In this work, we introduced the concept of a timelike acceleration-slant curve in three-dimensional Minkowski space, characterized by the property that the scalar product of a fixed unit direction and its acceleration vector remained constant. Moreover, we provided a classification of timelike acceleration-slant curves with a non-null axis based on their curvature properties. Later on, we explored the relationships between timelike acceleration-slant curves and various notable curves, including timelike helices, timelike slant helices, timelike Lorentzian spherical curve, and timelike Salkowski curves. To further illustrate and validate the theoretical results, we utilized Mathematica to generate visual representations.
Citation: Hasan Altınbaş. Timelike acc-slant curves in Minkowski 3-space[J]. AIMS Mathematics, 2025, 10(6): 14617-14628. doi: 10.3934/math.2025658
In this work, we introduced the concept of a timelike acceleration-slant curve in three-dimensional Minkowski space, characterized by the property that the scalar product of a fixed unit direction and its acceleration vector remained constant. Moreover, we provided a classification of timelike acceleration-slant curves with a non-null axis based on their curvature properties. Later on, we explored the relationships between timelike acceleration-slant curves and various notable curves, including timelike helices, timelike slant helices, timelike Lorentzian spherical curve, and timelike Salkowski curves. To further illustrate and validate the theoretical results, we utilized Mathematica to generate visual representations.
| [1] |
A. Ferrandez, A. Gimenez, P. Lucas, Relativistic particles and the geometry of 4-D null curves, J. Geom. Phys., 57 (2007), 2124–2135. https://doi.org/10.1016/j.geomphys.2007.05.006 doi: 10.1016/j.geomphys.2007.05.006
|
| [2] |
Y. A. Kuznetsov, M. S. A. Plyushhchay, The model of the relativistic particle with curvature and torsion, Nucl. Phys. B., 389 (1993), 181–205. https://doi.org/10.1016/0550-3213(93)90290-6 doi: 10.1016/0550-3213(93)90290-6
|
| [3] | G. S. Hall, W. Kay, Curvature structure in general relativity, J. Math. Phys., 29 (1988), 420–427. |
| [4] | R. M. Wald, General relativity, University of Chicago press, 2010. |
| [5] |
S. H. Schot, Jerk: the time rate of change of acceleration, Am. J. Phys., 46 (1978), 1090–1094. https://doi.org/10.1119/1.11504 doi: 10.1119/1.11504
|
| [6] | H. Crew, The principles of mechanics, BiblioBazaar, LLC, Boston, 2008. |
| [7] |
H. Bondi, Relativity and common sense: A new approach to Einstein, Am. J. Phys., 34 (1966), 372–372. https://doi.org/10.1119/1.1972997 doi: 10.1119/1.1972997
|
| [8] | M. A. Lancret, Memoire sur less courbes a double courbure, Memoires presentes a Institut, 1806,416–454. |
| [9] | S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004), 153–164. |
| [10] |
E. Salkowski, Zur transformation von raumkurven, Math. Ann., 66 (1909), 517–557. https://doi.org/10.1007/BF01450047 doi: 10.1007/BF01450047
|
| [11] |
R. López, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (2014), 44–107. https://doi.org/10.36890/iejg.594497 doi: 10.36890/iejg.594497
|
| [12] |
A. T. Ali, Slant helices in Minkowski space ${E}_1^3$, J. Korean Math. Soc., 48 (2011), 159–167. https://doi.org/10.4134/JKMS.2011.48.1.159 doi: 10.4134/JKMS.2011.48.1.159
|
| [13] | A. T. Ali, Time-like Salkowski and anti-Salkowski curves in Minkowski space $E_1^{3}$, arXiv: 0905.1404, 2009. |
| [14] |
N. Emilija, Ö. Ufuk, K. Ö. E. Betül, On non-null relatively normal-slant helices in Minkowski 3-space, Filomat, 36 (2022), 2051–2062. https://doi.org/10.2298/FIL2206051N doi: 10.2298/FIL2206051N
|
| [15] |
M. Babaarslan, Y. Yaylı, On helices and Bertrand curves in Euclidean 3-Space, Math. Comput. Appl., 18 (2013), 1–11. https://doi.org/10.3390/mca18010001 doi: 10.3390/mca18010001
|
| [16] |
L. Kula, Y. Yaylı, On slant helix and its spherical indicatrix, Appl. Math. Comput., 169 (2005), 600–607. https://doi.org/10.1016/j.amc.2004.09.078 doi: 10.1016/j.amc.2004.09.078
|
| [17] |
S. Kızıltuğ, S. Kaya, O. Tarakcı, The slant helices according to type-2 bishop frame in Euclidean 3-Space, Int. J. Pure Appl. Math., 2 (2013), 211–222. http://dx.doi.org/10.12732/ijpam.v85i2.3 doi: 10.12732/ijpam.v85i2.3
|
| [18] |
K. İlarslan, O. Boyacıoğlu, Position vectors of a timelike and a null helix in Minkowski 3-space, Chaos Soliton. Fract., 38 (2008), 1383–1389. https://doi.org/10.1016/j.chaos.2008.04.003 doi: 10.1016/j.chaos.2008.04.003
|
| [19] |
A. Uçum, Ç. Camci, K. İlarslan, General helices with timelike slope axis in Minkowski 3-space, Adv. Appl. Clifford Al., 26 (2016), 793–807. https://doi.org/10.1007/s00006-015-0610-5 doi: 10.1007/s00006-015-0610-5
|
| [20] | M. Altınok, L. Kula, Slant helices generated by plane curves in Euclidean 3-space, Palest. J. Math., 5 (2016), 164–174. |
| [21] |
M. Mak, H. Altınbaş, L. Kula, Ac-slant curves in Euclidean 3-space, Asian-Eur. J. Math., 18 (2025), 2450096. https://doi.org/10.1142/S1793557124500967 doi: 10.1142/S1793557124500967
|
| [22] |
H. Altınbaş, Spacelike ac-slant curves with non-null principal normal in Minkowski 3-space, J. New Theory, 45 (2023), 120–130. https://doi.org/10.53570/jnt.1401001 doi: 10.53570/jnt.1401001
|
| [23] | M. P. Do Carmo, Differential geometry of curves and surfaces: Revised and updated second edition, Courier Dover Publications, New York, 2016. |
| [24] | B. O'neill, Semi-riemannian geometry with applications to relativity, Academic Press, 1983. |
| [25] | M. Bektas, M. Ergut, D. Soylu, The characterization of the spherical timelike curves in 3-dimensional Lorentzian space, Bull. Malays. Math. Sci., 21 (1998). |
| [26] |
H. Altınbaş, M. Mak, B. Altunkaya, L. Kula, Mappings that transform helices from Euclidean space to Minkowski space, Hacettepe J. Math. Stat., 51 (2022), 1333–1347. https://doi.org/10.15672/hujms.915138 doi: 10.15672/hujms.915138
|