Research article Special Issues

Degree-based graphical indices of $ k $-cyclic graphs

  • Received: 24 March 2025 Revised: 26 May 2025 Accepted: 04 June 2025 Published: 12 June 2025
  • MSC : 05C07, 05C09

  • Let $ G $ be a graph with edge set $ E(G) $. Let $ d_x $ denote the degree of a vertex $ x $ in $ G $. For a nonnegative integer $ k $, a connected graph of order $ n $ and size $ n+k-1 $ is called a $ k $-cyclic graph. This paper is concerned with $ k $-cyclic graphs and their graphical indices of the form $ BID_{f}(G) = \sum_{uv\in E(G)} f(d_u, d_v) $, where $ f $ is a symmetric function whose outputs are real numbers. Particularly, the graphs minimizing or maximizing $ BID_{f} $ among all $ k $-cyclic graphs with a given order are studied under certain constraints on $ f $. Various existing indices meet these constraints, and hence the obtained results hold for those indices; more precisely, one of the obtained results covers the recently developed elliptic Sombor and Zagreb-Sombor indices, while another result covers the recently introduced Euler-Sombor index.

    Citation: Akbar Ali, Darko Dimitrov, Tamás Réti, Abdulaziz Mutlaq Alotaibi, Abdulaziz M. Alanazi, Taher S. Hassan. Degree-based graphical indices of $ k $-cyclic graphs[J]. AIMS Mathematics, 2025, 10(6): 13540-13554. doi: 10.3934/math.2025609

    Related Papers:

  • Let $ G $ be a graph with edge set $ E(G) $. Let $ d_x $ denote the degree of a vertex $ x $ in $ G $. For a nonnegative integer $ k $, a connected graph of order $ n $ and size $ n+k-1 $ is called a $ k $-cyclic graph. This paper is concerned with $ k $-cyclic graphs and their graphical indices of the form $ BID_{f}(G) = \sum_{uv\in E(G)} f(d_u, d_v) $, where $ f $ is a symmetric function whose outputs are real numbers. Particularly, the graphs minimizing or maximizing $ BID_{f} $ among all $ k $-cyclic graphs with a given order are studied under certain constraints on $ f $. Various existing indices meet these constraints, and hence the obtained results hold for those indices; more precisely, one of the obtained results covers the recently developed elliptic Sombor and Zagreb-Sombor indices, while another result covers the recently introduced Euler-Sombor index.



    加载中


    [1] A. M. Albalahi, A. M. Alanazi, A. M. Alotaibi, A. E. Hamza, A. Ali, Optimizing the Euler-Sombor index of (molecular) tricyclic graphs, MATCH Commun. Math. Comput. Chem., 94 (2025), 549–560. https://doi.org/10.46793/match.94-2.549A doi: 10.46793/match.94-2.549A
    [2] A. Ali, K. C. Das, S. Akhter, On the extremal graphs for second Zagreb index with fixed number of vertices and cyclomatic number, Miskolc Math. Notes, 23 (2022), 41–50. https://doi.org/10.18514/MMN.2022.2382 doi: 10.18514/MMN.2022.2382
    [3] A. Ali, D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discrete Appl. Math., 238 (2018), 32–40. https://doi.org/10.1016/j.dam.2017.12.007 doi: 10.1016/j.dam.2017.12.007
    [4] A. Ali, D. Dimitrov, Z. Du, F. Ishfaq, On the extremal graphs for general sum-connectivity index ($\chi_{_\alpha}$) with given cyclomatic number when $\alpha>1$, Discrete Appl. Math., 257 (2019), 19–30. https://doi.org/10.1016/j.dam.2018.10.009 doi: 10.1016/j.dam.2018.10.009
    [5] A. Ali, I. Gutman, B. Furtula, A. M. Albalahi, A. E. Hamza, On chemical and mathematical characteristics of generalized degree-based molecular descriptors, AIMS Math., 10 (2025), 6788–6804. https://doi.org/10.3934/math.2025311 doi: 10.3934/math.2025311
    [6] A. Ali, S. Sekar, S. Balachandran, S. Elumalai, A. M. Alanazi, T. S. Hassan, et al., Graphical edge-weight-function indices of trees, AIMS Math., 9 (2024), 32552–32570. https://doi.org/10.3934/math.20241559 doi: 10.3934/math.20241559
    [7] A. Bondy, U. S. R. Murty, Graph theory, London: Springer, 2008.
    [8] G. Chartrand, L. Lesniak, P. Zhang, Graphs & digraphs, CRC Press, Boca Raton, 2015. https://doi.org/10.1201/b19731
    [9] J. Du, X. Sun, On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves, Appl. Math. Comput., 464 (2024), 128390. https://doi.org/10.1016/j.amc.2023.128390 doi: 10.1016/j.amc.2023.128390
    [10] W. Gao, Extremal graphs with respect to vertex-degree-based topological indices for $c$-cyclic graphs, MATCH Commun. Math. Comput. Chem., 93 (2025), 549–566. https://doi.org/10.46793/match.93-2.549G doi: 10.46793/match.93-2.549G
    [11] F. Gao, K. Xu, On the reduced second Zagreb index of graphs, Rocky Mountain J. Math., 50 (2020), 975–988. https://doi.org/10.1216/rmj.2020.50.975 doi: 10.1216/rmj.2020.50.975
    [12] F. Gao, K. Xu. T. Došlić, On the difference of Mostar index and irregularity of graphs, Bull. Malays. Math. Sci. Soc., 44 (2021), 905–926. https://doi.org/10.1007/s40840-020-00991-y doi: 10.1007/s40840-020-00991-y
    [13] J. L. Gross, J. Yellen, Graph theory and its applications, Boca Raton: CRC Press, 2005.
    [14] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. http://doi.org/10.5562/cca2294 doi: 10.5562/cca2294
    [15] I. Gutman, Sombor index–-one year later, Bulletin, 153 (2020), 43–55.
    [16] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16.
    [17] I. Gutman, Relating Sombor and Euler indices, Vojnotehnički glasnik, 71 (2024), 1–12. http://doi.org/10.5937/vojtehg72-48818 doi: 10.5937/vojtehg72-48818
    [18] I. Gutman, B. Furtula, M. S. Oz, Geometric approach to vertex-degree-based topological indices–-elliptic Sombor index, theory and application, Int. J. Quant. Chem., 124 (2024), e27346. https://doi.org/10.1002/qua.27346 doi: 10.1002/qua.27346
    [19] B. Hollas, The covariance of topological indices that depend on the degree of a vertex, MATCH Commun. Math. Comput. Chem. 54 (2005), 177–187.
    [20] Y. Hu, J. Fang, Y. Liu, Z. Lin, Bounds on the Euler Sombor index of maximal outerplanar graphs, Electron. J. Math., 8 (2024), 39–47. http://doi.org/10.47443/ejm.2024.053 doi: 10.47443/ejm.2024.053
    [21] Z. Hu, L. Li, X. Li, D. Peng, Extremal graphs for topological index defined by a degree-based edge-weight function, MATCH Commun. Math. Comput. Chem., 88 (2022), 505–520. https://doi.org/10.46793/match.88-3.505H doi: 10.46793/match.88-3.505H
    [22] B. Khanra, S. Das, Euler-Sombor index of trees, unicyclic and chemical graphs, MATCH Commun. Math. Comput. Chem., 94 (2025), 525–548. https://doi.org/10.46793/match.94-2.525K doi: 10.46793/match.94-2.525K
    [23] G. O. Kızılırmak, On Euler Sombor index of tricyclic graphs, MATCH Commun. Math. Comput. Chem., 94 (2025), 247–262. https://doi.org/10.46793/match.94-1.247K doi: 10.46793/match.94-1.247K
    [24] H. Liu, H. Chen, Q. Xiao, X. Fang, Z. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quant. Chem., 121 (2021), e26689. https://doi.org/10.1002/qua.26689 doi: 10.1002/qua.26689
    [25] H. Liu, Z. Du, Y. Huang, H. Chen, S. Elumalai, Note on the minimum bond incident degree indices of $k$-cyclic graphs, MATCH Commun. Math. Comput. Chem., 91 (2024), 255–266. https://doi.org/10.46793/match.91-1.255L doi: 10.46793/match.91-1.255L
    [26] H. Liu, I. Gutman, L. You, Y. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem., 60 (2022), 771–798. https://doi.org/10.1007/s10910-022-01333-y doi: 10.1007/s10910-022-01333-y
    [27] F. Qi, Z. Lin, Maximal elliptic Sombor index of bicyclic graphs, Contrib. Math., 10 (2024), 25–29. https://doi.org/10.47443/cm.2024.030 doi: 10.47443/cm.2024.030
    [28] J. Rada, J. M. Rodríguez, J. M. Sigarreta, Sombor index and elliptic Sombor index of benzenoid systems, Appl. Math. Comput., 475 (2024), 128756. https://doi.org/10.1016/j.amc.2024.128756 doi: 10.1016/j.amc.2024.128756
    [29] I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021), 445–457. https://doi.org/10.2298/JSC201215006R doi: 10.2298/JSC201215006R
    [30] T. Réti, T. Došlić, A. Ali, On the Sombor index of graphs, Contrib. Math., 3 (2021), 11–18. https://doi.org/10.47443/cm.2021.0006 doi: 10.47443/cm.2021.0006
    [31] Z. Su, Z. Tang, Extremal unicyclic and bicyclic graphs of the Euler Sombor index, AIMS Math., 10 (2025), 6338–6354. https://doi.org/10.3934/math.2025289 doi: 10.3934/math.2025289
    [32] A. P. Tache, R. M. Tache, I. Stroe, Extremal unicyclic graphs for the Euler Sombor index, MATCH Commun. Math. Comput. Chem., 94 (2025), 561–578. http://doi.org/10.46793/match.94-2.561T doi: 10.46793/match.94-2.561T
    [33] Z. Tang, Y. Li, H. Deng, The Euler Sombor index of a graph, Int. J. Quant. Chem., 124 (2024), e27387. http://doi.org/10.1002/qua.27387 doi: 10.1002/qua.27387
    [34] Z. Tang, Y. Li, H. Deng, Elliptic Sombor index of trees and unicyclic graphs, Electron. J. Math., 7 (2024), 19–34. http://doi.org/10.47443/ejm.2024.009 doi: 10.47443/ejm.2024.009
    [35] N. Trinajstić, Chemical graph theory, Boca Raton, Florida: CRC Press, 1992. https://doi.org/10.1201/9781315139111
    [36] D. Vukičević, J. Đurđević, Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes, Chem. Phys. Lett., 515 (2011), 186–189. https://doi.org/10.1016/j.cplett.2011.08.095 doi: 10.1016/j.cplett.2011.08.095
    [37] D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260.
    [38] S. Wagner, H. Wang, Introduction to chemical graph theory, Boca Raton: CRC Press, 2018. https://doi.org/10.1201/9780429450532
    [39] P. Wei, M. Liu, I. Gutman, On (exponential) bond incident degree indices of graphs, Discrete Appl. Math., 336 (2023), 141–147. http://doi.org/10.1016/j.dam.2023.04.011 doi: 10.1016/j.dam.2023.04.011
    [40] W. Zhou, S. Pang, M. Liu, A. Ali, On bond incident degree indices of connected graphs with fixed order and number of pendent vertices, MATCH Commun. Math. Comput. Chem., 88 (2022), 625–642.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(760) PDF downloads(55) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog