of the Reliability of a Stress-Strength System from Power Lindley Distributions, Commun. Stat.-Simul. Comput., 44 (2015), 118–136. https://doi.org/10.1080/03610918.2013.767910 doi: 10.1080/03610918.2013.767910
|
| [15] |
E. Gómez-Déniz, M. A. Sordo, E. Calderín-Ojeda, The log-lindley distribution as an alternative to the beta regression model with applications in insurance, Insur.: Math. Econ., 54 (2014), 49–57. https://doi.org/10.1016/j.insmatheco.2013.10.017 doi: 10.1016/j.insmatheco.2013.10.017
|
| [16] | N. Ebrahimi, On estimating change point in a mean residual life function, Sankhyā: Indian J. Stat. A, 53 (1991), 206–219. |
| [17] |
N. Goel, H. Krishna, Estimation in Residual lifetime Lindley distribution with Type Ⅱ censored data, Int. J. Syst. Assur. Eng. Manag., 13 (2022), 363–374. https://doi.org/10.1007/s13198-021-01274-w doi: 10.1007/s13198-021-01274-w
|
| [18] | W. H. Greene, Econometric analysis, 4 Eds., New Jersey: Prentice Hall, Englewood Cliffs, 2000. |
| [19] |
A. Pak, M. E. Ghitany, R. M. Mahmoudi, Bayesian inference on power Lindley distribution based on different loss functions, Braz. J. Probab. Stat., 33 (2019), 894–914. https://doi.org/10.1214/18-BJPS428 doi: 10.1214/18-BJPS428
|
| [20] |
S. Fartyal, V. Kumar, A study of weighted Lindley distribution: Bayesian approach, Int. J. Stat. Appl., 8 (2023), 19–33. https://doi.org/10.22271/maths.2023.v8.i2a.941 doi: 10.22271/maths.2023.v8.i2a.941
|
| [21] |
A. A. Al-Babtain, I. Elbatal, E. M. Almetwally, Bayesian and Non-Bayesian Reliability Estimation of Stress-Strength Model for Power-Modified Lindley Distribution, Comput. Intell. Neurosci., 2022 (2022), 1154705. https://doi.org/10.1155/2022/1154705 doi: 10.1155/2022/1154705
|
| [22] |
H. H. Ahmad, E. M. Almetwally, D. A. Ramadan, A comparative inference on reliability estimation for a multi-component stress-strength model under power Lomax distribution with applications, AIMS Mathematics, 7 (2022), 18050–18079. https://doi.org/10.3934/math.2022994 doi: 10.3934/math.2022994
|
| [23] |
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092. https://doi.org/10.1063/1.1699114 doi: 10.1063/1.1699114
|
| [24] |
S. G. Nassr, N. M. Elharoun, Inference for exponentiated Weibull distribution under constant stress partially accelerated life tests with multiple censored, Commun. Stat. Appl. Methods, 26 (2019), 131–148. https://doi.org/10.29220/CSAM.2019.26.2.131 doi: 10.29220/CSAM.2019.26.2.131
|
| [25] | S. G. Nassr, E. M. Almetwally, W. S. Abu El Azm, Statistical inference for the extended Weibull distribution based on adaptive type-Ⅱ progressive hybrid censored competing risks data, Thail. Stat., 9 (2021), 547–564. |
| [26] |
W. S. Abu El Azm, R. Abdallal, H. M. Aljohani, S. G. Nassr, Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored, Math. Biosci. Eng., 19 (2021), 6252–6275. https://doi.org/10.3934/mbe.2022292 doi: 10.3934/mbe.2022292
|
| [27] |
M. M. Yousef, R. Alsultan, S. G. Nassr, Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on type-Ⅱ progressive censoring data, Math. Biosci. Eng., 20 (2023), 1674–1694. https://doi.org/10.3934/mbe.2023076 doi: 10.3934/mbe.2023076
|
| [28] |
M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, et al., Inference and other aspects for $q \_$Weibull distribution via generalized order statistics with applications to medical datasets, AIMS Mathematics, 9 (2024), 8311–8338. https://doi.org/10.3934/math.2024404 doi: 10.3934/math.2024404
|
| [29] |
M. K. Cowles, B. P. Carlin, Markov chain Monte Carlo convergence diagnostics: a comparative review, J. Am. stat. Assoc., 91 (1996), 883–904. https://doi.org/10.1080/01621459.1996.10476956 doi: 10.1080/01621459.1996.10476956
|
| [30] |
W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1970), 97–109. https://doi.org/10.2307/2334940 doi: 10.2307/2334940
|
| [31] | B. Efron, The jackknife, the bootstrap and other resampling plans, United States of America: Society for Industrial and Applied Mathematics, 1982. http://doi.org/10.1137/1.9781611970319 |
| [32] |
A. Pak, M. E. Ghitany, Censoring and reliability inferences for power Lindley distribution with application on hematologic malignancies data, Reliab.: Theory Appl., 4 (2022), 593–610. https://doi.org/10.24412/1932-2321-2022-471-593-610 doi: 10.24412/1932-2321-2022-471-593-610
|
| [33] |
H. M. Okasha, A. H. El-Baz, A. M. K. Tarabia, A. M. Basheer, Extended inverse Weibull distribution with reliability application, J. Egypt. Math. Soc., 25 (2017), 343–349. https://doi.org/10.1016/j.joems.2017.02.006 doi: 10.1016/j.joems.2017.02.006
|
| [34] |
H. Haj Ahmad, E. M. Almetwally, A. Rabaiah, D. A. Ramadan, Statistical Analysis of Alpha Power Inverse Weibull Distribution under Hybrid Censored Scheme with Applications to Ball Bearings Technology and Biomedical Data, Symmetry, 15 (2023), 161. https://doi.org/10.3390/sym15010161 doi: 10.3390/sym15010161
|
| [35] |
S. G. Nassr, A. S. Hassan, R. Alsultan, A. R. El-Saeed, Acceptance Sampling Plans for the Three-Parameter Inverted Topp-Leone Model, Math. Biosci. Eng., 19 (2022), 13628–13659. https://doi.org/10.3934/mbe.2022636 doi: 10.3934/mbe.2022636
|
| [36] |
A. R. El-Saeed, A. S. Hassan, N. M. Elharoun, A. Al Mutairi, R. H. Khashab, S. G. Nassr, A Class of Power Inverted Topp-Leone Distribution: Properties, Different Estimation Methods & Applications, J. Radiat. Res. Appl. Sci., 16 (2023), 100643. https://doi.org/10.1016/j.jrras.2023.100643 doi: 10.1016/j.jrras.2023.100643
|
| [37] |
M. A. Alawady, H. M. Barakat, T. S. Taher, I. A. Husseiny, Measures of Extropy for k-Record Values and Their Concomitants Based on Cambanis Family, J. Stat. Theory Pract., 19 (2025), 11. https://doi.org/10.1007/s42519-024-00423-1 doi: 10.1007/s42519-024-00423-1
|
| [38] |
H. M. Barakat, M. A. Alawady, T. S. Taher, I. A. Husseiny, Second-order concomitants of order statistics from bivariate Cambanis family: Some information measures-estimation, Commun. Stat.-Simul. Comput., 2024, 1–27. https://doi.org/10.1080/03610918.2024.2344023 doi: 10.1080/03610918.2024.2344023
|
| [39] |
I. A. Husseiny, H. M. Barakat, T. S. Taher, M. A. Alawady, Fisher information in order statistics and their concomitants for Cambanis bivariate distribution, Math. Slovaca, 74 (2024), 501–520. https://doi.org/10.1515/ms-2024-0038 doi: 10.1515/ms-2024-0038
|