Research article Special Issues

A family of trivariate Gould-Hopper-Bell-Apostol-Type polynomials: Construction and properties

  • Received: 21 April 2025 Revised: 23 May 2025 Accepted: 29 May 2025 Published: 09 June 2025
  • MSC : 11B68, 11B73, 11B83, 05A15, 33C47

  • In this study, we define and investigate a new hybrid family of special polynomials, named the trivariate Gould-Hopper-Bell-Apostol-type polynomials. By applying the monomiality principle, we construct their generating function, derive series representations, identify quasi-monomial operators, and formulate the corresponding differential equation. We also establish summation formulas and integral/differential representations. Furthermore, we investigate specific members of this family, including Gould-Hopper-Bell-Apostol-Bernoulli, Gould-Hopper-Bell-Apostol-Euler, and Gould-Hopper-Bell-Apostol-Genocchi polynomials, revealing analogous results for each. Finally, we utilize Mathematica for computational exploration, examining zero distributions and graphical representations.

    Citation: Rabeb Sidaoui, Abdulghani Muhyi, Khaled Aldwoah, Ayman Alahmade, Mohammed Rabih, Amer Alsulami, Khidir Mohamed. A family of trivariate Gould-Hopper-Bell-Apostol-Type polynomials: Construction and properties[J]. AIMS Mathematics, 2025, 10(6): 13251-13277. doi: 10.3934/math.2025594

    Related Papers:

  • In this study, we define and investigate a new hybrid family of special polynomials, named the trivariate Gould-Hopper-Bell-Apostol-type polynomials. By applying the monomiality principle, we construct their generating function, derive series representations, identify quasi-monomial operators, and formulate the corresponding differential equation. We also establish summation formulas and integral/differential representations. Furthermore, we investigate specific members of this family, including Gould-Hopper-Bell-Apostol-Bernoulli, Gould-Hopper-Bell-Apostol-Euler, and Gould-Hopper-Bell-Apostol-Genocchi polynomials, revealing analogous results for each. Finally, we utilize Mathematica for computational exploration, examining zero distributions and graphical representations.



    加载中


    [1] S. Benbernou, S. Gala, M. A. Ragusa, On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space, Math. Meth. Appl. Sci., 37 (2014), 2320–2325. https://doi.org/10.1002/mma.2981 doi: 10.1002/mma.2981
    [2] R. B. Boas, R. C. Buck, Polynomial expansions of analytic functions, Berlin: Springer, 2013.
    [3] J. Sándor, B. Crstici, Handbook of number theory, Dordrecht: Kluwer Academic Publishers, 2004.
    [4] Q. M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math., 10 (2006), 917–925. https://doi.org/10.11650/twjm/1500403883 doi: 10.11650/twjm/1500403883
    [5] Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290–302. https://doi.org/10.1016/j.jmaa.2005.01.020 doi: 10.1016/j.jmaa.2005.01.020
    [6] Q. M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput., 217 (2011), 5702–5728. https://doi.org/10.1016/j.amc.2010.12.048 doi: 10.1016/j.amc.2010.12.048
    [7] M. A. Özarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62 (2011), 2452–2462. https://doi.org/10.1016/j.camwa.2011.07.031 doi: 10.1016/j.camwa.2011.07.031
    [8] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci., 5 (2011), 390–444.
    [9] H. M. Srivastava, C. Kizilates, A parametric kind of the Fubini-type polynomials, RACSAM, 113 (2019), 3253–3267. https://doi.org/10.1007/s13398-019-00687-4 doi: 10.1007/s13398-019-00687-4
    [10] H. M. Srivastava, S. Khan, S. Araci, M. Acikgoz, M. Riyasat, A general class of the three-variable unified Apostol-type q-polynomials and multiple power q-sums, Bull. Iran. Math. Soc., 46 (2020), 519–542. https://doi.org/10.1007/s41980-019-00273-9 doi: 10.1007/s41980-019-00273-9
    [11] H. M. Srivastava, S. Araci, W. A. Khan, M. Acikgöz, A note on the truncated-exponential based Apostol-type polynomials, Symmetry, 11 (2019), 538. https://doi.org/10.3390/sym11040538 doi: 10.3390/sym11040538
    [12] S. Araci, M. Riyasat, S. Khan, S. A. Wani, Some unified formulas involving generalized-Apostol-type-Gould-Hopper polynomials and multiple power sums, J. Math. Computer Sci., 19 (2019), 97–115. https://doi.org/10.22436/jmcs.019.02.04 doi: 10.22436/jmcs.019.02.04
    [13] B. Kurt, A parametric unified Apostol-type Bernoulli, Euler, Genocchi, Fubini polynomials and numbers, Filomat, 37 (2023), 6307–6317. https://doi.org/10.2298/FIL2319307K doi: 10.2298/FIL2319307K
    [14] V. Kurt, On the unified family of generalized Apostol-type polynomials of higher order and multiple power sums, Filomat, 30 (2016), 929–935. https://doi.org/10.2298/FIL1604929K doi: 10.2298/FIL1604929K
    [15] H. W. Gould, A. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J., 29 (1962), 51–63. https://doi.org/10.1215/S0012-7094-62-02907-1 doi: 10.1215/S0012-7094-62-02907-1
    [16] L.Carlitz, Some remarks on the Bell numbers, Fibonacci Quart., 18 (1980), 66–73. https://doi.org/10.1080/00150517.1980.12430191 doi: 10.1080/00150517.1980.12430191
    [17] D. S. Kim, T. Kim, Some identities of Bell polynomials, Sci. China Math., 58 (2015), 1–10. https://doi.org/10.1007/s11425-015-5006-4 doi: 10.1007/s11425-015-5006-4
    [18] U. Duran, S. Araci, M. Acikgoz, Bell-based Bernoulli polynomials with applications, Axioms, 10 (2021), 29. https://doi.org/10.3390/axioms10010029 doi: 10.3390/axioms10010029
    [19] U. Duran, M. Acikgoz, Bell-based Genocchi polynomials, NTMSCI, 9 (2021), 50–55.
    [20] R. A. Al-Jawfi, A. Muhyi, W. F. H. Al-shameri, On generalized class of Bell polynomials associated with geometric applications, Axioms, 13 (2024), 73. https://doi.org/10.3390/axioms13020073 doi: 10.3390/axioms13020073
    [21] J. F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta Math., 73 (1941), 333–366.
    [22] G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle, Adv. Spec. Funct. Appl., 1999,147–164.
    [23] Q. M. Luo, Extensions of the Genocchi polynomials and their Fourier expansions and integral representations, Osaka J. Math., 48 (2011), 291–309.
    [24] G. Yasmin, H. Islahi, A. Muhyi, Certain results on a hybrid class of the Boas-Buck polynomials, Adv. Differ. Equ., 2020 (2020), 362. https://doi.org/10.1186/s13662-020-02824-5 doi: 10.1186/s13662-020-02824-5
    [25] S. Khan, N. Raza, General-Appell polynomials within the context of monomiality principle, Int. J. Anal., 2013 (2013), 328032. https://doi.org/10.1155/2013/328032 doi: 10.1155/2013/328032
    [26] F. A. Costabile, S. Khan, H. Ali, A study of the q-truncated exponential-Appell polynomials, Mathematics, 12 (2024), 3862. https://doi.org/10.3390/math12233862 doi: 10.3390/math12233862
    [27] S. Khan, M. Haneef, M. Riyasat, Construction of certain new families related to q-Fubini polynomials, Georgian Math. J., 29 (2022), 725–739. https://doi.org/10.1515/gmj-2022-2170 doi: 10.1515/gmj-2022-2170
    [28] F. Costabile, F. Dell'Accio, M. I. Gualtieri, A new approach to Bernoulli polynomials, Rend. Mat. Appl., 26 (2006), 1–12.
    [29] F. A. Costabile, E. Longo, A determinantal approach to Appell polynomials, J. Comput. Appl. Math., 234 (2010), 1528–1542. https://doi.org/10.1016/j.cam.2010.02.033 doi: 10.1016/j.cam.2010.02.033
    [30] F. A. Costabile, M. I. Gualtieri, A. Napoli, Bivariate general Appell interpolation problem, Numer. Algor., 91 (2022), 531–556. https://doi.org/10.1007/s11075-022-01272-4 doi: 10.1007/s11075-022-01272-4
    [31] M. Fadel, A. Muhyi, On a family of q-modified-Laguerre-Appell polynomials, Arab J. Basic Appl. Sci., 31 (2024), 165–176. https://doi.org/10.1080/25765299.2024.2314282 doi: 10.1080/25765299.2024.2314282
    [32] F. A. Costabile, M. I. Gualtieri, A. Napoli, Umbral interpolation: A survey, Mathematics, 13 (2025), 271. https://doi.org/10.3390/math13020271 doi: 10.3390/math13020271
    [33] F. A. Costabile, M. I. Gualtieri, A. Napoli, Towards the centenary of Sheffer polynomial sequences: Old and recent results, Mathematics, 10 (2022), 4435. https://doi.org/10.3390/math10234435 doi: 10.3390/math10234435
    [34] A. Muhyi, A new class of Gould-Hopper-Eulerian-type polynomials, Appl. Math. Sci. Eng., 30 (2022), 283–306. https://doi.org/10.1080/27690911.2022.2055754 doi: 10.1080/27690911.2022.2055754
    [35] A. Muhyi, S. Araci, A note on q-Fubini-Appell polynomials and related properties, J. Funct. Spaces, 2021 (2021), 3805809. https://doi.org/10.1155/2021/3805809 doi: 10.1155/2021/3805809
    [36] H. M. Srivastava, R. Srivastava, A. Muhyi, G. Yasmin, H. Islahi, S. Araci, Construction of a new family of Fubini-type polynomials and its applications, Adv. Differ. Equ., 2021 (2021), 36. https://doi.org/10.1186/s13662-020-03202-x doi: 10.1186/s13662-020-03202-x
    [37] G. Yasmin, A. Muhyi, Certain results of hybrid families of special polynomials associated with Appell sequences, Filomat, 33 (2019), 3833–3844. https://doi.org/10.2298/FIL1912833Y doi: 10.2298/FIL1912833Y
    [38] G. Yasmin, A. Muhyi, Extended forms of Legendre-Gould-Hopper-Appell polynomials, Adv. Stud. Contemp. Math., 29 (2019), 489–504.
    [39] S. Khan, G. Yasmin, M. Riyasat, Certain results for the 2-variable Apostol-type and related polynomials, Comput. Math. Appl., 69 (2015), 1367–1382. https://doi.org/10.1016/j.camwa.2015.03.024 doi: 10.1016/j.camwa.2015.03.024
    [40] S. Khan, T. Nahid, M. Riyasat, On degenerate Apostol-type polynomials and applications, Bol. Soc. Mat. Mex. 25 (2019), 509–528. https://doi.org/10.1007/s40590-018-0220-z doi: 10.1007/s40590-018-0220-z
    [41] W. A. Khan, K. S. Nisar, M. Acikgoz, U. Duran, A. H. Abusufian, On unified Gould-Hopper based Apostol-type polynomials, J. Math. Comput. Sci., 24 (2021), 287–298.
    [42] E. D. Rainville, Special functions, New York: Chelsea Publishing, 1971.
    [43] H. M. Srivastava, B. Kurt, V. Kurt, Identities and relation involving the modified degenerate Hermite-based Apostol-Bernoulli and Apostol-Euler polynomials, RACSAM, 113 (2019), 1299–1313. https://doi.org/10.1007/s13398-018-0549-1 doi: 10.1007/s13398-018-0549-1
    [44] N. Khan, S. Husain, Analysis of Bell based Euler polynomials and their application, Int. J. Appl. Comput. Math., 7 (2021), 195. https://doi.org/10.1007/s40819-021-01127-x doi: 10.1007/s40819-021-01127-x
    [45] U. Duran, M. Acikgoz, Hermite-Bell based Genocchi polynomials of order $\alpha$, In: Western Balkan Conference on Mathematics and Applications, Prishtine, Kosovo, 2022.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(548) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog