Research article

Timelike acc-slant curves in Minkowski 3-space

  • Published: 26 June 2025
  • MSC : 53A04, 53A35

  • In this work, we introduced the concept of a timelike acceleration-slant curve in three-dimensional Minkowski space, characterized by the property that the scalar product of a fixed unit direction and its acceleration vector remained constant. Moreover, we provided a classification of timelike acceleration-slant curves with a non-null axis based on their curvature properties. Later on, we explored the relationships between timelike acceleration-slant curves and various notable curves, including timelike helices, timelike slant helices, timelike Lorentzian spherical curve, and timelike Salkowski curves. To further illustrate and validate the theoretical results, we utilized Mathematica to generate visual representations.

    Citation: Hasan Altınbaş. Timelike acc-slant curves in Minkowski 3-space[J]. AIMS Mathematics, 2025, 10(6): 14617-14628. doi: 10.3934/math.2025658

    Related Papers:

  • In this work, we introduced the concept of a timelike acceleration-slant curve in three-dimensional Minkowski space, characterized by the property that the scalar product of a fixed unit direction and its acceleration vector remained constant. Moreover, we provided a classification of timelike acceleration-slant curves with a non-null axis based on their curvature properties. Later on, we explored the relationships between timelike acceleration-slant curves and various notable curves, including timelike helices, timelike slant helices, timelike Lorentzian spherical curve, and timelike Salkowski curves. To further illustrate and validate the theoretical results, we utilized Mathematica to generate visual representations.



    加载中


    [1] A. Ferrandez, A. Gimenez, P. Lucas, Relativistic particles and the geometry of 4-D null curves, J. Geom. Phys., 57 (2007), 2124–2135. https://doi.org/10.1016/j.geomphys.2007.05.006 doi: 10.1016/j.geomphys.2007.05.006
    [2] Y. A. Kuznetsov, M. S. A. Plyushhchay, The model of the relativistic particle with curvature and torsion, Nucl. Phys. B., 389 (1993), 181–205. https://doi.org/10.1016/0550-3213(93)90290-6 doi: 10.1016/0550-3213(93)90290-6
    [3] G. S. Hall, W. Kay, Curvature structure in general relativity, J. Math. Phys., 29 (1988), 420–427.
    [4] R. M. Wald, General relativity, University of Chicago press, 2010.
    [5] S. H. Schot, Jerk: the time rate of change of acceleration, Am. J. Phys., 46 (1978), 1090–1094. https://doi.org/10.1119/1.11504 doi: 10.1119/1.11504
    [6] H. Crew, The principles of mechanics, BiblioBazaar, LLC, Boston, 2008.
    [7] H. Bondi, Relativity and common sense: A new approach to Einstein, Am. J. Phys., 34 (1966), 372–372. https://doi.org/10.1119/1.1972997 doi: 10.1119/1.1972997
    [8] M. A. Lancret, Memoire sur less courbes a double courbure, Memoires presentes a Institut, 1806,416–454.
    [9] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004), 153–164.
    [10] E. Salkowski, Zur transformation von raumkurven, Math. Ann., 66 (1909), 517–557. https://doi.org/10.1007/BF01450047 doi: 10.1007/BF01450047
    [11] R. López, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (2014), 44–107. https://doi.org/10.36890/iejg.594497 doi: 10.36890/iejg.594497
    [12] A. T. Ali, Slant helices in Minkowski space ${E}_1^3$, J. Korean Math. Soc., 48 (2011), 159–167. https://doi.org/10.4134/JKMS.2011.48.1.159 doi: 10.4134/JKMS.2011.48.1.159
    [13] A. T. Ali, Time-like Salkowski and anti-Salkowski curves in Minkowski space $E_1^{3}$, arXiv: 0905.1404, 2009.
    [14] N. Emilija, Ö. Ufuk, K. Ö. E. Betül, On non-null relatively normal-slant helices in Minkowski 3-space, Filomat, 36 (2022), 2051–2062. https://doi.org/10.2298/FIL2206051N doi: 10.2298/FIL2206051N
    [15] M. Babaarslan, Y. Yaylı, On helices and Bertrand curves in Euclidean 3-Space, Math. Comput. Appl., 18 (2013), 1–11. https://doi.org/10.3390/mca18010001 doi: 10.3390/mca18010001
    [16] L. Kula, Y. Yaylı, On slant helix and its spherical indicatrix, Appl. Math. Comput., 169 (2005), 600–607. https://doi.org/10.1016/j.amc.2004.09.078 doi: 10.1016/j.amc.2004.09.078
    [17] S. Kızıltuğ, S. Kaya, O. Tarakcı, The slant helices according to type-2 bishop frame in Euclidean 3-Space, Int. J. Pure Appl. Math., 2 (2013), 211–222. http://dx.doi.org/10.12732/ijpam.v85i2.3 doi: 10.12732/ijpam.v85i2.3
    [18] K. İlarslan, O. Boyacıoğlu, Position vectors of a timelike and a null helix in Minkowski 3-space, Chaos Soliton. Fract., 38 (2008), 1383–1389. https://doi.org/10.1016/j.chaos.2008.04.003 doi: 10.1016/j.chaos.2008.04.003
    [19] A. Uçum, Ç. Camci, K. İlarslan, General helices with timelike slope axis in Minkowski 3-space, Adv. Appl. Clifford Al., 26 (2016), 793–807. https://doi.org/10.1007/s00006-015-0610-5 doi: 10.1007/s00006-015-0610-5
    [20] M. Altınok, L. Kula, Slant helices generated by plane curves in Euclidean 3-space, Palest. J. Math., 5 (2016), 164–174.
    [21] M. Mak, H. Altınbaş, L. Kula, Ac-slant curves in Euclidean 3-space, Asian-Eur. J. Math., 18 (2025), 2450096. https://doi.org/10.1142/S1793557124500967 doi: 10.1142/S1793557124500967
    [22] H. Altınbaş, Spacelike ac-slant curves with non-null principal normal in Minkowski 3-space, J. New Theory, 45 (2023), 120–130. https://doi.org/10.53570/jnt.1401001 doi: 10.53570/jnt.1401001
    [23] M. P. Do Carmo, Differential geometry of curves and surfaces: Revised and updated second edition, Courier Dover Publications, New York, 2016.
    [24] B. O'neill, Semi-riemannian geometry with applications to relativity, Academic Press, 1983.
    [25] M. Bektas, M. Ergut, D. Soylu, The characterization of the spherical timelike curves in 3-dimensional Lorentzian space, Bull. Malays. Math. Sci., 21 (1998).
    [26] H. Altınbaş, M. Mak, B. Altunkaya, L. Kula, Mappings that transform helices from Euclidean space to Minkowski space, Hacettepe J. Math. Stat., 51 (2022), 1333–1347. https://doi.org/10.15672/hujms.915138 doi: 10.15672/hujms.915138
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(546) PDF downloads(38) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog