In this manuscript, we use the notion of orthogonality in a super metric space and prove some fixed point theorems that focus on orthogonal contractions and orthogonal $ \mathcal{F} $-contractions, which are types of mappings exhibiting particular contraction properties while satisfying orthogonality. To illustrate and support our theoretical results, we provide concrete examples that demonstrate the application of these findings. Furthermore, we show how our results can be utilized in practical scenarios by presenting a solution to a deformable implicit differential equation, highlighting the relevance of our work in both theoretical and applied contexts.
Citation: Amit Gangwar, Shivam Rawat, Hassen Aydi, Saber Mansour. On deformable fractional order implicit differential equations involving orthogonal super metric spaces[J]. AIMS Mathematics, 2025, 10(6): 14502-14514. doi: 10.3934/math.2025653
In this manuscript, we use the notion of orthogonality in a super metric space and prove some fixed point theorems that focus on orthogonal contractions and orthogonal $ \mathcal{F} $-contractions, which are types of mappings exhibiting particular contraction properties while satisfying orthogonality. To illustrate and support our theoretical results, we provide concrete examples that demonstrate the application of these findings. Furthermore, we show how our results can be utilized in practical scenarios by presenting a solution to a deformable implicit differential equation, highlighting the relevance of our work in both theoretical and applied contexts.
| [1] |
M. M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. http://doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
|
| [2] | I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Ulianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
| [3] |
S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. http://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
|
| [4] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11. |
| [5] |
E. Karapınar, F. Khojasteh, Super metric spaces, Filomat, 36 (2022), 3545–3549. https://doi.org/10.2298/FIL2210545K doi: 10.2298/FIL2210545K
|
| [6] |
E. Karapınar, A. Fulga, Contraction in rational forms in the framework of super metric spaces, Mathematics, 10 (2022), 3077. https://doi.org/10.3390/math10173077 doi: 10.3390/math10173077
|
| [7] |
K. Abodayeh, S. K. Shah, M. Sarwar, C. Promsakon, T. Sitthiwirattham, Ćirić-type generalized F-contractions with integral inclusion in super metric spaces, Results in Control and Optimization, 16 (2024), 100443. https://doi.org/10.1016/j.rico.2024.100443 doi: 10.1016/j.rico.2024.100443
|
| [8] |
S. K. Shah, M. Sarwar, M. Hleili, M. E. Samei, T. Abdeljawad, Generalized ($ \psi, \phi $)-contraction to investigate Volterra integral inclusions and fractal fractional PDEs in super-metric space with numerical experiments, Nonlinear Engineering, 14 (2025), 20240032. http://doi.org/10.1515/nleng-2024-0032 doi: 10.1515/nleng-2024-0032
|
| [9] | F. Zulfeqarr, A. Ujlayan, P. Ahuja, A new fractional derivative and its fractional integral with some applications, arXiv: 1705.00962v1. |
| [10] | M. Mebrat, G. M. N'Guérékata, A Cauchy problem for some fractional differential equation via deformable derivatives, Journal of Nonlinear Evolution Equations and Applications, 2020 (2020), 55–63. |
| [11] |
M. Mebrat, G. M. N'Guérékata, An existence result for some fractional-integro differential equations in Banach spaces via deformable derivative, J. Math. Ext., 16 (2022), 1–19. http://doi.org/10.30495/JME.2022.1727 doi: 10.30495/JME.2022.1727
|
| [12] |
S. Krim, A. Salim, M. Benchohra, On deformable fractional impulsive implicit boundary value problems with delay, Arab. J. Math., 13 (2024), 199–226. http://doi.org/10.1007/s40065-023-00450-z doi: 10.1007/s40065-023-00450-z
|
| [13] |
R. Sreedharan, S. R. Balachandar, R. Udhayakumar, S. Etemad, İ. Avcı, S. Rezapour, On the fractional perturbed neutral integro-differential systems via deformable derivatives: an existence study, Bound. Value Probl., 2024 (2024), 74. https://doi.org/10.1186/s13661-024-01879-7 doi: 10.1186/s13661-024-01879-7
|
| [14] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
| [15] |
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. http://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
|
| [16] |
W. Shatanawi, I. Altun, H. Dağ, Fixed point results for multivalued mappings of Ćirić type via F-contractions on quasi metric spaces, Open Math., 18 (2020), 284–294. http://doi.org/10.1515/math-2020-0149 doi: 10.1515/math-2020-0149
|
| [17] |
H. A. Qawaqneh, M. S. Noorani, W. Shatanawi, Fixed point results for Geraghty type generalized F-contraction for weak $\alpha$-admissible mappings in metric like spaces, Eur. J. Pure Appl. Math., 11 (2018), 702–716. http://doi.org/10.29020/nybg.ejpam.v11i3.3294 doi: 10.29020/nybg.ejpam.v11i3.3294
|
| [18] |
N. Fabiano, V. Parvaneh, D. Ďukić, L. Paunović, S. Radenović, On W-contractions of Jungck-Ćirić-Wardowski-type in metric spaces, Cogent Mathematics & Statistics, 7 (2020), 1792699. https://doi.org/10.1080/25742558.2020.1792699 doi: 10.1080/25742558.2020.1792699
|
| [19] |
S. Rawat, A. Bartwal, R. C. Dimri, Best proximity points for generalized (F, R)-proximal contractions, Boletim da Sociedade Paranaense de Matemática, 42 (2024), 1–12. http://doi.org/10.5269/bspm.66414 doi: 10.5269/bspm.66414
|
| [20] |
M. E. Gordji, M. Ramezani, M. De La Sen, Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theor., 18 (2017), 569–578. https://doi.org/10.24193/fpt-ro.2017.2.45 doi: 10.24193/fpt-ro.2017.2.45
|
| [21] |
M. E. Gordji, H. Habibi, Fixed point theory in $ \epsilon $-connected orthogonal metric space, Sahand Commun. Math. Anal., 16 (2019), 35–46. https://doi.org/10.22130/SCMA.2018.72368.289 doi: 10.22130/SCMA.2018.72368.289
|
| [22] |
N. B. Gungor, D. Turkoglu, Fixed point theorems on orthogonal metric spaces via altering distance functions, AIP Conf. Proc., 2183 (2019), 040011. http://doi.org/10.1063/1.5136131 doi: 10.1063/1.5136131
|
| [23] |
Q. Yang, C. Bai, Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on O-complete metric spaces, AIMS Math., 5 (2020), 5734–5742. http://doi.org/10.3934/math.2020368 doi: 10.3934/math.2020368
|
| [24] |
K. Sawangsup, W. Sintunavarat, Y. J. Cho, Fixed point theorems for orthogonal F-contraction mappings on O-complete metric spaces, J. Fixed Point Theory Appl., 22 (2020), 10. http://doi.org/10.1007/s11784-019-0737-4 doi: 10.1007/s11784-019-0737-4
|
| [25] |
K. Sawangsup, W. Sintunavarat, Fixed point results for orthogonal Z-contraction mappings in O-complete metric space, International Journal of Applied Physics and Mathematics, 10 (2020), 33–40. http://doi.org/10.17706/ijapm.2020.10.1.33-40 doi: 10.17706/ijapm.2020.10.1.33-40
|
| [26] |
A. J. Gnanaprakasam, G. Mani, O. Ege, A. Aloqaily, N. Mlaiki, New fixed point results in orthogonal b-metric spaces with related applications, Mathematics, 11 (2023), 677. https://doi.org/10.3390/math11030677 doi: 10.3390/math11030677
|
| [27] |
B. W. Samuel, G. Mani, P. Ganesh, S. T. M. Thabet, I. Kedim, M. Vivas-Cortez, New common fixed point theorems for quartet mappings on orthogonal S-metric spaces with applications, J. Math. Comput. Sci., 38 (2025), 80–97. https://doi.org/10.22436/jmcs.038.01.06 doi: 10.22436/jmcs.038.01.06
|
| [28] |
N. Fabiano, Z. Kadelburg, N. Mirkov, V. Š. Čavić, S. Radenović, On F-contractions: a survey, Contemp. Math., 3 (2022), 327–342. https://doi.org/10.37256/cm.3320221517 doi: 10.37256/cm.3320221517
|