Research article Special Issues

Cholesky decomposition and well-posedness of Cauchy problem for Fokker-Planck equations with unbounded coefficients

  • Received: 29 December 2024 Revised: 22 May 2025 Accepted: 28 May 2025 Published: 12 June 2025
  • MSC : 15A23, 35A02, 35K15, 35Q84, 47D07, 93D05

  • This paper explores the well-posedness of the Cauchy problem for the Fokker-Planck equation associated with the partial differential operator $ L $ with low regularity condition. To address uniqueness, we apply a recently developed superposition principle for unbounded coefficients, which reduces the uniqueness problem for the Fokker-Planck equation to the uniqueness of solutions to the martingale problem. Using the Cholesky decomposition algorithm, a standard tool in numerical linear algebra, we construct a lower triangular matrix of functions $ \sigma $ with suitable regularity such that $ A = \sigma \sigma^T $. This formulation allows us to connect the uniqueness of solutions to the martingale problem with the uniqueness of weak solutions to Itô-SDEs. For existence, we rely on established results concerning sub-Markovian semigroups, which enable us to confirm the existence of solutions to the Fokker-Planck equation under general growth conditions expressed as inequalities. Additionally, by imposing further growth conditions on the coefficients, also expressed as inequalities, we establish the ergodicity of the solutions. This work demonstrates the interplay between stochastic analysis and numerical linear algebra in addressing problems related to partial differential equations.

    Citation: Haesung Lee. Cholesky decomposition and well-posedness of Cauchy problem for Fokker-Planck equations with unbounded coefficients[J]. AIMS Mathematics, 2025, 10(6): 13555-13574. doi: 10.3934/math.2025610

    Related Papers:

  • This paper explores the well-posedness of the Cauchy problem for the Fokker-Planck equation associated with the partial differential operator $ L $ with low regularity condition. To address uniqueness, we apply a recently developed superposition principle for unbounded coefficients, which reduces the uniqueness problem for the Fokker-Planck equation to the uniqueness of solutions to the martingale problem. Using the Cholesky decomposition algorithm, a standard tool in numerical linear algebra, we construct a lower triangular matrix of functions $ \sigma $ with suitable regularity such that $ A = \sigma \sigma^T $. This formulation allows us to connect the uniqueness of solutions to the martingale problem with the uniqueness of weak solutions to Itô-SDEs. For existence, we rely on established results concerning sub-Markovian semigroups, which enable us to confirm the existence of solutions to the Fokker-Planck equation under general growth conditions expressed as inequalities. Additionally, by imposing further growth conditions on the coefficients, also expressed as inequalities, we establish the ergodicity of the solutions. This work demonstrates the interplay between stochastic analysis and numerical linear algebra in addressing problems related to partial differential equations.



    加载中


    [1] G. Allaire, S. M. Kaber, K. Trabelsi, G. Allaire, Numerical linear algebra, New York: Springer, 2008.
    [2] B. D. O. Anderson, Reverse-time diffusion equation models, Stochastic Process. Appl., 12 (1982), 313–326. https://doi.org/10.1016/0304-4149(82)90051-5 doi: 10.1016/0304-4149(82)90051-5
    [3] Z. G. Arenas, D. G. Barci, C. Tsallis, Nonlinear inhomogeneous Fokker-Planck equation within a generalized Stratonovich prescription, Phys. Rev. E, 90 (2014), 032118. https://doi.org/10.1103/PhysRevE.90.032118 doi: 10.1103/PhysRevE.90.032118
    [4] V. I. Bogachev, N. V. Krylov, M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions, Comm. Partial Differential Equations, 26 (2001), 2037–2080.
    [5] V. I. Bogachev, N. V. Krylov, M. Röckner, S. Shaposhnikov, Fokker-Planck-Kolmogorov equations, American Mathematical Society, 2015.
    [6] V. I. Bogachev, T. I. Krasovitskii, S. V. Shaposhnikov, On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation, Sb. Math., 212 (2021), 745–781. https://doi.org/10.1070/SM9427 doi: 10.1070/SM9427
    [7] V. I. Bogachev, G. Da Prato, M. Röckner, W. Stannat, Uniqueness of solutions to weak parabolic equations for measures, Bull. Lond. Math. Soc., 39 (2007), 631–640. https://doi.org/10.1112/blms/bdm046 doi: 10.1112/blms/bdm046
    [8] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures, J. Funct. Anal., 276 (2019), 3681–3713. https://doi.org/10.1016/j.jfa.2019.03.014 doi: 10.1016/j.jfa.2019.03.014
    [9] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, On the Ambrosio-Figalli-Trevisan superposition principle for probability solutions to Fokker-Planck-Kolmogorov equations, J. Dyn. Differential Equations, 33 (2021), 715–739. https://doi.org/10.1007/s10884-020-09828-5 doi: 10.1007/s10884-020-09828-5
    [10] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, Kolmogorov problems on equations for stationary and transition probabilities of diffusion processes, Theory Probab. Appl., 68 (2023), 342–369. https://doi.org/10.1137/S0040585X97T991507 doi: 10.1137/S0040585X97T991507
    [11] Z. Z. Chen, Z. D. Huan, On the continuity of the $m$th root of a continuous nonnegative definite matrix-valued function, J. Math. Anal. Appl., 209 (1997), 60–66. https://doi.org/10.1006/jmaa.1997.5326 doi: 10.1006/jmaa.1997.5326
    [12] A. Figalli, Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, J. Funct. Anal., 254 (2008), 109–153. https://doi.org/10.1016/j.jfa.2007.09.020 doi: 10.1016/j.jfa.2007.09.020
    [13] A. Friedman, Stochastic differential equations and applications, Dover Publications, 2006.
    [14] C. R. Hwang, S. Y. Hwang-Ma, S. J. Sheu, Accelerating diffusions, Ann. Appl. Probab., 15 (2005), 1433–1444. https://doi.org/10.1214/105051605000000025
    [15] N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes, 2 Eds., Amsterdam: North-Holland Mathematical Library, 1989.
    [16] I. Karatzas, S. Shreve, Brownian motion and stochastic calculus, 2 Eds., New York: Springer, 1991.
    [17] H. Lee, G. Trunau, Existence, uniqueness and ergodic properties for time-homogeneous Itô-SDEs with locally integrable drifts and Sobolev diffusion coefficients, Tohoku Math. J., 73 (2021), 159–198. https://doi.org/10.2748/tmj.20200218 doi: 10.2748/tmj.20200218
    [18] H. Lee, G. Trutnau, Existence and uniqueness of (infinitesimally) invariant measures for second order partial differential operators on Euclidean space, J. Math. Anal. Appl., 507 (2022), 125778. https://doi.org/10.1016/j.jmaa.2021.125778 doi: 10.1016/j.jmaa.2021.125778
    [19] H. Lee, W. Stannat, G. Trunau, Analytic theory of Itô-stochastic differential equations with non-smooth coefficients, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-19-3831-3
    [20] H. Lee, Local elliptic regularity for solutions to stationary Fokker-Planck equations via Dirichlet forms and resolvents, Bound. Value Probl., 2025 (2025), 1–30. https://doi.org/10.1186/s13661-025-02056-0 doi: 10.1186/s13661-025-02056-0
    [21] L. S. Lima, Interplay between nonlinear Fokker-Planck equation and stochastic differential equation, Probab. Eng. Mech., 68 (2022), 103201. https://doi.org/10.1016/j.probengmech.2022.103201 doi: 10.1016/j.probengmech.2022.103201
    [22] Y. A. Ma, T. Q. Chen, E. B. Fox, A complete recipe for stochastic gradient MCMC, In: Advances in Neural Information Processing Systems, 2015.
    [23] G. A. Pavliotis, Stochastic processes and applications, New York: Springer, 2014. https://doi.org/10.1007/978-1-4939-1323-7
    [24] M. Röckner, X. Zhang, Weak uniqueness of Fokker-Planck equations with degenerate and bounded coefficients, C. R. Math., 348 (2010), 435–438. https://doi.org/10.1016/j.crma.2010.01.001 doi: 10.1016/j.crma.2010.01.001
    [25] S. V. Shaposhnikov, On the uniqueness of a probabilistic solution of the Cauchy problem for the Fokker-Planck-Kolmogorov equation, Theory Probab. Appl., 56 (2012), 96–115. https://doi.org/10.1137/S0040585X97985212 doi: 10.1137/S0040585X97985212
    [26] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, B. Poole, Score-based generative modeling through stochastic differential equations, In: International Conference on Learning Representations, 2021.
    [27] D. W. Stroock, S. R. S. Varadhan, Multidimensional diffusion processes, Berlin, Heidelberg: Springer, 2006. https://doi.org/10.1007/3-540-28999-2
    [28] D. Trevisan, Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients, Electron. J. Probab., 21 (2016), 1–41. https://doi.org/10.1214/16-EJP4453 doi: 10.1214/16-EJP4453
    [29] T. Yamada, S. Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11 (1971), 155–167.
    [30] X. Zhang, Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients, Electron. J. Probab., 16 (2011), 1096–1116. https://doi.org/10.1214/EJP.v16-887 doi: 10.1214/EJP.v16-887
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(656) PDF downloads(70) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog