Research article

Rigidity of almost Ricci solitons on compact Riemannian manifolds

  • Received: 18 March 2025 Revised: 02 May 2025 Accepted: 06 May 2025 Published: 12 June 2025
  • MSC : 53C24, 53C25, 53C42, 53E20, 53Z05

  • Considering an almost Ricci soliton (ARS) $ \left(N, g, \eta, \kappa \right) $ on a compact Riemannian manifold $ (N, g) $, we use the Ricci curvature in the direction of the potential vector field $ \eta $ to derive necessary and sufficient conditions for $ (N, g) $ to be isometric to a sphere. This expands on several recent results regarding Ricci solitons and almost Ricci solitons by applying specific integral inequalities involving the Ricci curvature evaluated in the direction $ \eta $. Furthermore, we present conditions under which $ \eta $ is either Killing or parallel; in particular, the ARS is trivial.

    Citation: Mohammed Guediri, Norah Alshehri. Rigidity of almost Ricci solitons on compact Riemannian manifolds[J]. AIMS Mathematics, 2025, 10(6): 13524-13539. doi: 10.3934/math.2025608

    Related Papers:

  • Considering an almost Ricci soliton (ARS) $ \left(N, g, \eta, \kappa \right) $ on a compact Riemannian manifold $ (N, g) $, we use the Ricci curvature in the direction of the potential vector field $ \eta $ to derive necessary and sufficient conditions for $ (N, g) $ to be isometric to a sphere. This expands on several recent results regarding Ricci solitons and almost Ricci solitons by applying specific integral inequalities involving the Ricci curvature evaluated in the direction $ \eta $. Furthermore, we present conditions under which $ \eta $ is either Killing or parallel; in particular, the ARS is trivial.



    加载中


    [1] R. S. Hamilton, Three manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255–306. https://doi.org/10.4310/jdg/1214436922 doi: 10.4310/jdg/1214436922
    [2] S. Pigola, Ricci almost solitons, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2011), 757–799. https://doi.org/10.2422/2036-2145.2011.4.01 doi: 10.2422/2036-2145.2011.4.01
    [3] A. Barros, E Jr. Ribeiro, Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc., 140 (2012), 1033–1040. https://doi.org/10.1090/S0002-9939-2011-11029-3 doi: 10.1090/S0002-9939-2011-11029-3
    [4] A. Barros, R. Batista, R. E. Jr. Ribeiro, Compact almost Ricci solitons with constant scalar curvature are gradient, Monatsh. Math., 174 (2014), 29–39. https://doi.org/10.48550/arXiv.1209.2720 doi: 10.48550/arXiv.1209.2720
    [5] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Preprint, 2002. https://doi.org/10.48550/arXiv.math/0211159
    [6] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–261. https://doi.org/10.1090/conm/071/954419 doi: 10.1090/conm/071/954419
    [7] A. Barros, R. Batista, E. Jr. Ribeiro, Rigidity of gradient almost Ricci solitons, Illinois J. Math., 56 (2012), 1267–1279. https://doi.org/10.1215/ijm/1399395831 doi: 10.1215/ijm/1399395831
    [8] G. Maschler, Almost soliton duality, Adv. Geom., 15 (2015), 159–166. https://doi.org/10.48550/arXiv.1301.0290 doi: 10.48550/arXiv.1301.0290
    [9] R. Sharma, Almost Ricci solitons and K-contact geometry, Monatsh. Math., 175 (2014), 621–628. https://doi.org/10.1007/s00605-014-0657-8 doi: 10.1007/s00605-014-0657-8
    [10] A. Brasil, E. Costa, E. Jr. Ribeiro, Hitchin–Thorpe inequality and Kaehler metrics for compact almost Ricci soliton, Ann. Mat. Pura Appl., 4 (2014), 1851–1860. Available from: arXiv.org/pdf/2203.14916
    [11] T. Nagano, K. Yano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. Math., 69 (1959), 451–461. https://doi.org/10.2307/1970193 doi: 10.2307/1970193
    [12] F. E. S. Feitosa, A. A. Freitas Filho, J. N. V. Gomes, R. S. Pina, Gradient Ricci almost soliton warped product, J. Geom. Phys., 143 (2019), 22–32. https://doi.org/10.48550/arXiv.1507.03038 doi: 10.48550/arXiv.1507.03038
    [13] A. M. Blaga, B. Y. Chen, On conformal collineation and almost Ricci solitons, J. Geom. Phys., 207 (2025), 105354. https://doi.org/10.48550/arXiv.2210.05284 doi: 10.48550/arXiv.2210.05284
    [14] P. D. Weidman, L. G. Redekopp, Initial conditions and korteweg-de vries solitons, J. Eng. Mech. Div., 108 (1982), 277–289. https://doi.org/10.1061/JMCEA3.0002811 doi: 10.1061/JMCEA3.0002811
    [15] S. Wang, Novel soliton solutions of CNLSEs with hirota bilinear method, J. Opt. 52 (2023), 1602–1607. https://doi.org/10.1007/s12596-022-01065-x
    [16] P. Petersen, P. W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math., 241 (2009), 329–345. https://doi.org/10.48550/arXiv.0710.3174 doi: 10.48550/arXiv.0710.3174
    [17] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, San Diego, USA, : Aca-demic Press, 1983.
    [18] K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, NY, 1970. https://doi.org/10.1017/S0008439500031520
    [19] S. Deshmukh, H. Al-Sodais, A note on almost Ricci solitons, Anal. Math. Phys. 10 (2020). https://doi.org/10.3390/sym12020289
    [20] N. Alshehri, M. Guediri, Characterizing affine vector fields on pseudo-Riemannian manifolds, Axioms, 13 (2024). https://doi.org/10.3390/axioms13120835
    [21] W. A. Poor, Differential geometric structures, Dover Publications, (2015).
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(841) PDF downloads(41) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog