Several novel upper bounds for the spectral radius of the Hadamard product of two nonnegative matrices are presented by leveraging spectral radius properties and the Cauchy-Schwarz inequality. The derived bounds incorporate the maximum values of the non-diagonal elements in each row of the nonnegative matrices. Furthermore, concrete examples are presented to illustrate our results are more accurate than existing relevant results.
Citation: Qin Zhong, Ling Li, Gufang Mou. New inequalities on the Hadamard product of nonnegative matrices[J]. AIMS Mathematics, 2025, 10(6): 13330-13342. doi: 10.3934/math.2025598
Several novel upper bounds for the spectral radius of the Hadamard product of two nonnegative matrices are presented by leveraging spectral radius properties and the Cauchy-Schwarz inequality. The derived bounds incorporate the maximum values of the non-diagonal elements in each row of the nonnegative matrices. Furthermore, concrete examples are presented to illustrate our results are more accurate than existing relevant results.
| [1] | A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Philadelphia: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262 |
| [2] |
I. Bahmani Jafarloo, C. Bocci, E. Guardo, G. Malara, Hadamard products of symbolic powers and Hadamard fat grids, Mediterr. J. Math., 20 (2023), 162. https://doi.org/10.48550/arXiv.2211.00200 doi: 10.48550/arXiv.2211.00200
|
| [3] |
W. T. Jiang, H. F. Hu, Hadamard product perceptron attention for image captioning, Neural Process Lett., 55 (2023), 2707–2724. https://doi.org/10.1007/s11063-022-10980-w doi: 10.1007/s11063-022-10980-w
|
| [4] |
Q. P. Guo, J. S. Leng, H. B. Li, C. Cattani, Some bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Mathematics, 7 (2019), 147. https://doi.org/10.3390/math7020147 doi: 10.3390/math7020147
|
| [5] |
J. Li, H. Hai, Some new inequalities for the Hadamard product of nonnegative matrices, Linear Algebra Appl., 606 (2020), 159–169. https://doi.org/10.1016/j.laa.2020.07.025 doi: 10.1016/j.laa.2020.07.025
|
| [6] |
G. H. Cheng, New bounds for eigenvalues of the Hadamard product and the Fan product of matrices, Taiwan. J. Math., 18 (2014), 305–312. https://doi.org/10.11650/tjm.18.2014.2594 doi: 10.11650/tjm.18.2014.2594
|
| [7] |
R. Huang, Some inequalities for the Hadamard product and the Fan product of matrices, Linear Algebra Appl., 428 (2008), 1551–1559. https://doi.org/10.1016/j.laa.2007.10.001 doi: 10.1016/j.laa.2007.10.001
|
| [8] |
Q. Zhong, Some new inequalities for nonnegative matrices involving Schur product, AIMS Math., 8 (2023), 29667–29680. 10.3934/math.20231518 doi: 10.3934/math.20231518
|
| [9] |
Y. Y. Xu, L. C. Shao, T. T. Dong, G. He, Z. Chen, Some new inequalities on spectral radius for the Hadamard product of nonnegative matrices, Japan J. Indust. Appl. Math., 42 (2025), 727–749. https://doi.org/10.1007/s13160-025-00691-9 doi: 10.1007/s13160-025-00691-9
|
| [10] |
J. X. Zhao, Lower bounds for the minimum eigenvalue of Hadamard product of M-matrices, Bull. Malaysian Math. Sci. Soc., 46 (2023), 18. https://doi.org/10.1007/s40840-022-01432-8 doi: 10.1007/s40840-022-01432-8
|
| [11] |
W. L. Zeng, J. Z. Liu, Lower Bound Estimation of the Minimum Eigenvalue of Hadamard Product of an M-Matrix and its Inverse, Bull. Iran. Math. Soc., 48 (2022), 1075–1091. https://doi.org/10.1007/s41980-021-00563-1 doi: 10.1007/s41980-021-00563-1
|
| [12] |
Y. Y. Xu, L. C. Shao, G. N. He, On some spectral radius inequalities for the Hadamard product of nonnegative tensors, Bull. Malays. Math. Sci. Soc., 47 (2024), 10. https://doi.org/10.1007/s40840-023-01607-x doi: 10.1007/s40840-023-01607-x
|
| [13] |
Y. Y. Xu, Brualdi-type Inequalities on Spectral Radius for the Hadamard Product of Nonnegative Tensors, Front. Math., 20 (2025), 87–108. https://doi.org/10.1007/s11464-021-0485-9 doi: 10.1007/s11464-021-0485-9
|
| [14] | X. Z. Zhan, Unsolved matrix problems, Talk given at Advanced Workshop on Trends and Developments in Linear Algebra, ICTP, Trieste, Italy, 2009. |
| [15] |
K. M. R. Audenaert, Spectral radius of Hadamard product versus conventional product for non-negative matrices, Linear Algebra Appl., 432 (2010), 366–368. https://doi.org/10.1016/j.laa.2009.08.017 doi: 10.1016/j.laa.2009.08.017
|
| [16] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511840371 |
| [17] |
M. Z. Fang, Bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Linear Algebra Appl., 425 (2007), 7–15. https://doi.org/10.1016/j.laa.2007.03.024 doi: 10.1016/j.laa.2007.03.024
|
| [18] |
Q. B. Liu, G. L. Chen, On two inequalities for the Hadamard product and the fan product of matrices, Linear Algebra Appl., 431 (2009), 974–984. https://doi.org/10.1016/j.laa.2009.03.049 doi: 10.1016/j.laa.2009.03.049
|
| [19] | R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 2000. http://dx.doi.org/10.1007/978-3-642-05156-2 |