Research article Special Issues

An asymptotically probabilistic method for a class of partial integrodifferential equations

  • Received: 25 February 2025 Revised: 28 May 2025 Accepted: 06 June 2025 Published: 12 June 2025
  • MSC : 60H30, 35K40

  • In this paper, we consider a nonlocal boundary condition and examine the asymptotic behavior of the solution to a family of nonlocal partial differential equations in the half-space. Our approach is fully probabilistic and builds upon the works of Huang et al. Bernoulli, 28 (2022), 1648–1674 and Diakhaby et al. Stoch. Anal. Appl., 34 (2016), 496–509. Reflected stochastic differential equations, driven by multiplicative Lévy noise and with singular coefficients, play an important role in our method.

    Citation: Alioune Coulibaly. An asymptotically probabilistic method for a class of partial integrodifferential equations[J]. AIMS Mathematics, 2025, 10(6): 13512-13523. doi: 10.3934/math.2025607

    Related Papers:

  • In this paper, we consider a nonlocal boundary condition and examine the asymptotic behavior of the solution to a family of nonlocal partial differential equations in the half-space. Our approach is fully probabilistic and builds upon the works of Huang et al. Bernoulli, 28 (2022), 1648–1674 and Diakhaby et al. Stoch. Anal. Appl., 34 (2016), 496–509. Reflected stochastic differential equations, driven by multiplicative Lévy noise and with singular coefficients, play an important role in our method.



    加载中


    [1] G. Barles, R. Buckdahn, E. Pardoux, Backward stochastic differential equations and integral-partial differential equations, Stoch. Stoch. Rep., 60 (1997), 57–83. https://doi.org/10.1080/17442509708834099 doi: 10.1080/17442509708834099
    [2] A. Columbu, R. D. Fuentes, S. Frassu, Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction-repulsion chemotaxis models with logistics, Nonlinear Anal.-Real, 79 (2024), 104135. https://doi.org/10.1016/j.nonrwa.2024.104135 doi: 10.1016/j.nonrwa.2024.104135
    [3] A. Coulibaly, Large deviations and homogenization of semilinear nonlocal PDE with the Neumann boundary condition, J. Adv. Math. Stud., 16 (2023), 459–473.
    [4] A. Coulibaly, A. Diedhiou, I. Sané, On a Skorokhod problem with small double limit, Afr. Mat., 30 (2019), 959–972. https://doi.org/10.1007/s13370-019-00694-z doi: 10.1007/s13370-019-00694-z
    [5] A. Diakhaby, Y. Ouknine, Generalized BSDEs, weak convergence, and homogenization of semilinear PDEs with the Wentzell-type boundary condition, Stoch. Anal. Appl., 34 (2016), 496–509. https://doi.org/10.1080/07362994.2016.1153427 doi: 10.1080/07362994.2016.1153427
    [6] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Springer Science & Business Media, 38 (2009).
    [7] M. I. Freidlin, R. B. Sowers, A comparison of homogenization and large deviations, with applications to wavefront propagation, Stoch. Proc. Appl., 82 (1999), 23–52. https://doi.org/10.1016/S0304-4149(99)00003-4 doi: 10.1016/S0304-4149(99)00003-4
    [8] S. Gnanasekaran, A. Columbu, R. D. Fuentes, N. Nithyadevi, Global existence and lower bounds in a class of tumor-immune cell interactions chemotaxis systems, Discrete Cont. Dyn.-S, 18 (2025), 1636–1659. https://doi.org/10.3934/dcdss.2024174 doi: 10.3934/dcdss.2024174
    [9] Q. Huang, J. Duan, R. Song, Homogenization of nonlocal partial differential equations related to stochastic differential equations with Lévy noise, Bernoulli, 28 (2022), 1648–1674. https://doi.org/10.3150/21-BEJ1365 doi: 10.3150/21-BEJ1365
    [10] T. Li, D. A. Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent $\delta$-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), e70018. https://doi.org/10.1111/sapm.70018 doi: 10.1111/sapm.70018
    [11] Y. Ouknine, E. Pardoux, Seminar on stochastic analysis, random fields and applications, Ⅲ: Homogenization of PDEs with non linearboundary condition, Basel: Birkhäuser, 52 (2002), 229–242.
    [12] F. Pradeilles, Une méthode probabiliste pour l'étude de fronts d'onde dans les équations et systèmes d'équation de réaction-diffusion, Aix-Marseille 1, 1995.
    [13] H. Tanaka, Stochastic Analysis and Applications: Homogenization of diffusion processes with boundary conditions, CRC Press, 1984.
    [14] S. Yuan, R. Schilling, J. Duan, Large deviations for stochastic nonlinear systems of slow-fast diffusions with non-Gaussian Lévy noises, Int. J. Nonlin. Mech, 148 (2023), 104–304. https://doi.org/10.1016/j.ijnonlinmec.2022.104304 doi: 10.1016/j.ijnonlinmec.2022.104304
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(597) PDF downloads(23) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog