Temperature control in bath smelting processes is crucial for optimizing the efficiency and quality of metal extraction, especially for nickel and copper. Traditional prediction methods often fail to account for the nonlinear and complex nature of these processes. This work introduces a novel hybrid nonlinear analysis algorithm combining the random forest–least squares support vector machine (RF-LSSVM) and random forest–relevance vector machine (RF-RVM) models to enhance the accuracy of temperature prediction. Utilizing 868 datasets collected from an oxygen-enriched top-blown furnace, key parameters such as the feeding amount (X1), oxygen pressure (X2), oxygen flow (X3), total air flow (X7), and lance windpipe back pressure (X5) were analyzed. The RF-LSSVM model achieved superior predictive performance, with a mean absolute error (MAE) of 7.58 and a root mean square error (RMSE) of 9.82 for matte temperature (Y1), and an MAE of 10.47 and an RMSE of 13.31 for slag temperature (Y2). Comparatively, traditional methods showed higher errors, with MAE values of up to 23.64 and RMSE values as high as 59.14 in some cases. Additionally, the RF-RVM model performed significantly better than conventional models, with MAE and RMSE improvements of approximately 10~20%. These results demonstrate that the hybrid models effectively capture the intricate dynamics of the smelting process, offering a robust and adaptive framework for real-time temperature prediction. The improved accuracy in temperature control leads to enhanced smelting efficiency, reduced energy consumption, and higher quality of the extracted metals, ultimately benefiting the metallurgical industry by enabling more precise and sustainable production processes.
Citation: Senyuan Yang, Bo Yu, Jianxin Pan, Wuliang Yin, Hua Wang, Kai Yang, Qingtai Xiao. Application of a hybrid nonlinear algorithm driven by machine learning and feature importance identification for temperature control prediction of the bath smelting process[J]. AIMS Mathematics, 2025, 10(6): 13104-13129. doi: 10.3934/math.2025588
Temperature control in bath smelting processes is crucial for optimizing the efficiency and quality of metal extraction, especially for nickel and copper. Traditional prediction methods often fail to account for the nonlinear and complex nature of these processes. This work introduces a novel hybrid nonlinear analysis algorithm combining the random forest–least squares support vector machine (RF-LSSVM) and random forest–relevance vector machine (RF-RVM) models to enhance the accuracy of temperature prediction. Utilizing 868 datasets collected from an oxygen-enriched top-blown furnace, key parameters such as the feeding amount (X1), oxygen pressure (X2), oxygen flow (X3), total air flow (X7), and lance windpipe back pressure (X5) were analyzed. The RF-LSSVM model achieved superior predictive performance, with a mean absolute error (MAE) of 7.58 and a root mean square error (RMSE) of 9.82 for matte temperature (Y1), and an MAE of 10.47 and an RMSE of 13.31 for slag temperature (Y2). Comparatively, traditional methods showed higher errors, with MAE values of up to 23.64 and RMSE values as high as 59.14 in some cases. Additionally, the RF-RVM model performed significantly better than conventional models, with MAE and RMSE improvements of approximately 10~20%. These results demonstrate that the hybrid models effectively capture the intricate dynamics of the smelting process, offering a robust and adaptive framework for real-time temperature prediction. The improved accuracy in temperature control leads to enhanced smelting efficiency, reduced energy consumption, and higher quality of the extracted metals, ultimately benefiting the metallurgical industry by enabling more precise and sustainable production processes.
| [1] |
Y. Wang, Z. Wen, H. Li, Simulation of flows of hazardous elements in copper smelting process based on Bayesian network, J. Clean. Prod., 380 (2022), 135137. https://doi.org/10.1016/j.jclepro.2022.135137 doi: 10.1016/j.jclepro.2022.135137
|
| [2] |
D. K. Choshnova, B. S. Stefanov, Study of the conditions of the formation of circulation zones in a laboratory model of a flash smelting furnace, Russ. J. Non-Ferr. Met., 51 (2010), 434–438. https://doi.org/10.3103/S1067821210050081 doi: 10.3103/S1067821210050081
|
| [3] |
G. Wang, J. Zhang, Y. Wang, Y. Tan, Z. Li, B. Zhang, et al., Study on the bath smelting reduction reaction and mechanism of iron ore: A review, Metals, 13 (2023), 672. https://doi.org/10.3390/met13040672 doi: 10.3390/met13040672
|
| [4] |
X. Y. Chen, J. Y. Dai, Y. S. Luo, Temperature prediction model for a regenerative aluminum smelting furnace by a just-in-time learning-based triple-weighted regularized extreme learning machine, Processes, 10 (2022), 1972. https://doi.org/10.3390/PR10101972 doi: 10.3390/PR10101972
|
| [5] |
K. Feng, L. Z. Yang, B. X. Su, W. Feng, L. F. Wang, An integration model for converter molten steel end temperature prediction based on Bayesian formula, Steel Res. Int., 93 (2021). https://doi.org/10.1002/SRIN.202100433 doi: 10.1002/SRIN.202100433
|
| [6] |
O. Tadrari, M. Lacroix, Prediction of protective banks in high temperature smelting furnaces by inverse heat transfer, Int. J. Heat Mass Tran., 49 (2006), 2180–2189. https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.023 doi: 10.1016/j.ijheatmasstransfer.2005.11.023
|
| [7] |
Q. Shi, J. Tang, M. S. Chu, Process metallurgy and data-driven prediction and feedback of blast furnace heat indicators, Int. J. Min. Met. Mater., 31 (2024), 1228–1240. https://doi.org/10.1007/S12613-023-2693-7 doi: 10.1007/S12613-023-2693-7
|
| [8] |
W. Xu, J. J. Liu, J. M. Li, H. Wang, Q. T. Xiao, A novel hybrid intelligent model for molten iron temperature forecasting based on machine learning, AIMS Math., 9 (2024), 1227. https://doi.org/10.3934/math.2024061 doi: 10.3934/math.2024061
|
| [9] |
B. Zhao, J. X. Zhao, W. Wu, F. Zhang, T. L. Yao, Research on prediction model of converter temperature and carbon content based on spectral feature extraction, Sci. Rep., 13 (2023), 14409. https://doi.org/10.1038/S41598-023-41751-9 doi: 10.1038/S41598-023-41751-9
|
| [10] |
X. Liu, Y. P. Bao, L. H. Zhao, C. Gu, Establishment and application of steel composition prediction model based on t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction algorithm, J. Sustain. Metall., 10 (2024), 509–524. https://doi.org/10.1007/S40831-024-00798-2 doi: 10.1007/S40831-024-00798-2
|
| [11] |
P. F. Tan, D. Neuschütz, A thermodynamic model of nickel smelting and direct high-grade nickel matte smelting processes: Part Ⅰ. Model development and validation, Metall. Mater. Trans. B, 32 (2001), 341–351. https://doi.org/10.1007/s11663-001-0057-z doi: 10.1007/s11663-001-0057-z
|
| [12] |
S. C. Koria, M. K. Barui, L. K. Pandey, Thermochemical model of a 2-stage smelting reduction process for ironmaking, Scand. J. Metall., 28 (1999), 17–24. https://doi.org/10.1007/s11663-001-0057-z doi: 10.1007/s11663-001-0057-z
|
| [13] |
K. Yang, Y. L. Wang, M. Wang, J. X. Pan, H. Wang, Q. T. Xiao, A unified heat transfer model for gas-liquid two-phase mixing process in a rectangular channel based on steady status identification, Appl. Therm. Eng., 236 (2024), 121612. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121612 doi: 10.1016/J.APPLTHERMALENG.2023.121612
|
| [14] |
K. Yang, X. X. Zhang, G. Y. Yang, M. Li, H. Wang, Q. T. Xiao, Dynamic chaos of imaging measurements for characterizing gas-liquid nonlinear flow behavior in a metallurgical reactor stirred by top‐blown air, Can. J. Chem. Eng., 102 (2024), 979–995. https://doi.org/10.1002/CJCE.25077 doi: 10.1002/CJCE.25077
|
| [15] |
D. Senthilkumar, D. G. Washington, A. K. Reshmy, M. Noornisha, Multi-task learning framework for predicting water quality using non-linear machine learning technique, J. Intell. Fuzzy Syst., 42 (2022), 5667–5679. https://doi.org/10.3233/JIFS-212117 doi: 10.3233/JIFS-212117
|
| [16] |
D. Mora-Mariano, A. Flores-Tlacuahuac, A machine learning approach for the surrogate modeling of uncertain distributed process engineering models, Chem. Eng. Res. Des., 186 (2022), 433–450. https://doi.org/10.1016/J.CHERD.2022.07.050 doi: 10.1016/J.CHERD.2022.07.050
|
| [17] |
G. L. Shen, M. F. Li, J. L. Lin, J. Bao, T. He, An empirical study for adopting machine learning approaches for gas pipeline flow prediction, Math. Probl. Eng., 2020, 1–13. https://doi.org/10.1155/2020/7842847 doi: 10.1155/2020/7842847
|
| [18] |
G. B. Zou, J. W. Zhou, T. Song, J. W. Yang, K. Li, Hierarchical intelligent control method for mineral particle size based on machine learning, Minerals, 13 (2023), 1143. https://doi.org/10.3390/MIN13091143 doi: 10.3390/MIN13091143
|
| [19] |
J. Grothoff, N. C. Torres, T. Kleinert, Assessment of reinforcement learning applications for industrial control based on complexity measures, Au-Autom., 70 (2022), 53–66. https://doi.org/10.1515/AUTO-2021-0118 doi: 10.1515/AUTO-2021-0118
|
| [20] |
H. W. Zhang, Z. Q. Ge, L. Z. Ye, Z. H. Song, Vision‐based fan speed control system in the copper scraps smelting process, Asian J. Control, 17 (2015), 1742–1755. https://doi.org/10.1002/asjc.996 doi: 10.1002/asjc.996
|
| [21] |
F. Chang, J. Yang, H. L. Lu, H. X. Li, A LIBS quantitative analysis method for samples with changing temperature via functional data analysis, J. Anal. Atom. Spectrom., 36 (2021), 1007–1017. https://doi.org/10.1039/D0JA00514B doi: 10.1039/D0JA00514B
|
| [22] |
W. J. Kong, J. L. Ding, Online learning algorithm for LSSVM based modeling with time-varying kernels, IFAC-Pap., 51 (2018), 626–630. https://doi.org/10.1016/j.ifacol.2018.09.354 doi: 10.1016/j.ifacol.2018.09.354
|
| [23] |
A. Seif, M. Hafezi, C. Jarzynski, Machine learning the thermodynamic arrow of time, Nature Pub. Group, 17 (2021), 105–113. https://doi.org/10.1038/S41567-020-1018-2 doi: 10.1038/S41567-020-1018-2
|
| [24] |
T. H. Zhang, X. Q. Guo, H. Zheng, Y. Liu, A. Wulamu, H. Chen, et al., Review on perovskite-type compound using machine learning, Sci. Adv. Mater., 14 (2022), 1001–1017. https://doi.org/10.1166/SAM.2022.4302 doi: 10.1166/SAM.2022.4302
|
| [25] |
K. Yang, B. Yu, W. L. Yin, M. Wang, H. Wang, Q. T. Xiao, Investigation on spatter characteristics of liquid phase and life span of submerged lance in the top-blown smelting process using hydraulic modelling, Adv. Powder Technol., 35 (2024), 104492. https://doi.org/10.1016/J.APT.2024.104492 doi: 10.1016/J.APT.2024.104492
|
| [26] |
E. Assareh, A. Riaz, M. Ahmadinejad, S. Hoseinzadeh, M. Z. Abdehvand, S. Keykhah, et al., Enhancing solar thermal collector systems for hot water production through machine learning-driven multi-objective optimization with phase change material (PCM), J. Energy Storage, 73 (2023), 108990. https://doi.org/10.1016/J.EST.2023.108990 doi: 10.1016/J.EST.2023.108990
|
| [27] |
K. Hareharen, T. Panneerselvam, R. R. Mohan, Improving the performance of machine learning model predicting phase and crystal structure of high entropy alloys by the synthetic minority oversampling technique, J. Alloy. Compd., 991 (2024), 174494, https://doi.org/10.1016/j.jallcom.2024.174494 doi: 10.1016/j.jallcom.2024.174494
|
| [28] |
K. B. Barasu, M. Kothandaraman, Survey of deep learning paradigms for speech processing, Wireless Pers. Commun., 125 (2022), 1913–1949. https://doi.org/10.1007/S11277-022-09640-Y doi: 10.1007/S11277-022-09640-Y
|
| [29] |
L. J. Shen, Q. Qian, A virtual sample generation algorithm supporting machine learning with a small-sample dataset: A case study for rubber materials, Comp. Mater. Sci., 211 (2022), 111475. https://doi.org/10.1016/J.COMMATSCI.2022.111475 doi: 10.1016/J.COMMATSCI.2022.111475
|
| [30] |
C. Liu, L. X. Tang, C. C. Zhao, A novel dynamic operation optimization method based on multiobjective deep reinforcement learning for steelmaking process, IEEE T. Neur. Net. Lear., 35 (2024), 3325–3339. https://doi.org/10.1109/TNNLS.2023.3244945 doi: 10.1109/TNNLS.2023.3244945
|
| [31] |
B. Yang, L. Liu, H. Huang, Y. Wang, D. Li, Q. Yang, et al., A real-time temperature field prediction method for steel rolling heating furnaces based on graph neural networks, Int. J. Heat Mass Tran., 235 (2024), 126220. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2024.126220 doi: 10.1016/J.IJHEATMASSTRANSFER.2024.126220
|
| [32] |
Z. Y. Ji, W. H. Tao, L. X. Zhang, A boiler oxygen content and furnace temperature prediction model based on honey badger algorithm optimized neural network, Eng. Res. Express, 6 (2024). https://doi.org/10.1088/2631-8695/AD22BE doi: 10.1088/2631-8695/AD22BE
|
| [33] |
Y. Z. Tan, W. Xu, K. Yang, S. Pasha, H. Wang, M. Wang, et al., Predicting cobalt ion concentration in hydrometallurgy zinc process using data decomposition and machine learning, Sci. Total Environ., 962 (2025), 178420. https://doi.org/10.1016/J.SCITOTENV.2025.178420 doi: 10.1016/J.SCITOTENV.2025.178420
|
| [34] |
L. S. Chen, Y. M. Wu, Y. B. Liu, T. S. Liu, X. J. Sheng, Time-series prediction of iron and silicon content in aluminium electrolysis based on machine learning, IEEE Access, 9 (2021), 10699–10710. https://doi.org/10.1109/ACCESS.2021.3050548 doi: 10.1109/ACCESS.2021.3050548
|
| [35] |
K. Lee, J. T. Rinker, C. Tan, M. M. Pour, P. Geng, E. B. Carlson, et al., Unveiling the correlation between weld structure and fracture modes in laser welding of aluminum and copper using data-driven methods, J. Mater. Process. Tech., 338 (2025), 118752. https://doi.org/10.1016/J.JMATPROTEC.2025.118752 doi: 10.1016/J.JMATPROTEC.2025.118752
|
| [36] |
R. A. John, N. Yantara, S. E. Ng, M. I. Patdillah, M. R. Kulkarni, N. F. Jamaludin, et al., Diffusive and drift halide perovskite memristive barristors as nociceptive and synaptic emulators for neuromorphic computing, Adv. Mater., 33 (2021). https://doi.org/10.1002/adma.202007851 doi: 10.1002/adma.202007851
|
| [37] |
Y. H. Li, R. J. Zhu, Y. Q. Wang, L. Y. Feng, Y. Liu, Center-environment deep transfer machine learning across crystal structures: from spinel oxides to perovskite oxides, NPJ Comput. Mater., 9 (2023). https://doi.org/10.1038/S41524-023-01068-7 doi: 10.1038/S41524-023-01068-7
|
| [38] |
T. Wang, M. Q. Shao, R. Guo, F. Tao, G. Zhang, H. Snoussi, et al., Surrogate model via artificial intelligence method for accelerating screening materials and performance prediction, Adv. Funct. Mater., 31 (2021). https://doi.org/10.1002/adfm.202006245 doi: 10.1002/adfm.202006245
|