This work explores a discrete-time predator-prey system governed by a prey-dependent Rosenzweig–MacArthur response, incorporating the fear effect in prey dynamics. The study examines equilibrium properties and bifurcation mechanisms, particularly near the interior fixed point, highlighting their ecological significance. Various bifurcation types, including period-doubling and Neimark-Sacker, are identified, with precise conditions ensuring the latter's occurrence. To manage the system's intricate behavior, Ott-Grebogi-Yorke (OGY) and state feedback control are implemented. Numerical simulations reinforce theoretical findings through phase space reconstructions, Lyapunov exponent analysis, bifurcation diagrams, and local stability assessments, offering a comprehensive perspective on system transitions and control strategies.
Citation: Md. Jasim Uddin, Md. Mutakabbir Khan, Ibraheem M. Alsulami, Amer Alsulami. Complex dynamics of a discretized Rosenzweig–MacArthur prey-predator model with fear effect on prey and prey refuge[J]. AIMS Mathematics, 2025, 10(6): 14629-14656. doi: 10.3934/math.2025659
This work explores a discrete-time predator-prey system governed by a prey-dependent Rosenzweig–MacArthur response, incorporating the fear effect in prey dynamics. The study examines equilibrium properties and bifurcation mechanisms, particularly near the interior fixed point, highlighting their ecological significance. Various bifurcation types, including period-doubling and Neimark-Sacker, are identified, with precise conditions ensuring the latter's occurrence. To manage the system's intricate behavior, Ott-Grebogi-Yorke (OGY) and state feedback control are implemented. Numerical simulations reinforce theoretical findings through phase space reconstructions, Lyapunov exponent analysis, bifurcation diagrams, and local stability assessments, offering a comprehensive perspective on system transitions and control strategies.
| [1] | H. I. Freedman, Deterministic mathematical models in population ecology, New York: Marcel Dekker, Inc., 1980. https://doi.org/10.2307/2530090 |
| [2] |
P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.2307/2333294 doi: 10.2307/2333294
|
| [3] | M. Kot, Elements of mathematical ecology, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/cbo9780511608520 |
| [4] |
A. Wikan, Ø. Kristensen, Prey‐predator interactions in two and three species population models, Discrete Dyn. Nat. Soc., 2019 (2019), 9543139. https://doi.org/10.1155/2019/9543139 doi: 10.1155/2019/9543139
|
| [5] |
S. L. Yuan, Y. L. Song, Bifurcation and stability analysis for a delayed Leslie–Gower predator-prey system, IMA J. Appl. Math., 74 (2009), 574–603. https://doi.org/10.1093/imamat/hxp013 doi: 10.1093/imamat/hxp013
|
| [6] |
A. P. Maiti, B. Dubey, J. Tushar, A delayed prey-predator model with Crowley–Martin-type functional response including prey refuge, Math. Method. Appl. Sci., 40 (2017), 5792–5809. https://doi.org/10.1002/mma.4429 doi: 10.1002/mma.4429
|
| [7] |
S. Gakkhar, A. Singh, Complex dynamics in a prey-predator system with multiple delays, Commun. Nonlinear Sci., 17 (2012), 914–929. https://doi.org/10.1016/j.cnsns.2011.05.047 doi: 10.1016/j.cnsns.2011.05.047
|
| [8] |
S. Gakkhar, A. Singh, B. P. Singh, Effects of delay and seasonality on toxin producing phytoplankton-zooplankton system, Int. J. Biomath., 5 (2012), 1250047. https://doi.org/10.1142/s1793524511001891 doi: 10.1142/s1793524511001891
|
| [9] |
S. Kumar, H. Kharbanda, Chaotic behavior of predator-prey model with group defense and non-linear harvesting in prey, Chaos Soliton. Fract., 119 (2019), 19–28. https://doi.org/10.1016/j.chaos.2018.12.011 doi: 10.1016/j.chaos.2018.12.011
|
| [10] | M. Haragus, G. Iooss, Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, London: Springer, 2011. https://doi.org/10.1007/978-0-85729-112-7 |
| [11] |
A. Hastings, T. Powell, Chaos in a three‐species food chain, Ecology, 72 (1991), 896–903. https://doi.org/10.2307/1940591 doi: 10.2307/1940591
|
| [12] |
W. Liu, Y. P. Qin, C. L. Shi, D. D. Guo, Dynamic evolution of spontaneous combustion of coal in longwall gobs during mining-stopped period, Process Saf. Environ., 132 (2019), 11–21. https://doi.org/10.1016/j.psep.2019.09.027 doi: 10.1016/j.psep.2019.09.027
|
| [13] |
M. M. Zhao, J. C. Ji, Dynamic analysis of wind turbine gearbox components, Energies, 9 (2016), 110. https://doi.org/10.3390/en9020110 doi: 10.3390/en9020110
|
| [14] |
R. Ahmed, M. Rafaqat, I. Siddique, M. A. Arefin, Complex dynamics and chaos control of a discrete‐time predator‐prey model, Discrete Dyn. Nat. Soc., 2023 (2023), 8873611. https://doi.org/10.1155/2023/8873611 doi: 10.1155/2023/8873611
|
| [15] |
A. E. Matouk, Chaos and bifurcations in a discretized fractional model of quasi-periodic plasma perturbations, Int. J. Nonlin. Sci. Num., 23 (2022), 1109–1127. https://doi.org/10.1515/ijnsns-2020-0101 doi: 10.1515/ijnsns-2020-0101
|
| [16] |
A. A. Elsadany, A. E. Matouk, Dynamical behaviors of fractional-order Lotka–Volterra predator-prey model and its discretization, J. Appl. Math. Comput., 49 (2015), 269–283. https://doi.org/10.1007/s12190-014-0838-6 doi: 10.1007/s12190-014-0838-6
|
| [17] |
R. Ahmed, Complex dynamics of a fractional-order predator-prey interaction with harvesting, Open J. Discret. Appl. Math., 3 (2020), 24–32. https://doi.org/10.30538/psrp-odam2020.0040 doi: 10.30538/psrp-odam2020.0040
|
| [18] |
M. J. Uddin, C. N. Podder, Fractional order prey-predator model incorporating immigration on prey: complexity analysis and its control, Int. J. Biomath., 17 (2024), 2350051. https://doi.org/10.1142/s1793524523500511 doi: 10.1142/s1793524523500511
|
| [19] |
J. L. Xiao, The complex dynamics of sharing platform competition game, Discrete Dyn. Nat. Soc., 2021 (2021), 2022179. https://doi.org/10.1155/2021/2022179 doi: 10.1155/2021/2022179
|
| [20] |
A. Al-Khedhairi, A. E. Matouk, S. S. Askar, Bifurcations and chaos in a novel discrete economic system, Adv. Mech. Eng., 11 (2019), 1–15. https://doi.org/10.1177/1687814019841818 doi: 10.1177/1687814019841818
|
| [21] |
R. B. de la Parra, M. Marvá, E. Sánchez, L. Sanz, Discrete models of disease and competition, Discrete Dyn. Nat. Soc., 2017 (2017), 5310837. https://doi.org/10.1155/2017/5310837 doi: 10.1155/2017/5310837
|
| [22] |
D. Mukherjee, Role of fear in predator-prey system with intraspecific competition, Math. Comput. Simulat., 177 (2020), 263–275. https://doi.org/10.1016/j.matcom.2020.04.025 doi: 10.1016/j.matcom.2020.04.025
|
| [23] |
Y. X. Ma, R. Z. Yang, Bifurcation analysis in a modified leslie-gower with nonlocal competition and beddington-deangelis functional response, J. Appl. Anal. Comput., 15 (2025), 2152–2184. https://doi.org/10.11948/20240415 doi: 10.11948/20240415
|
| [24] |
F. Y. Zhu, R. Z. Yang, Bifurcation in a modified Leslie-Gower model with nonlocal competition and fear effect, Discrete Cont. Dyn.-B, 30 (2025), 2865–2893. https://doi.org/10.3934/dcdsb.2024195 doi: 10.3934/dcdsb.2024195
|
| [25] |
E. González-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Model., 166 (2003), 135–146. https://doi.org/10.1016/s0304-3800(03)00131-5 doi: 10.1016/s0304-3800(03)00131-5
|
| [26] |
T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci., 10 (2005), 681–691. https://doi.org/10.1016/j.cnsns.2003.08.006 doi: 10.1016/j.cnsns.2003.08.006
|
| [27] |
S. M. S. Rana, M. J. Uddin, Dynamics and control of a discrete predator-prey model with prey refuge: Holling type Ⅰ functional response, Math. Probl. Eng., 2023 (2023), 5537632. https://doi.org/10.1155/2023/5537632 doi: 10.1155/2023/5537632
|
| [28] |
J. P. Tripathi, S. Abbas, M. Thakur, Dynamical analysis of a prey-predator model with Beddington–DeAngelis type function response incorporating a prey refuge, Nonlinear Dyn., 80 (2015), 177–196. https://doi.org/10.1007/s11071-014-1859-2 doi: 10.1007/s11071-014-1859-2
|
| [29] |
H. Zhang, F. Tian, P. Harvim, P. Georgescu, Effects of size refuge specificity on a predator-prey model, Biosystems, 152 (2017), 11–23. https://doi.org/10.1016/j.biosystems.2016.12.001 doi: 10.1016/j.biosystems.2016.12.001
|
| [30] |
Q. Yue, Dynamics of a modified Leslie–Gower predator-prey model with Holling-type Ⅱ schemes and a prey refuge, SpringerPlus, 5 (2016), 461. https://doi.org/10.1186/s40064-016-2087-7 doi: 10.1186/s40064-016-2087-7
|
| [31] |
S. Sarwardi, P. K. Mandal, S. Ray, Dynamical behaviour of a two-predator model with prey refuge, J. Biol. Phys., 39 (2013), 701–722. https://doi.org/10.1007/s10867-013-9327-7 doi: 10.1007/s10867-013-9327-7
|
| [32] | N. Boccara, Modeling complex systems, 2 Eds., New York: Springer, 2010. https://doi.org/10.1007/978-1-4419-6562-2 |
| [33] |
M. W. Conkey, A. Beltrán, G. A. Clark, J. G. Echegaray, M. G. Guenther, J. Hahn, et al., The identification of prehistoric hunter-gatherer aggregation sites: the case of Altamira, Curr. Anthropol., 21 (1980), 609–630. https://doi.org/10.1086/202540 doi: 10.1086/202540
|
| [34] |
M. L. Rosenzweig, R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209–223. https://doi.org/10.1086/282272 doi: 10.1086/282272
|
| [35] |
H. S. Zhang, Y. L. Cai, S. M. Fu, W. M. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
|
| [36] |
K. Sarkar, S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecol. Complex., 42 (2020), 100826. https://doi.org/10.1016/j.ecocom.2020.100826 doi: 10.1016/j.ecocom.2020.100826
|
| [37] |
P. H. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16–31. https://doi.org/10.1093/biomet/45.1-2.16 doi: 10.1093/biomet/45.1-2.16
|
| [38] |
X. Y. Wang, L. Zanette, X. F. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
|
| [39] |
M. Javidi, N. Nyamoradi, Dynamic analysis of a fractional order prey–predator interaction with harvesting, Appl. Math. Model., 37 (2013), 8946–8956. https://doi.org/10.1016/j.apm.2013.04.024 doi: 10.1016/j.apm.2013.04.024
|
| [40] |
Y. A. Kuznetsov, H. G. E. Meijer, Numerical normal forms for codim 2 bifurcations of fixed points with at most two critical eigenvalues, SIAM J. Sci. Comput., 26 (2005), 1932–1954. https://doi.org/10.1137/030601508 doi: 10.1137/030601508
|
| [41] |
M. J. Uddin, S. M. S. Rana, S. Işık, F. Kangalgil, On the qualitative study of a discrete fractional order prey-predator model with the effects of harvesting on predator population, Chaos Soliton. Fract., 175 (2023), 113932. https://doi.org/10.1016/j.chaos.2023.113932 doi: 10.1016/j.chaos.2023.113932
|
| [42] | S. Lynch, Dynamical systems with applications using mathematica, 2 Eds., Cham: Birkhäuser, 2007. https://doi.org/10.1007/978-3-319-61485-4 |
| [43] | E. Ott, C. Grebogi, J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 64 (1990), 1196. https://doi.org/10.1103/physrevlett.64.1196 |
| [44] |
M. J. Uddin, S. M. S. Rana, Qualitative analysis of the discretization of a continuous fractional order prey-predator model with the effects of harvesting and immigration in the population, Complexity, 2024 (2024), 8855142. https://doi.org/10.1155/2024/8855142 doi: 10.1155/2024/8855142
|
| [45] |
N. Li, H. Q. Yuan, H. Y. Sun, Q. L. Zhang, An impulsive multi-delayed feedback control method for stabilizing discrete chaotic systems, Nonlinear Dyn., 73 (2013), 1187–1199. https://doi.org/10.1007/s11071-012-0434-y doi: 10.1007/s11071-012-0434-y
|
| [46] |
K. Pyragas, Delayed feedback control of chaos, Phil. Trans. R. Soc. A, 364 (2006), 2309–2334. https://doi.org/10.1098/rsta.2006.1827 doi: 10.1098/rsta.2006.1827
|