In this paper, we consider a nonlocal boundary condition and examine the asymptotic behavior of the solution to a family of nonlocal partial differential equations in the half-space. Our approach is fully probabilistic and builds upon the works of Huang et al. Bernoulli, 28 (2022), 1648–1674 and Diakhaby et al. Stoch. Anal. Appl., 34 (2016), 496–509. Reflected stochastic differential equations, driven by multiplicative Lévy noise and with singular coefficients, play an important role in our method.
Citation: Alioune Coulibaly. An asymptotically probabilistic method for a class of partial integrodifferential equations[J]. AIMS Mathematics, 2025, 10(6): 13512-13523. doi: 10.3934/math.2025607
In this paper, we consider a nonlocal boundary condition and examine the asymptotic behavior of the solution to a family of nonlocal partial differential equations in the half-space. Our approach is fully probabilistic and builds upon the works of Huang et al. Bernoulli, 28 (2022), 1648–1674 and Diakhaby et al. Stoch. Anal. Appl., 34 (2016), 496–509. Reflected stochastic differential equations, driven by multiplicative Lévy noise and with singular coefficients, play an important role in our method.
| [1] |
G. Barles, R. Buckdahn, E. Pardoux, Backward stochastic differential equations and integral-partial differential equations, Stoch. Stoch. Rep., 60 (1997), 57–83. https://doi.org/10.1080/17442509708834099 doi: 10.1080/17442509708834099
|
| [2] |
A. Columbu, R. D. Fuentes, S. Frassu, Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction-repulsion chemotaxis models with logistics, Nonlinear Anal.-Real, 79 (2024), 104135. https://doi.org/10.1016/j.nonrwa.2024.104135 doi: 10.1016/j.nonrwa.2024.104135
|
| [3] | A. Coulibaly, Large deviations and homogenization of semilinear nonlocal PDE with the Neumann boundary condition, J. Adv. Math. Stud., 16 (2023), 459–473. |
| [4] |
A. Coulibaly, A. Diedhiou, I. Sané, On a Skorokhod problem with small double limit, Afr. Mat., 30 (2019), 959–972. https://doi.org/10.1007/s13370-019-00694-z doi: 10.1007/s13370-019-00694-z
|
| [5] |
A. Diakhaby, Y. Ouknine, Generalized BSDEs, weak convergence, and homogenization of semilinear PDEs with the Wentzell-type boundary condition, Stoch. Anal. Appl., 34 (2016), 496–509. https://doi.org/10.1080/07362994.2016.1153427 doi: 10.1080/07362994.2016.1153427
|
| [6] | A. Dembo, O. Zeitouni, Large deviations techniques and applications, Springer Science & Business Media, 38 (2009). |
| [7] |
M. I. Freidlin, R. B. Sowers, A comparison of homogenization and large deviations, with applications to wavefront propagation, Stoch. Proc. Appl., 82 (1999), 23–52. https://doi.org/10.1016/S0304-4149(99)00003-4 doi: 10.1016/S0304-4149(99)00003-4
|
| [8] |
S. Gnanasekaran, A. Columbu, R. D. Fuentes, N. Nithyadevi, Global existence and lower bounds in a class of tumor-immune cell interactions chemotaxis systems, Discrete Cont. Dyn.-S, 18 (2025), 1636–1659. https://doi.org/10.3934/dcdss.2024174 doi: 10.3934/dcdss.2024174
|
| [9] |
Q. Huang, J. Duan, R. Song, Homogenization of nonlocal partial differential equations related to stochastic differential equations with Lévy noise, Bernoulli, 28 (2022), 1648–1674. https://doi.org/10.3150/21-BEJ1365 doi: 10.3150/21-BEJ1365
|
| [10] |
T. Li, D. A. Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent $\delta$-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), e70018. https://doi.org/10.1111/sapm.70018 doi: 10.1111/sapm.70018
|
| [11] | Y. Ouknine, E. Pardoux, Seminar on stochastic analysis, random fields and applications, Ⅲ: Homogenization of PDEs with non linearboundary condition, Basel: Birkhäuser, 52 (2002), 229–242. |
| [12] | F. Pradeilles, Une méthode probabiliste pour l'étude de fronts d'onde dans les équations et systèmes d'équation de réaction-diffusion, Aix-Marseille 1, 1995. |
| [13] | H. Tanaka, Stochastic Analysis and Applications: Homogenization of diffusion processes with boundary conditions, CRC Press, 1984. |
| [14] |
S. Yuan, R. Schilling, J. Duan, Large deviations for stochastic nonlinear systems of slow-fast diffusions with non-Gaussian Lévy noises, Int. J. Nonlin. Mech, 148 (2023), 104–304. https://doi.org/10.1016/j.ijnonlinmec.2022.104304 doi: 10.1016/j.ijnonlinmec.2022.104304
|