In this paper, we investigate the global existence and blow-up phenomena of the solution to the fractional nonlinear porous medium equation on stratified groups, employing the concavity method. Specifically, we establish the necessary conditions for the existence of global solutions and blow-up solutions. Our findings not only contribute to the understanding of this equation on stratified groups but also extend the existing knowledge in the classical Euclidean setting to the fractional case.
Citation: Khumoyun Jabbarkhanov, Amankeldy Toleukhanov. Blow-up phenomena for porous medium equation driven by the fractional $ p $-sub-Laplacian[J]. AIMS Mathematics, 2025, 10(6): 13498-13511. doi: 10.3934/math.2025606
In this paper, we investigate the global existence and blow-up phenomena of the solution to the fractional nonlinear porous medium equation on stratified groups, employing the concavity method. Specifically, we establish the necessary conditions for the existence of global solutions and blow-up solutions. Our findings not only contribute to the understanding of this equation on stratified groups but also extend the existing knowledge in the classical Euclidean setting to the fractional case.
| [1] | J. L. Vazquez, The porous medium equation: Mathematical theory, Oxford: Oxford University Press, 2006. |
| [2] | B. Sabitbek, B. Torebek, Global existence and blow-up of solutions to the nonlinear porous medium equation, arXiv Preprint, 2022. https://doi.org/10.48550/arXiv.2104.06896 |
| [3] |
A. D. Pablo, F. Quirós, A. Rodríguez, J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math., 65 (2012), 1242–1284. https://doi.org/10.1002/cpa.21408 doi: 10.1002/cpa.21408
|
| [4] |
M. Bonforte, Y. Sire, J. L. Vazquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Cont. Dyn., 35 (2015), 5725–5767. https://doi.org/10.3934/dcds.2015.35.5725 doi: 10.3934/dcds.2015.35.5725
|
| [5] |
E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
|
| [6] | A. Kassymov, D. Surgan, Some functional inequalities for the fractional $p$-sub-Laplacian, arXiv Preprint, 2018. https://doi.org/10.48550/arXiv.1804.01415 |
| [7] | P. Quittner, P. Souplet, Superlinear parabolic problems: Blow-up, global existence and steady states, Birkhäuser, 2007. |
| [8] | S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka Math. J., 12 (1975), 45–51. |
| [9] | E. T. Kolkovska, J. A. L. Mimbela, A. Pérez, Blow-up and life span bounds for a reaction-diffusion equation with a time-dependent generator, Electron. J. Differ. Eq., 2008, 1–18. |
| [10] | A. Pascucci, Semilinear equations on nilpotent Lie groups: Global existence and blow-up of solutions, Le Mat., 53 (1998), 345–357. |
| [11] |
A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, et al., What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys., 404 (2020), 109009. https://doi.org/10.1016/j.jcp.2019.109009 doi: 10.1016/j.jcp.2019.109009
|
| [12] |
X. Cabré, J. M. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Commun. Math. Phys., 320 (2013), 679–722. https://doi.org/10.1007/s00220-013-1682-5 doi: 10.1007/s00220-013-1682-5
|
| [13] |
D. Stan, J. L. Vázquez, The Fisher-KPP equation with nonlinear fractional diffusion, SIAM J. Math. Anal., 46 (2014), 3241–3276. https://doi.org/10.1137/130918289 doi: 10.1137/130918289
|
| [14] |
G. Grillo, M. Muratori, F. Punzo, Fractional porous media equations: Existence and uniqueness of weak solutions with measure data, Calc. Var. Partial Dif., 54 (2015), 3303–3335. https://doi.org/10.1007/s00526-015-0904-4 doi: 10.1007/s00526-015-0904-4
|
| [15] |
G. Grillo, M. Muratori, F. Punzo, On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density, Discrete Cont. Dyn., 35 (2015), 5927–5962. https://doi.org/10.3934/dcds.2015.35.5927 doi: 10.3934/dcds.2015.35.5927
|
| [16] |
Z. Zhang, Q. Ouyang, Global existence, blow-up and optimal decay for a nonlinear viscoelastic equation with nonlinear damping and source term, Discrete Cont. Dyn.-B, 28 (2023), 4735–4760. https://doi.org/10.3934/dcdsb.2023038 doi: 10.3934/dcdsb.2023038
|
| [17] |
B. Feng, General decay rates for a viscoelastic wave equation with dynamic boundary conditions and past history, Mediterr. J. Math., 15 (2018), 103. https://doi.org/10.1007/s00009-018-1154-4 doi: 10.1007/s00009-018-1154-4
|
| [18] |
A. Boudiaf, S. Drabla, F. Boulanouar, General decay rate for nonlinear thermoviscoelastic system with a weak damping and nonlinear source term, Mediterr. J. Math., 13 (2016), 3101–3120. https://doi.org/10.1007/s00009-015-0674-4 doi: 10.1007/s00009-015-0674-4
|
| [19] |
Q. Dai, Z. Yang, Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 65 (2014), 885–903. https://doi.org/10.1007/s00033-013-0365-6 doi: 10.1007/s00033-013-0365-6
|
| [20] |
H. A. Levine, Some nonexistence and instability theorems for formally parabolic equations of the form $Pu_t = Au+J(u)$, Arch. Ration. Mech. An., 51 (1973), 277–284. https://doi.org/10.1007/BF00263041 doi: 10.1007/BF00263041
|
| [21] |
H. A. Levine, L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differ. Equations, 16 (1974), 319–334. https://doi.org/10.1016/0022-0396(74)90018-7 doi: 10.1016/0022-0396(74)90018-7
|
| [22] |
S. Y. Chung, M. J. Choi, A new condition for the concavity method of blow-up solutions to $p$-Laplacian parabolic equations, J. Differ. Equations, 265 (2018), 6384–6399. https://doi.org/10.1016/j.jde.2018.07.032 doi: 10.1016/j.jde.2018.07.032
|
| [23] |
M. Ruzhansky, B. Sabitbek, B. Torebek, Global existence and blow-up of solutions to porous medium equation and pseudo-parabolic equation, I. Stratified groups, Manuscripta Math., 171 (2021), 377–395. https://doi.org/10.1007/s00229-022-01390-2 doi: 10.1007/s00229-022-01390-2
|
| [24] |
M. Jleli, M. Kirane, B. Samet, Non existence results for a class of evolution equations in the Heisenberg group, Fract. Calc. Appl. Anal., 18 (2015), 717–734. https://doi.org/10.1515/fca-2015-0044 doi: 10.1515/fca-2015-0044
|
| [25] |
K. Jabbarkhanov, D. Suragan, On Fisher's equation with the fractional $p$-Laplacian, Math. Method. Appl. Sci., 46 (2023), 12886–12894. https://doi.org/10.1002/mma.9219 doi: 10.1002/mma.9219
|
| [26] |
K. Jabbarkhanov, D. Suragan, Dynamics of nonlinear anomalous reaction-diffusion models: Global existence and blow-up of solutions, Evol. Equ. Control The., 14 (2025), 1128–1140. https://doi.org/10.3934/eect.2025028 doi: 10.3934/eect.2025028
|
| [27] |
K. Jabbarkhanov, J. E. Restrepo, D. Suragan, A reaction-diffusion equation on stratified groups, J. Math. Sci., 266 (2022), 593–602. https://doi.org/10.1007/s10958-022-05965-y doi: 10.1007/s10958-022-05965-y
|
| [28] |
S. Ghosh, V. Kumar, M. Ruzhansky, Compact embeddings, eigenvalue problems, and subelliptic Brezis-Nirenberg equations involving singularity on stratified Lie groups, Math. Ann., 388 (2024), 4201–4249. https://doi.org/10.1007/s00208-023-02609-7 doi: 10.1007/s00208-023-02609-7
|
| [29] | M. Ruzhansky, D. Suragan, Hardy inequalities on homogeneous groups, Birkhäuser, 327 (2019). |
| [30] |
V. K. Kalantarov, O. A. Ladyzhenskaya, The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types, J. Math. Sci., 10 (1978), 53–70. https://doi.org/10.1007/BF01109723 doi: 10.1007/BF01109723
|
| [31] |
A. Khelghati, K. Baghaei, Blow-up phenomena for a nonlocal semilinear parabolic equation with positive initial energy, Comput. Math. Appl., 70 (2015), 896–902. https://doi.org/10.1016/j.camwa.2015.06.003 doi: 10.1016/j.camwa.2015.06.003
|