In this paper, we introduce a modified Elzaki transform and its generalization, namely the Elzaki transform, and its own convolution theorem is given. These generalization are given by composition with a monotonic increasing function $ \varrho $ having a continuous derivative. A revised version of the Elzaki transform that is broader in scope and applicable over a wider range is developed, and some of its fundamental properties are given. This modified transform is performed to find solutions of certain non homogeneous linear $ \varrho $ Riemann–Liouville, $ \varrho $ Caputo fractional differential equations. Using comparision graphs, one can determine the effectiveness of the solutions. This research opens up new avenues for future research and has the potential to make a significant impact on the field of mathematics and its applications.
Citation: Aysun Yurttas Gunes, Halim Benali, Mohammed Said Souid. On the generalized Elzaki transform and its applications to fractional differential equations[J]. AIMS Mathematics, 2025, 10(6): 13231-13250. doi: 10.3934/math.2025593
In this paper, we introduce a modified Elzaki transform and its generalization, namely the Elzaki transform, and its own convolution theorem is given. These generalization are given by composition with a monotonic increasing function $ \varrho $ having a continuous derivative. A revised version of the Elzaki transform that is broader in scope and applicable over a wider range is developed, and some of its fundamental properties are given. This modified transform is performed to find solutions of certain non homogeneous linear $ \varrho $ Riemann–Liouville, $ \varrho $ Caputo fractional differential equations. Using comparision graphs, one can determine the effectiveness of the solutions. This research opens up new avenues for future research and has the potential to make a significant impact on the field of mathematics and its applications.
| [1] |
M. S. Souid, A. Refice, K. Sitthithakerngkiet, Stability of p(·)-integrable solutions for fractional boundary value problem via Piecewise constant functions, Fractal Fract., 7 (2023), 198. https://doi.org/10.3390/fractalfract7020198 doi: 10.3390/fractalfract7020198
|
| [2] | T. M. Elzaki, S. M. Elzaki, On the connections between Laplace and Elzaki transforms, Adv. Theor. Appl. Math., 6 (2011), 1–10. |
| [3] | T. M. Elzaki, S. M. Elzaki, On the Elzaki transform and ordinary differential equations with variable coefficients, Adv. Theor. Appl. Math., 6 (2011), 41–46. |
| [4] |
Hajira, H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier–Stokes equations within Caputo operator and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 622. https://doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
|
| [5] |
S. Kumar, V. Joshi, M. Kapoor, Elzaki residual power series approach for semi-analytic approximation of time-fractional nonlinear equations occurring in magneto-acoustic waves, Phys. Scr., 100 (2025), 015274. https://doi.org/10.1088/1402-4896/ad9d8e doi: 10.1088/1402-4896/ad9d8e
|
| [6] |
S. Hussain, R. Kumar. Elzaki projected differential transform method for multi-dimensional aggregation and combined aggregation-breakage equations, J. Comput. Sci., 75 (2024), 102211. https://doi.org/10.1016/j.jocs.2024.102211 doi: 10.1016/j.jocs.2024.102211
|
| [7] |
H. Benali, Some generalized fractional integrals inequalities for a class of functions, J. Interdiscip. Math., 24 (2021), 853–866. http://dx.doi.org/10.1080/09720502.2020.1815343 doi: 10.1080/09720502.2020.1815343
|
| [8] |
H. Benali, M. S. Souid, H. Gunerhan, U. Fernandez-Gamiz, Estimates related to Caputo derivatives using generalized modified h-convex functions, AIMS Mathematics, 9 (2024), 28813–28827. http://dx.doi.org/10.3934/math.20241398 doi: 10.3934/math.20241398
|
| [9] | B. Hazarika, S. Acharjee, D. S. https://doi.org/10.1007/978-981-99-9207-2, Advances in functional analysis and fixed-point theory, Singapore: Springer, 2024. https://doi.org/10.1007/978-981-99-9207-2 |
| [10] | D. Kumar, H. K. Jassim, J. Singh, M. Diykh, Fractional Elzaki variational iteration method for solving nonlinear biological population model, In: Advances in mathematical modelling, applied analysis and computation, 952 (2024), 368–376. https://doi.org/10.1007/978-3-031-56307-2_23 |
| [11] | S. D. Manjarekar, Fractional Elzaki transformation with its applications to fractional differential equations and special functions, In: Advances in functional analysis and fixed-point theory, 2024,219–233. https://doi.org/10.1007/978-981-99-9207-2_12 |
| [12] |
O. Nave, Modification of semi-analytical method applied system of ODE, Mod. Appl. Sci., 14 (2020), 75–81. http://dx.doi.org/10.5539/mas.v14n6p75 doi: 10.5539/mas.v14n6p75
|
| [13] |
I. Ahmad, R. Jan, N. N. A. Razak, A. Khan, T. Abdeljawad, Exploring fractional-order models in computational finance via an efficient hybrid approach, Eur. J. Pure Appl. Math., 18 (2025), 5793. https://doi.org/10.29020/nybg.ejpam.v18i1.5793 doi: 10.29020/nybg.ejpam.v18i1.5793
|
| [14] |
T. Senthil Kumar, P. Rajendran, N. Santhiyakumari, S. Kumarganesh, L. Mohana Sundari, S. Elango, et al., Analysis of computational methods for diagnosis of cervical cancer: A review, Appl. Math. Inf. Sci., 18 (2024), 795–809. https://doi.org/10.18576/amis/180412 doi: 10.18576/amis/180412
|
| [15] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Longhorne, PA: Gordon and Breach, 1993. |
| [16] |
O. P. Agrawal, Generalized multiparameters fractional variational calculus, Int. J. Differ. Equ., 2012 (2012), 521750. https://doi.org/10.1155/2012/521750 doi: 10.1155/2012/521750
|
| [17] |
I. Ahmad, R. Jan, N. N. A. Razak, A. Khan, T. Abdeljawad, Numerical investigation of the dynamical behavior of Hepatitis B virus via Caputo-Fabrizio fractional derivative, Eur. J. Pure Appl. Math., 18 (2025), 5509. https://doi.org/10.29020/nybg.ejpam.v18i1.5509 doi: 10.29020/nybg.ejpam.v18i1.5509
|
| [18] |
M. S. Souid, A. Benkerrouche, S. Guedim, S. Pinelas, A. Amara, Solvability of boundary value problems for differential equations combining ordinary and fractional derivatives of non-autonomous variable order, Symmetry, 17 (2025), 184. https://doi.org/10.3390/sym17020184 doi: 10.3390/sym17020184
|
| [19] | K. Shah, A. Ali, M. Boukhobza, A. Debbouche, T. Abdeljawad, Hyers-Ulam stability analysis for piecewise variable order fractional impulsive evolution systems, J. Appl. Anal. Comput., 15 (2025), 3159–3184. |
| [20] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006. |
| [21] |
H. Medekhel, R. Jan, S. Boulaaras, R. Guefaifia, A. Himadan, Existence and uniqueness of solutions to a weighted Laplace equation with spectral perturbation near a plane sector vertex, Fractals, 2025 (2025), 2540178. https://doi.org/10.1142/S0218348X25401784 doi: 10.1142/S0218348X25401784
|