Research article

Some generalized matrix means inequalities

  • Received: 21 April 2025 Revised: 29 May 2025 Accepted: 06 June 2025 Published: 10 June 2025
  • MSC : 15A45, 47A63, 47A30, 15A60

  • In this paper, we will give some AM-GM-HM singular values inequalities and some weighted power mean inequalities, our results generalized and complete the existed ones.

    Citation: Junmei Zuo, Yonghui Ren. Some generalized matrix means inequalities[J]. AIMS Mathematics, 2025, 10(6): 13319-13329. doi: 10.3934/math.2025597

    Related Papers:

  • In this paper, we will give some AM-GM-HM singular values inequalities and some weighted power mean inequalities, our results generalized and complete the existed ones.



    加载中


    [1] S. S. Dragomir, Bounds for the normalized Jensen functional, B. Aust. Math. Soc., 74 (2006), 471–478. https://doi.org/10.1017/S000497270004051X doi: 10.1017/S000497270004051X
    [2] S. Furuichi, H. R. Moradi, M. Sababheh, New sharp inequalities for operator means, Linear Multilinear A., 67 (2019), 1567–1578. https://doi.org/10.1080/03081087.2018.1461189 doi: 10.1080/03081087.2018.1461189
    [3] I. H. Gümüş, O. Hirzallah, N. Taskaraa, Singular value inequalities for the arithmetic, geometric and Heinz means of matrices, Linear Multilinear A., 59 (2011), 1383–1392. https://doi.org/10.1080/03081087.2011.556632 doi: 10.1080/03081087.2011.556632
    [4] I. H. Gümüş, H. R. Moradi, M. Sababheh, More accurate operator means inequalities, J. Math. Anal. Appl., 465 (2018), 267–280. https://doi.org/10.1016/j.jmaa.2018.05.003 doi: 10.1016/j.jmaa.2018.05.003
    [5] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2nd Eds., Cambridge: Cambridge Univ. Press, 1988.
    [6] O. Hirzallaha, F. Kittanehb, M. Krnić, N. Lovričević, J. Pečarić, Eigenvalue inequalities for differences of means of Hilbert space operators, Linear Algebra Appl., 436 (2012), 1516–1527.
    [7] F. Mitrot, About the precision in Jensen-Steffensen inequality, Ann. Univ. Craiova-Mat., 37 (2010), 73–84. https://doi.org/10.52846/ami.v37i4.367 doi: 10.52846/ami.v37i4.367
    [8] M. Sababheh, S. Furuichi, Z. Heydarbeygi, H. Moradi, On the arithemetic-geometric mean inequality, J. Math. Inequal., 15 (2021), 1255–1266. https://doi.org/10.7153/jmi-2021-15-84 doi: 10.7153/jmi-2021-15-84
    [9] M. Sababheh, S. Furuichi, S. Sheybani, H. Moradi, Singular values inequalities for matrix means, J. Math. Inequal., 16 (2022), 169–179. https://doi.org/10.7153/jmi-2022-16-13 doi: 10.7153/jmi-2022-16-13
    [10] M. Sababheh, H. Moradi, Radical convex functions, Mediterr. J. Math., 18 (2021), 137. https://doi.org/10.1007/s00009-021-01784-8 doi: 10.1007/s00009-021-01784-8
    [11] J. Zhao, J. Wu, Operator inequalities involving improved Young and its reverse inequalities, J. Math. Anal. Appl., 421 (2015), 1779–1789. https://doi.org/10.1016/j.jmaa.2014.08.032 doi: 10.1016/j.jmaa.2014.08.032
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(443) PDF downloads(33) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog