Research article Special Issues

Optimal polynomial stability of the Timoshenko system with single fractional boundary dissipation

  • Published: 26 June 2025
  • MSC : 34A08, 47D03, 93B52, 34K35

  • This study investigates Timoshenko systems with a single boundary condition involving fractional dissipation. Utilizing semigroup theory, we establish the existence and uniqueness of solutions. Our findings indicate that although the system demonstrates strong stability, it does not attain uniform stability. As a result, we derive the optimal polynomial decay rate of the system.

    Citation: Reem Alrebdi, Ahmed Bchatnia, Saleh Fahad Aljurbua. Optimal polynomial stability of the Timoshenko system with single fractional boundary dissipation[J]. AIMS Mathematics, 2025, 10(6): 14515-14538. doi: 10.3934/math.2025654

    Related Papers:

  • This study investigates Timoshenko systems with a single boundary condition involving fractional dissipation. Utilizing semigroup theory, we establish the existence and uniqueness of solutions. Our findings indicate that although the system demonstrates strong stability, it does not attain uniform stability. As a result, we derive the optimal polynomial decay rate of the system.



    加载中


    [1] M. Akil, A. Wehbe, Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions, Math. Control Related Fields, 9 (2019), 97–116. https://doi.org/10.3934/mcrf.2019005 doi: 10.3934/mcrf.2019005
    [2] M. Akil, Y. Chitour, M. Ghader, A. Wehbe, Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary, Asymptotic Anal., 119 (2019), 221–280. https://doi.org/10.3233/ASY-191574 doi: 10.3233/ASY-191574
    [3] W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837–852. https://doi.org/10.1090/S0002-9947-1988-0933321-3 doi: 10.1090/S0002-9947-1988-0933321-3
    [4] C. J. K. Batty, R. Chill, Y. Tomilov, Fine scales of decay of operator semigroups, J. Eur. Math. Soc., 18 (2016), 853–929. https://doi.org/10.4171/JEMS/605 doi: 10.4171/JEMS/605
    [5] A. Bchatnia, A. Beniani, B. Boukari, F. Mtiri, Theoretical and numerical stability of the Bresse system: exploring fractional damping through traditional and neural network approaches, J. Appl. Anal. Comput., 15 (2025), 2663–2694. https://doi.org/10.11948/20240410 doi: 10.11948/20240410
    [6] A. Benaissa, S. Benazzouz, Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type, Z. Angew. Math. Phys., 68 (2017), 94. https://doi.org/10.1007/s00033-017-0836-2 doi: 10.1007/s00033-017-0836-2
    [7] A. Borichev, Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455–478. https://doi.org/10.1007/s00208-009-0439-0 doi: 10.1007/s00208-009-0439-0
    [8] J. U. Kim, Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417–1429. https://doi.org/10.1137/0325078 doi: 10.1137/0325078
    [9] G. Lumer, R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math., 11 (1961), 679–698.
    [10] B. Mbodje, Wave energy decay under fractional derivative controls, SIAM J. Control Optim., 23 (2006), 237–257. https://doi.org/10.1093/imamci/dni056 doi: 10.1093/imamci/dni056
    [11] B. Mbodje, G. Montseny, Boundary fractional derivative control of the wave equation, IEEE Trans. Automat. Contr., 40 (1995), 368–382. https://doi.org/10.1109/9.341815 doi: 10.1109/9.341815
    [12] I. Podlubny, Fractional differential equations, In: Mathematics in science and engineering, Vol. 198, London: Academic Press, 1999.
    [13] S. Alfalqi, H. Khiar, A. Bchatnia, A. Beniani, Polynomial decay of the energy of solutions of the Timoshenko system with two boundary fractional dissipation, Fractal Fract., 8 (2024), 507. https://doi.org/10.3390/fractalfract8090507 doi: 10.3390/fractalfract8090507
    [14] Q. X. Yan, Boundary stabilization of Timoshenko beam, J. Syst. Sci. Complex., 13 (2000), 376–384.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(741) PDF downloads(31) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog