In Taiwan, human immunodeficiency virus (HIV) transmission occurs primarily among men who have sex with men (MSM). High-risk behaviors within this population contribute significantly to the variability and spread of the virus. This study introduces a fractional-order mathematical framework to better understand the dynamics of HIV transmission among MSM. We employ the modified Atangana-Baleanu derivative in the Caputo sense (ABC) to model the system. Theoretical analysis focuses on the existence, positivity, uniqueness, and sensitivity of solutions, utilizing the Leray-Schauder nonlinear alternative theorem and Banach's fixed-point theorem. Successive iterative sequences are constructed to verify the existence of solutions. Furthermore, we demonstrate the stability and uniqueness of the model solution within the Hyers-Ulam framework using tools from functional analysis. A chaos control method based on linear response regulation is applied to control the system dynamics and stabilize equilibrium points. Numerical simulations are conducted, and a graphical comparison between classical and fractional-order derivatives is presented using Lagrange interpolation within the modified ABC-fractional framework. Our findings highlight the significant impact of HIV transmission dynamics among MSM on public health systems. The modified ABC operator proves effective in capturing the long-term memory effects of the disease, enabling more precise and adaptive intervention strategies. This research provides policymakers and epidemic managers with a novel and robust modeling tool to develop more flexible and sustainable strategies for managing HIV spread, especially in light of evolving public health challenges.
Citation: Sana Ullah Saqib, Ali Hasan, Yin-Tzer Shih. A novel hybrid fractional approach to nonlinear dynamics of HIV transmission among men who have sex with men in Taiwan[J]. AIMS Mathematics, 2025, 10(6): 13204-13230. doi: 10.3934/math.2025592
In Taiwan, human immunodeficiency virus (HIV) transmission occurs primarily among men who have sex with men (MSM). High-risk behaviors within this population contribute significantly to the variability and spread of the virus. This study introduces a fractional-order mathematical framework to better understand the dynamics of HIV transmission among MSM. We employ the modified Atangana-Baleanu derivative in the Caputo sense (ABC) to model the system. Theoretical analysis focuses on the existence, positivity, uniqueness, and sensitivity of solutions, utilizing the Leray-Schauder nonlinear alternative theorem and Banach's fixed-point theorem. Successive iterative sequences are constructed to verify the existence of solutions. Furthermore, we demonstrate the stability and uniqueness of the model solution within the Hyers-Ulam framework using tools from functional analysis. A chaos control method based on linear response regulation is applied to control the system dynamics and stabilize equilibrium points. Numerical simulations are conducted, and a graphical comparison between classical and fractional-order derivatives is presented using Lagrange interpolation within the modified ABC-fractional framework. Our findings highlight the significant impact of HIV transmission dynamics among MSM on public health systems. The modified ABC operator proves effective in capturing the long-term memory effects of the disease, enabling more precise and adaptive intervention strategies. This research provides policymakers and epidemic managers with a novel and robust modeling tool to develop more flexible and sustainable strategies for managing HIV spread, especially in light of evolving public health challenges.
| [1] |
H. Sun, H. Kawasaki, M. Tsunematsu, Y. Shimpuku, S. Chen, F. Kagiura, et al., Dynamics of HIV transmission among men who have sex with men in Taiwan: A mathematical modeling study, BMC Public Health, 24 (2024), 3063. https://doi.org/10.1186/s12889-024-20494-w doi: 10.1186/s12889-024-20494-w
|
| [2] | S. S. Barasa, True story about HIV: Theory of viral sequestration and reserve infection, HIV/AIDS - Res. Palliat. Care, 3 (2011), 125–133. |
| [3] |
The Insight Start Study Group, Initiation of antiretroviral therapy in early asymptomatic HIV infection, N. Engl. J. Med., 373 (2015), 795–807. https://doi.org/10.1056/NEJMoa1506816 doi: 10.1056/NEJMoa1506816
|
| [4] |
Y. F. Yen, M. Y. Yen, T. Lin, L. H. Li, X. R. Jiang, P. Chou, et al., Prevalence and factors associated with HIV infection among injection drug users at methadone clinics in Taipei, Taiwan, BMC Public Health, 14 (2014), 682. https://doi.org/10.1186/1471-2458-14-682 doi: 10.1186/1471-2458-14-682
|
| [5] |
U. Marcus, A. J. Schmidt, O. Hamouda, M. Bochow, Estimating the regional distribution of men who have sex with men (MSM) based on Internet surveys, BMC Public Health, 9 (2009), 180. https://doi.org/10.1186/1471-2458-9-180 doi: 10.1186/1471-2458-9-180
|
| [6] |
W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
|
| [7] |
B. Armbruster, E. Beck, Elementary proof of convergence to the mean-field model for the SIR process, J. Math. Biol., 75 (2017), 327–339. https://doi.org/10.1007/s00285-016-1086-1 doi: 10.1007/s00285-016-1086-1
|
| [8] | B. Armbruster, E. Beck, An elementary proof of convergence to the mean-field equations for an epidemic model, IMA J. Appl. Math., 82 (2017), 152–157. |
| [9] | T. Brown, W. Peerapatanapokin, The Asian epidemic model: A process model for exploring HIV policy and programme alternatives in Asia, Sex. Transm. Infect., 80 (2004), 19–24. |
| [10] |
M. Farman, E. Hincal, P. A. Naik, A. Hasan, A. Sambas, K. S. Nisar, A sustainable method for analyzing and studying the fractional-order panic spreading caused by the COVID-19 pandemic, Partial Differ. Equ. Appl. Math., 13 (2025), 101047. https://doi.org/10.1016/j.padiff.2024.101047 doi: 10.1016/j.padiff.2024.101047
|
| [11] |
K. S. Nisar, M. Farman, E. Hincal, A. Hasan, P. Abbas, Chlamydia infection with vaccination asymptotic for qualitative and chaotic analysis using the generalized fractal fractional operator, Sci. Rep., 14 (2024), 25938. https://doi.org/10.1038/s41598-024-77567-4 doi: 10.1038/s41598-024-77567-4
|
| [12] |
R. Jayatilaka, R. Patel, M. Brar, Y. Tang, N. M. Jisrawi, F. Chishtie, et al., A mathematical model of COVID-19 transmission, Mater. Today Proc., 54 (2022), 101–112. https://doi.org/10.1016/j.matpr.2021.11.480 doi: 10.1016/j.matpr.2021.11.480
|
| [13] | Y. H. Hsieh, P. C. Lin, Current trends and future projection of HIV/AIDS epidemic in Taiwan: A modeling analysis, Curr. HIV Res., 14 (2016), 138–147. |
| [14] |
S. W. Huang, S. F. Wang, A. E. Cowo, M. Chen, Y. T. Lin, C. P. Hung, et al., Molecular epidemiology of HIV-1 infection among men who have sex with men in Taiwan in 2012, PLOS One, 10 (2015), e0128266. https://doi.org/10.1371/journal.pone.0128266 doi: 10.1371/journal.pone.0128266
|
| [15] | M. Merson, S. Inrig, End of the global programme on AIDS and the launch of UNAIDS, In: The AIDS pandemic, 2018, 303–337. https://doi.org/10.1007/978-3-319-47133-4_16 |
| [16] |
F. Van Griensven, J. W. L. Van Wijngaarden, S. Baral, A. Grulich, The global epidemic of HIV infection among men who have sex with men, Curr. Opin. HIV AIDS, 4 (2009), 300–307. https://doi.org/10.1097/COH.0b013e32832c3bb3 doi: 10.1097/COH.0b013e32832c3bb3
|
| [17] |
N. Y. Ko, H. C. Lee, C. C. Hung, F. C. Tseng, J. L. Chang, N. Y. Lee, et al., Trends of HIV and sexually transmitted infections, estimated HIV incidence, and risky sexual behaviors among gay bathhouse attendees in Taiwan: 2004–2008, AIDS Behav., 15 (2011), 292–297. https://doi.org/10.1007/s10461-010-9748-2 doi: 10.1007/s10461-010-9748-2
|
| [18] | A. E. Weber, K. Chan, C. George, R. S. Hogg, R. S. Remis, S. Martindale, et al., Risk factors associated with HIV infection among young gay and bisexual men in Canada, JAIDS J. Acquir. Immune. Defic. Syndr., 28 (2001), 81–88. |
| [19] |
T. R. H. Read, J. Hocking, V. Sinnott, M. Hellard, Risk factors for incident HIV infection in men having sex with men: A case-control study, Sex. Health, 4 (2007), 35–39. https://doi.org/10.1071/SH06043 doi: 10.1071/SH06043
|
| [20] | Q. He, Y. Xia, H. F. Raymond, R. Peng, F. Yang, L. Ling, HIV trends and related risk factors among men having sex with men in mainland China: Findings from a systematic literature review, Se. Asian J. Trop. Med. Public Health, 42 (2011), 616–633. |
| [21] |
K. H. Mayer, M. R. Skeer, C. O'cleirigh, B. M. Goshe, S. A. Safren, Factors associated with amplified HIV transmission behavior among American men who have sex with men engaged in care: Implications for clinical providers, Ann. Behav. Med., 47 (2014), 165–171. https://doi.org/10.1007/s12160-013-9527-1 doi: 10.1007/s12160-013-9527-1
|
| [22] |
T. R. H. Read, J. Hocking, V. Sinnott, M. Hellard, Risk factors for incident HIV infection in men having sex with men: A case-control study, Sex. Health, 4 (2007), 35–39. https://doi.org/10.1071/sh06043 doi: 10.1071/sh06043
|
| [23] |
H. L. Xu, M. H. Jia, X. D. Min, R. Z. Zhang, C. J. Yu, J. Wang, et al., Factors influencing HIV infection in men who have sex with men in China, Asian J. Androl., 15 (2013), 545–549. https://doi.org/10.1038/aja.2013.51 doi: 10.1038/aja.2013.51
|
| [24] |
G. M. Crosby, R. D. Stall, J. P. Paul, D. C. Barrett, Alcohol and drug use patterns have declined between generations of younger gaybisexual men in San Francisco, Drug Alcohol Depen., 52 (1998), 177–182. https://psycnet.apa.org/doi/10.1016/S0376-8716(98)00093-3 doi: 10.1016/S0376-8716(98)00093-3
|
| [25] |
L. N. Drumright, S. J. Little, S. A. Strathdee, D. J. Slymen, M. R. G. Araneta, V. L. Malcarne, et al., Unprotected anal intercourse and substance use among men who have sex with men with recent HIV infection, J. Acquir. Immune. Defic. Syndr., 43 (2006), 344–350. https://doi.org/10.1097/01.qai.0000230530.02212.86 doi: 10.1097/01.qai.0000230530.02212.86
|
| [26] |
R. V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci., 165 (2000), 27–39. https://doi.org/10.1016/S0025-5564(00)00006-7 doi: 10.1016/S0025-5564(00)00006-7
|
| [27] |
P. Essunger, A. S. Perelson, Modeling HIV infection of CD4+ T-cell subpopulations, J. Theoret. Biol., 170 (1994), 367–391. https://doi.org/10.1006/jtbi.1994.1199 doi: 10.1006/jtbi.1994.1199
|
| [28] |
L. Wang, M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Math. Biosci., 200 (2006), 44–57. https://doi.org/10.1016/j.mbs.2005.12.026 doi: 10.1016/j.mbs.2005.12.026
|
| [29] |
M. Farman, S. Jamil, M. B. Riaz, M. Azeem, M. U. Saleem, Numerical and quantitative analysis of HIV/AIDS model with modified Atangana-Baleanu in Caputo sense derivative, Alexandria Eng. J., 66 (2023), 31–42. https://doi.org/10.1016/j.aej.2022.11.034 doi: 10.1016/j.aej.2022.11.034
|
| [30] |
A. Atangana, S. I. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Solitons Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
|
| [31] |
M. Al-Refai, D. Baleanu, On an extension of the operator with Mittag-Leffler kernel, Fractals, 30 (2022), 2240129. https://doi.org/10.1142/S0218348X22401296 doi: 10.1142/S0218348X22401296
|
| [32] |
M. Farman, A. Shehzad, A. Akgül, D. Baleanu, D. Attia, A. M. Hassan, Analysis of a fractional order Bovine Brucellosis disease model with discrete generalized Mittag-Leffler kernels, Results Phys., 52 (2023), 106887. https://doi.org/10.1016/j.rinp.2023.106887 doi: 10.1016/j.rinp.2023.106887
|
| [33] |
M. Farman, K. Jamil, C. Xu, K. S. Nisar, A. Amjad, Fractional order forestry resource conservation model featuring chaos control and simulations for toxin activity and human-caused fire through modified ABC operator, Math. Comput. Simul., 227 (2025), 282–302. https://doi.org/10.1016/j.matcom.2024.07.038 doi: 10.1016/j.matcom.2024.07.038
|
| [34] |
S. B. Wu, Y. C. Huang, Y. F. Huang, J. C. Huang, Estimating HIV incidence, prevalence, and percent of undiagnosed infections in Taiwan using CD4 data, J. Formos Med. Assoc., 121 (2022), 482–489. https://doi.org/10.1016/j.jfma.2021.05.030 doi: 10.1016/j.jfma.2021.05.030
|
| [35] | The Taiwan centers for disease control, Statistical data of HIV/AIDS of Taiwan. Available from: https://www.cdc.gov.tw/Category/Page/rCV9N1rGUz9wNr8lggsh2Q |