Let $ G $ be a graph with edge set $ E(G) $. Let $ d_x $ denote the degree of a vertex $ x $ in $ G $. For a nonnegative integer $ k $, a connected graph of order $ n $ and size $ n+k-1 $ is called a $ k $-cyclic graph. This paper is concerned with $ k $-cyclic graphs and their graphical indices of the form $ BID_{f}(G) = \sum_{uv\in E(G)} f(d_u, d_v) $, where $ f $ is a symmetric function whose outputs are real numbers. Particularly, the graphs minimizing or maximizing $ BID_{f} $ among all $ k $-cyclic graphs with a given order are studied under certain constraints on $ f $. Various existing indices meet these constraints, and hence the obtained results hold for those indices; more precisely, one of the obtained results covers the recently developed elliptic Sombor and Zagreb-Sombor indices, while another result covers the recently introduced Euler-Sombor index.
Citation: Akbar Ali, Darko Dimitrov, Tamás Réti, Abdulaziz Mutlaq Alotaibi, Abdulaziz M. Alanazi, Taher S. Hassan. Degree-based graphical indices of $ k $-cyclic graphs[J]. AIMS Mathematics, 2025, 10(6): 13540-13554. doi: 10.3934/math.2025609
Let $ G $ be a graph with edge set $ E(G) $. Let $ d_x $ denote the degree of a vertex $ x $ in $ G $. For a nonnegative integer $ k $, a connected graph of order $ n $ and size $ n+k-1 $ is called a $ k $-cyclic graph. This paper is concerned with $ k $-cyclic graphs and their graphical indices of the form $ BID_{f}(G) = \sum_{uv\in E(G)} f(d_u, d_v) $, where $ f $ is a symmetric function whose outputs are real numbers. Particularly, the graphs minimizing or maximizing $ BID_{f} $ among all $ k $-cyclic graphs with a given order are studied under certain constraints on $ f $. Various existing indices meet these constraints, and hence the obtained results hold for those indices; more precisely, one of the obtained results covers the recently developed elliptic Sombor and Zagreb-Sombor indices, while another result covers the recently introduced Euler-Sombor index.
| [1] |
A. M. Albalahi, A. M. Alanazi, A. M. Alotaibi, A. E. Hamza, A. Ali, Optimizing the Euler-Sombor index of (molecular) tricyclic graphs, MATCH Commun. Math. Comput. Chem., 94 (2025), 549–560. https://doi.org/10.46793/match.94-2.549A doi: 10.46793/match.94-2.549A
|
| [2] |
A. Ali, K. C. Das, S. Akhter, On the extremal graphs for second Zagreb index with fixed number of vertices and cyclomatic number, Miskolc Math. Notes, 23 (2022), 41–50. https://doi.org/10.18514/MMN.2022.2382 doi: 10.18514/MMN.2022.2382
|
| [3] |
A. Ali, D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discrete Appl. Math., 238 (2018), 32–40. https://doi.org/10.1016/j.dam.2017.12.007 doi: 10.1016/j.dam.2017.12.007
|
| [4] |
A. Ali, D. Dimitrov, Z. Du, F. Ishfaq, On the extremal graphs for general sum-connectivity index ($\chi_{_\alpha}$) with given cyclomatic number when $\alpha>1$, Discrete Appl. Math., 257 (2019), 19–30. https://doi.org/10.1016/j.dam.2018.10.009 doi: 10.1016/j.dam.2018.10.009
|
| [5] |
A. Ali, I. Gutman, B. Furtula, A. M. Albalahi, A. E. Hamza, On chemical and mathematical characteristics of generalized degree-based molecular descriptors, AIMS Math., 10 (2025), 6788–6804. https://doi.org/10.3934/math.2025311 doi: 10.3934/math.2025311
|
| [6] |
A. Ali, S. Sekar, S. Balachandran, S. Elumalai, A. M. Alanazi, T. S. Hassan, et al., Graphical edge-weight-function indices of trees, AIMS Math., 9 (2024), 32552–32570. https://doi.org/10.3934/math.20241559 doi: 10.3934/math.20241559
|
| [7] | A. Bondy, U. S. R. Murty, Graph theory, London: Springer, 2008. |
| [8] | G. Chartrand, L. Lesniak, P. Zhang, Graphs & digraphs, CRC Press, Boca Raton, 2015. https://doi.org/10.1201/b19731 |
| [9] |
J. Du, X. Sun, On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves, Appl. Math. Comput., 464 (2024), 128390. https://doi.org/10.1016/j.amc.2023.128390 doi: 10.1016/j.amc.2023.128390
|
| [10] |
W. Gao, Extremal graphs with respect to vertex-degree-based topological indices for $c$-cyclic graphs, MATCH Commun. Math. Comput. Chem., 93 (2025), 549–566. https://doi.org/10.46793/match.93-2.549G doi: 10.46793/match.93-2.549G
|
| [11] |
F. Gao, K. Xu, On the reduced second Zagreb index of graphs, Rocky Mountain J. Math., 50 (2020), 975–988. https://doi.org/10.1216/rmj.2020.50.975 doi: 10.1216/rmj.2020.50.975
|
| [12] |
F. Gao, K. Xu. T. Došlić, On the difference of Mostar index and irregularity of graphs, Bull. Malays. Math. Sci. Soc., 44 (2021), 905–926. https://doi.org/10.1007/s40840-020-00991-y doi: 10.1007/s40840-020-00991-y
|
| [13] | J. L. Gross, J. Yellen, Graph theory and its applications, Boca Raton: CRC Press, 2005. |
| [14] |
I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. http://doi.org/10.5562/cca2294 doi: 10.5562/cca2294
|
| [15] | I. Gutman, Sombor index–-one year later, Bulletin, 153 (2020), 43–55. |
| [16] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
| [17] |
I. Gutman, Relating Sombor and Euler indices, Vojnotehnički glasnik, 71 (2024), 1–12. http://doi.org/10.5937/vojtehg72-48818 doi: 10.5937/vojtehg72-48818
|
| [18] |
I. Gutman, B. Furtula, M. S. Oz, Geometric approach to vertex-degree-based topological indices–-elliptic Sombor index, theory and application, Int. J. Quant. Chem., 124 (2024), e27346. https://doi.org/10.1002/qua.27346 doi: 10.1002/qua.27346
|
| [19] | B. Hollas, The covariance of topological indices that depend on the degree of a vertex, MATCH Commun. Math. Comput. Chem. 54 (2005), 177–187. |
| [20] |
Y. Hu, J. Fang, Y. Liu, Z. Lin, Bounds on the Euler Sombor index of maximal outerplanar graphs, Electron. J. Math., 8 (2024), 39–47. http://doi.org/10.47443/ejm.2024.053 doi: 10.47443/ejm.2024.053
|
| [21] |
Z. Hu, L. Li, X. Li, D. Peng, Extremal graphs for topological index defined by a degree-based edge-weight function, MATCH Commun. Math. Comput. Chem., 88 (2022), 505–520. https://doi.org/10.46793/match.88-3.505H doi: 10.46793/match.88-3.505H
|
| [22] |
B. Khanra, S. Das, Euler-Sombor index of trees, unicyclic and chemical graphs, MATCH Commun. Math. Comput. Chem., 94 (2025), 525–548. https://doi.org/10.46793/match.94-2.525K doi: 10.46793/match.94-2.525K
|
| [23] |
G. O. Kızılırmak, On Euler Sombor index of tricyclic graphs, MATCH Commun. Math. Comput. Chem., 94 (2025), 247–262. https://doi.org/10.46793/match.94-1.247K doi: 10.46793/match.94-1.247K
|
| [24] |
H. Liu, H. Chen, Q. Xiao, X. Fang, Z. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quant. Chem., 121 (2021), e26689. https://doi.org/10.1002/qua.26689 doi: 10.1002/qua.26689
|
| [25] |
H. Liu, Z. Du, Y. Huang, H. Chen, S. Elumalai, Note on the minimum bond incident degree indices of $k$-cyclic graphs, MATCH Commun. Math. Comput. Chem., 91 (2024), 255–266. https://doi.org/10.46793/match.91-1.255L doi: 10.46793/match.91-1.255L
|
| [26] |
H. Liu, I. Gutman, L. You, Y. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem., 60 (2022), 771–798. https://doi.org/10.1007/s10910-022-01333-y doi: 10.1007/s10910-022-01333-y
|
| [27] |
F. Qi, Z. Lin, Maximal elliptic Sombor index of bicyclic graphs, Contrib. Math., 10 (2024), 25–29. https://doi.org/10.47443/cm.2024.030 doi: 10.47443/cm.2024.030
|
| [28] |
J. Rada, J. M. Rodríguez, J. M. Sigarreta, Sombor index and elliptic Sombor index of benzenoid systems, Appl. Math. Comput., 475 (2024), 128756. https://doi.org/10.1016/j.amc.2024.128756 doi: 10.1016/j.amc.2024.128756
|
| [29] |
I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021), 445–457. https://doi.org/10.2298/JSC201215006R doi: 10.2298/JSC201215006R
|
| [30] |
T. Réti, T. Došlić, A. Ali, On the Sombor index of graphs, Contrib. Math., 3 (2021), 11–18. https://doi.org/10.47443/cm.2021.0006 doi: 10.47443/cm.2021.0006
|
| [31] |
Z. Su, Z. Tang, Extremal unicyclic and bicyclic graphs of the Euler Sombor index, AIMS Math., 10 (2025), 6338–6354. https://doi.org/10.3934/math.2025289 doi: 10.3934/math.2025289
|
| [32] |
A. P. Tache, R. M. Tache, I. Stroe, Extremal unicyclic graphs for the Euler Sombor index, MATCH Commun. Math. Comput. Chem., 94 (2025), 561–578. http://doi.org/10.46793/match.94-2.561T doi: 10.46793/match.94-2.561T
|
| [33] |
Z. Tang, Y. Li, H. Deng, The Euler Sombor index of a graph, Int. J. Quant. Chem., 124 (2024), e27387. http://doi.org/10.1002/qua.27387 doi: 10.1002/qua.27387
|
| [34] |
Z. Tang, Y. Li, H. Deng, Elliptic Sombor index of trees and unicyclic graphs, Electron. J. Math., 7 (2024), 19–34. http://doi.org/10.47443/ejm.2024.009 doi: 10.47443/ejm.2024.009
|
| [35] | N. Trinajstić, Chemical graph theory, Boca Raton, Florida: CRC Press, 1992. https://doi.org/10.1201/9781315139111 |
| [36] |
D. Vukičević, J. Đurđević, Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes, Chem. Phys. Lett., 515 (2011), 186–189. https://doi.org/10.1016/j.cplett.2011.08.095 doi: 10.1016/j.cplett.2011.08.095
|
| [37] | D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260. |
| [38] | S. Wagner, H. Wang, Introduction to chemical graph theory, Boca Raton: CRC Press, 2018. https://doi.org/10.1201/9780429450532 |
| [39] |
P. Wei, M. Liu, I. Gutman, On (exponential) bond incident degree indices of graphs, Discrete Appl. Math., 336 (2023), 141–147. http://doi.org/10.1016/j.dam.2023.04.011 doi: 10.1016/j.dam.2023.04.011
|
| [40] | W. Zhou, S. Pang, M. Liu, A. Ali, On bond incident degree indices of connected graphs with fixed order and number of pendent vertices, MATCH Commun. Math. Comput. Chem., 88 (2022), 625–642. |