Research article

Mathematical analysis of tri-trophic food webs with carrying capacity and Holling-type predation using fractal-fractional Caputo derivatives

  • Published: 06 June 2025
  • MSC : 26A33, 34A08, 34A12

  • This research investigated a tri-trophic food chain model, incorporating carrying capacity and Holling-type predation, formulated using the fractal-fractional Caputo derivative. The four equilibrium states---trivial, prey-only, prey-predator, and coexistence---presented and their stability was discussed. Existence and uniqueness of solutions were established using Schaefer's and Banach's fixed point theorems. Also, stability requirements in the sense of Hyers-Ulam (H-U) were investigated. Numerical simulations were performed using the extended numerical method of Adams-Bashforth-Moulton (ABM), and comparative results were graphically presented to demonstrate the impact of varying fractal-fractional orders. A sensitivity analysis revealed how perturbations in individual parameters influence the model's outcome. The model accounts for memory and hereditary effects in ecological interactions. The proposed method enhances accuracy, stability, and convergence for long-time simulations compared to classical models.

    Citation: Amjad E. Hamza, Arshad Ali, Khaled Aldwoah, Hicham Saber, Ria Egami, Amel Touati, Amal F. Alharbi. Mathematical analysis of tri-trophic food webs with carrying capacity and Holling-type predation using fractal-fractional Caputo derivatives[J]. AIMS Mathematics, 2025, 10(6): 13130-13150. doi: 10.3934/math.2025589

    Related Papers:

  • This research investigated a tri-trophic food chain model, incorporating carrying capacity and Holling-type predation, formulated using the fractal-fractional Caputo derivative. The four equilibrium states---trivial, prey-only, prey-predator, and coexistence---presented and their stability was discussed. Existence and uniqueness of solutions were established using Schaefer's and Banach's fixed point theorems. Also, stability requirements in the sense of Hyers-Ulam (H-U) were investigated. Numerical simulations were performed using the extended numerical method of Adams-Bashforth-Moulton (ABM), and comparative results were graphically presented to demonstrate the impact of varying fractal-fractional orders. A sensitivity analysis revealed how perturbations in individual parameters influence the model's outcome. The model accounts for memory and hereditary effects in ecological interactions. The proposed method enhances accuracy, stability, and convergence for long-time simulations compared to classical models.



    加载中


    [1] S. B. Hsu, A mathematical analysis of competition for a single resource, Ph.D. Thesis, University of Iowa, 1976.
    [2] S. B. Hsu, S. Hubbell, P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366–383.
    [3] P. T. Saunders, M. J. Bazin, On the stability of food chains, J. Theor. Biol., 52 (1975), 121–142. https://doi.org/10.1016/0022-5193(75)90044-2 doi: 10.1016/0022-5193(75)90044-2
    [4] J. A. Yorke, W. N. Anderson, Predator-prey patterns, Proc. Natl. Acad. Sci. USA, 70 (1973), 2069–2071. https://doi.org/10.1073/pnas.70.7.2069 doi: 10.1073/pnas.70.7.2069
    [5] S. P. Hubbell, Populations and simple food webs as energy filters. Ⅱ. Two-species systems, Am. Nat., 107 (1973), 122–151.
    [6] R. M. May, Mass and energy flow in closed ecosystems: A comment, J. Theor. Biol., 39 (1973), 155–163. https://doi.org/10.1016/0022-5193(73)90210-5 doi: 10.1016/0022-5193(73)90210-5
    [7] M. Conrad, Stability of foodwebs and its relation to species diversity, J. Theor. Biol., 34 (1972), 325–335. https://doi.org/10.1016/0022-5193(72)90165-8 doi: 10.1016/0022-5193(72)90165-8
    [8] G. C. Gallopin, Trophic similarity between species in a food web, Am. Midl. Nat., 87 (1972), 336–345. https://doi.org/10.2307/2423566 doi: 10.2307/2423566
    [9] E. H. Kerner, On the Volterra-Lotka principle, Bull. Math. Biophys., 23 (1961), 141–157. https://doi.org/10.1007/BF02477468 doi: 10.1007/BF02477468
    [10] M. L. Rosenzweig, Exploitation in three trophic levels, Am. Nat., 107 (1973), 275–294. https://doi.org/10.1086/282830 doi: 10.1086/282830
    [11] D. L. De Angelis, Stability and connectance in food web models, Ecology, 56 (1975), 238–243. https://doi.org/10.2307/1935318 doi: 10.2307/1935318
    [12] Y. Ma, R. Yang, Bifurcation analysis in a modified Leslie-Gower with nonlocal competition and Beddington-DeAngelis functional response, J. Appl. Anal. Comput., 15 (2025), 2152–2184. https://doi.org/10.11948/20240415 doi: 10.11948/20240415
    [13] F. Zhu, R. Yang, Bifurcation in a modified Leslie-Gower model with nonlocal competition and fear effect, Discrete Contin. Dyn. Syst. Ser. B, 30 (2025), 2865–2893. https://doi.org/10.3934/dcdsb.2024195 doi: 10.3934/dcdsb.2024195
    [14] A. Hastings, T. Powell, Chaos in a three-species food chain, Ecology, 72 (1991), 896–903. https://doi.org/10.2307/1940591 doi: 10.2307/1940591
    [15] A. Klebanoff, A. Hastings, Chaos in three species food chains, J. Math. Biol., 32 (1994), 427–451. https://doi.org/10.1007/BF00160167 doi: 10.1007/BF00160167
    [16] A. Rescigno, K. G. Jones, The struggle for life: Ⅲ. A predator-prey chain, Bull. Math. Biophys., 34 (1972), 521–532. https://doi.org/10.1007/BF02476712 doi: 10.1007/BF02476712
    [17] A. R. Hausrath, Stability properties of a class of differential equations modeling predator-prey relationships, Math. Biosci., 26 (1975), 267–281. https://doi.org/10.1016/0025-5564(75)90016-4 doi: 10.1016/0025-5564(75)90016-4
    [18] V. Seralan, R. Vadivel, N. Gunasekaran, T. Radwan, Dynamics of fractional-order three-species food chain model with vigilance effect, Fractal Fract., 9 (2025), 45. https://doi.org/10.3390/fractalfract9010045 doi: 10.3390/fractalfract9010045
    [19] S. Pal, P. K. Tiwari, A. K. Misra, H. Wang, Fear effect in a three-species food chain model with generalist predator, Math. Biosci. Eng., 21 (2024), 1–33. https://doi.org/10.3934/mbe.2024001 doi: 10.3934/mbe.2024001
    [20] T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681–691. https://doi.org/10.1016/j.cnsns.2003.08.006 doi: 10.1016/j.cnsns.2003.08.006
    [21] S. Pal, A. Gupta, A. K. Misra, B. Dubey, Chaotic dynamics of a stage-structured prey-predator system with hunting cooperation and fear in presence of two discrete delays, J. Biol. Syst., 31 (2023), 611–642. https://doi.org/10.1142/S0218339023500213 doi: 10.1142/S0218339023500213
    [22] Sajan, K. K. Choudhary, B. Dubey, A non-autonomous approach to study the impact of environmental toxins on nutrient-plankton system, Appl. Math. Comput., 458 (2023), 128236. https://doi.org/10.1016/j.amc.2023.128236 doi: 10.1016/j.amc.2023.128236
    [23] A. Gupta, B. Dubey, Role reversal in a stage-structured prey-predator model with fear, delay, and carry-over effects, Chaos, 33 (2023), 093114. https://doi.org/10.1063/5.0160222 doi: 10.1063/5.0160222
    [24] H. I. Freedman, P. Waltman, Mathematical analysis of some three-species food-chain models, Math. Biosci., 33 (1977), 257–276. https://doi.org/10.1016/0025-5564(77)90142-0 doi: 10.1016/0025-5564(77)90142-0
    [25] A. Gupta, S. Sajan, B. Dubey, Chaos in a seasonal food-chain model with migration and variable carrying capacity, Nonlinear Dyn., 112 (2024), 13641–13665. https://doi.org/10.1007/s11071-024-09718-1 doi: 10.1007/s11071-024-09718-1
    [26] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [27] K. Shah, T. Abdeljawad, Study of radioactive decay process of uranium atoms via fractals-fractional analysis, S. Afr. J. Chem. Eng., 48 (2024), 63–70. https://doi.org/10.1016/j.sajce.2024.01.003 doi: 10.1016/j.sajce.2024.01.003
    [28] A. Shah, H. Khan, M. De la Sen, J. Alzabut, S. Etemad, C. T. Deressa, et al., On non-symmetric fractal-fractional modeling for ice smoking: Mathematical analysis of solutions, Symmetry, 15 (2022), 87. https://doi.org/10.3390/sym15010087 doi: 10.3390/sym15010087
    [29] M. Riaz, F. A. Alqarni, K. Aldwoah, F. M. O. Birkea, M. Hleili, Analyzing a dynamical system with harmonic mean incidence rate using Volterra-Lyapunov matrices and fractal-fractional operators, Fractal Fract., 8 (2024), 321. https://doi.org/10.3390/fractalfract8060321 doi: 10.3390/fractalfract8060321
    [30] M. Arfan, H. Alrabaiah, M. U. Rahman, Y. L. Sun, A. S. Hashim, B. A. Pansera, et al., Investigation of fractal-fractional order model of COVID-19 in Pakistan under Atangana-Baleanu Caputo (ABC) derivative, Results Phys., 24 (2021), 104046. https://doi.org/10.1016/j.rinp.2021.104046 doi: 10.1016/j.rinp.2021.104046
    [31] S. Djilali, C. Cattani, L. N. Guin, Delayed predator-prey model with prey social behavior, Eur. Phys. J. Plus, 136 (2021), 940. https://doi.org/10.1140/epjp/s13360-021-01940-9 doi: 10.1140/epjp/s13360-021-01940-9
    [32] S. Khajanchi, Dynamic behavior of a Beddington-DeAngelis type stage structured predator-prey model, Appl. Math. Comput., 244 (2014), 344–360. https://doi.org/10.1016/j.amc.2014.06.109 doi: 10.1016/j.amc.2014.06.109
    [33] P. Panday, N. Pal, S. Samanta, P. Tryjanowski, J. Chattopadhyay, Dynamics of a stage-structured predator-prey model: Cost and benefit of fear-induced group defense, J. Theor. Biol., 528 (2021), 110846. https://doi.org/10.1016/j.jtbi.2021.110846 doi: 10.1016/j.jtbi.2021.110846
    [34] R. Kaushik, S. Banerjee, Predator-prey system: Prey's counter-attack on juvenile predators shows opposite side of the same ecological coin, Appl. Math. Comput., 388 (2021), 125530. https://doi.org/10.1016/j.amc.2020.125530 doi: 10.1016/j.amc.2020.125530
    [35] K. Latrach, M. A. Taoudi, A. Zeghal, Some fixed point theorems of the Schauder and the Krasnosel'skii type and application to nonlinear transport equations, J. Differ. Equ., 221 (2006), 256–271. https://doi.org/10.1016/j.jde.2005.04.010 doi: 10.1016/j.jde.2005.04.010
    [36] B. Ahmad, S. K. Ntouyas, A. Alsaedi, New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Differ. Equ., 2011 (2011), 107384. https://doi.org/10.1155/2011/107384 doi: 10.1155/2011/107384
    [37] B. C. Dhage, S. B. Dhage, K. Buvaneswari, Existence of mild solutions of nonlinear boundary value problems of coupled hybrid fractional integro-differential equations, J. Fract. Calc. Appl., 10 (2019), 191–206.
    [38] A. Devi, A. Kumar, Hyers-Ulam stability and existence of solution for hybrid fractional differential equation with p-Laplacian operator, Chaos Solitons Fract., 156 (2022), 111859.
    [39] H. Vu, J. M. Rassias, N. V. Hoa, Hyers-Ulam stability for boundary value problem of fractional differential equations with $\psi$-Caputo fractional derivative, Math. Methods Appl. Sci., 46 (2023), 438–460. https://doi.org/10.1002/mma.8520 doi: 10.1002/mma.8520
    [40] M. S. Algolam, O. Osman, A. Ali, A. Mustafa, K. Aldwoah, A. Alsulami, Fixed point and stability analysis of a tripled system of nonlinear fractional differential equations with n-nonlinear terms, Fractal Fract., 8 (2024), 697. https://doi.org/10.3390/fractalfract8120697 doi: 10.3390/fractalfract8120697
    [41] M. A. Khan, A. Atangana, Numerical methods for fractal-fractional differential equations and engineering simulations and modeling, CRC Press, 2023. https://doi.org/10.1201/9781003359258
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(830) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog