Research article

Bounds for the stop-loss distance of an independent random sum via Stein's method

  • Published: 06 June 2025
  • MSC : 60F05

  • Let $ W = X_1+X_2+\cdots + X_N $ be a random sum and $ Z $ be the standard normal random variable. In this paper, we investigated uniform and non-uniform bounds of the stop-loss distance, which measures the difference between two random variables, $ W $ and $ Z $, using the expression $ |Eh_k(W) - Eh_k(Z)| $, where $ h_k(x) = (x-k)^+ $ is a call function. In particular, we focused on the case that $ X_1, X_2, \ldots $ are independent random variables, and $ N $ is a non-negative, integer-valued random variable independent of the $ X_j $'s. Our methods were Stein's method and the concentration inequality approach. The value $ Eh_k(W) = E(W-k)^+ $ represents the excess over a threshold and is relevant to applications in collateralized debt obligations (CDOs) and the collective risk model.

    Citation: Punyapat Kammoo, Kritsana Neammanee, Kittipong Laipaporn. Bounds for the stop-loss distance of an independent random sum via Stein's method[J]. AIMS Mathematics, 2025, 10(6): 13082-13103. doi: 10.3934/math.2025587

    Related Papers:

  • Let $ W = X_1+X_2+\cdots + X_N $ be a random sum and $ Z $ be the standard normal random variable. In this paper, we investigated uniform and non-uniform bounds of the stop-loss distance, which measures the difference between two random variables, $ W $ and $ Z $, using the expression $ |Eh_k(W) - Eh_k(Z)| $, where $ h_k(x) = (x-k)^+ $ is a call function. In particular, we focused on the case that $ X_1, X_2, \ldots $ are independent random variables, and $ N $ is a non-negative, integer-valued random variable independent of the $ X_j $'s. Our methods were Stein's method and the concentration inequality approach. The value $ Eh_k(W) = E(W-k)^+ $ represents the excess over a threshold and is relevant to applications in collateralized debt obligations (CDOs) and the collective risk model.



    加载中


    [1] S. D. Promislow, Fundamentals of actuarial mathematics, 2 Eds., John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/9781119971528
    [2] N. Kolev, D. Paiva, Multinomial model for random sums, Insurance Math. Econom., 37 (2005), 494–504. http://dx.doi.org/10.1016/j.insmatheco.2005.05.005 doi: 10.1016/j.insmatheco.2005.05.005
    [3] N. Kolev, D. Paiva, Random sums of exchangeable variables and actuarial applications, Insurance Math. Econom., 42 (2008), 147–153. http://dx.doi.org/10.1016/j.insmatheco.2007.01.010 doi: 10.1016/j.insmatheco.2007.01.010
    [4] H. Robbins, The asymptotic distribution of the sum of a random number of random variables, Bull. Amer. Math. Soc., 54 (1948), 1151–1161. https://doi.org/10.1090/S0002-9904-1948-09142-X doi: 10.1090/S0002-9904-1948-09142-X
    [5] B. V. Gnedenko, V. Y. Korolev, Random summation: Limit theorems and applications, Boca Raton: CRC Press, 1996. http://dx.doi.org/10.1201/9781003067894
    [6] F. Daly, Gamma, Gaussian and Poisson approximations for random sums using size-biased and generalized zero-biased couplings, Scand. Actuar. J., 2022 (2022), 471–487. https://doi.org/10.1080/03461238.2021.1984293 doi: 10.1080/03461238.2021.1984293
    [7] C. Döbler, New Berry-Esseen and Wasserstein bounds in the CLT for non-randomly centered random sums by probabilistic methods, ALEA, Lat. Am. J. Probab. Math. Stat., 12 (2015), 863–902.
    [8] J. K. Sunklodas, $L_1$ bounds for asymptotic normality of random sums of independent random variables, Lith. Math. J., 53 (2013), 438–447. https://doi.org/10.1007/S10986-013-9220-X doi: 10.1007/S10986-013-9220-X
    [9] I. G. Shevtsova, Convergence rate estimates in the global CLT for compound mixed Poisson distributions, Theory Prob. Appl., 63 (2018), 72–93. https://doi.org/10.1137/S0040585X97T988927 doi: 10.1137/S0040585X97T988927
    [10] I. G. Shevtsova, A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums, Theory Prob. Appl., 62 (2018), 278–294. https://doi.org/10.1137/S0040585X97T988605 doi: 10.1137/S0040585X97T988605
    [11] J. K. Sunklodas, On the normal approximation of a binomial random sum, Lith. Math. J., 54 (2014), 356–365. http://dx.doi.org/10.1007/s10986-014-9248-6 doi: 10.1007/s10986-014-9248-6
    [12] J. K. Sunklodas, On the normal approximation of a negative binomial random sum, Lith. Math. J., 55 (2015), 150–158. https://doi.org/10.1007/s10986-015-9271-2 doi: 10.1007/s10986-015-9271-2
    [13] H. You, X. Zhou, The Pareto-optimal stop-loss reinsurance, Math. Probl. Eng., 2021 (2021), 2839726. https://doi.org/10.1155/2021/2839726 doi: 10.1155/2021/2839726
    [14] X. Fang, Y. Koike, High-dimensional central limit theorems by Stein's method, Ann. Appl. Probab., 31 (2021), 1660–1686. https://doi.org/10.1214/20-AAP1629 doi: 10.1214/20-AAP1629
    [15] S. Bhar, R. Mukherjee, P. Patil, Kac's central limit theorem by Stein's method, Stat. Probab. Lett., 219 (2025), 110329. https://doi.org/10.1016/j.spl.2024.110329 doi: 10.1016/j.spl.2024.110329
    [16] C. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, In: Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, 2 (1972), 583–602.
    [17] C. Stein, Approximation computaional of expectations, In: Institute of mathematical statistics lecture notes, 7 (1986), 161–164.
    [18] L. H. Y. Chen, L. Goldstein, Q. M. Shao, Normal approximation by Stein's method, 1 Eds., Heidelberg: Springer Berlin, 2010. https://doi.org/10.1007/978-3-642-15007-4
    [19] S. Jongpreechaharn, K. Neammanee, Non-uniform bound on normal approximation for call function of locally dependent random variables, Int. J. Math. Comput. Sci., 17 (2022), 207–216.
    [20] S. Jongpreechaharn, K. Neammanee, Normal approximation for call function via Stein's method, Comm. Statist. Theory Methods, 48 (2019), 3498–3517. https://doi.org/10.1080/03610926.2018.1476716 doi: 10.1080/03610926.2018.1476716
    [21] S. Jongpreechaharn, K. Neammanee, A constant of approximation of the expectation of call function by the expectation of normal distributed random variable, In: Proceeding for 11th conference on science and technology for youth year 2016, 2016,112–121.
    [22] L. H. Y. Chen, Q. M. Shao, A non-uniform Berry–Esseen bound via Stein's method, Probab. Theory Relat. Fields, 120 (2001), 236–254. https://doi.org/10.1007/PL00008782 doi: 10.1007/PL00008782
    [23] L. H. Y. Chen, Stein's method: Some perspectives with applications, In: Probability towards 2000, New York: Springer, 1998, 97–122. https://doi.org/10.1007/978-1-4612-2224-8_6
    [24] N. Chaidee, M. Tuntapthai, Berry-Esseen bounds for random sums of Non-i.i.d. random variables, Int. Math. Forum, 4 (2009), 1281–1288.
    [25] L. H. Y. Chen, Stein's method of normal approximation: Some recollections and reflections, Ann. Statist., 49 (2021), 1850–1863. https://doi.org/10.1214/21-aos2083 doi: 10.1214/21-aos2083
    [26] G. Auld, K. Neammanee, Explicit constants in the nonuniform local limit theorem for Poisson binomial random variables, J. Inequal. Appl., 2024 (2024), 67. https://doi.org/10.1186/s13660-024-03143-z doi: 10.1186/s13660-024-03143-z
    [27] N. E. Karoui, Y. Jiao, Stein's method and zero bias transformation for CDO tranche pricing, Finance Stoch., 13 (2009), 151–180. https://doi.org/10.1007/s00780-008-0084-6 doi: 10.1007/s00780-008-0084-6
    [28] P. Glasserman, S. Suchintabandid, Correlations for CDO pricing, J. Bank. Finance, 31 (2007), 1375–1398. https://doi.org/10.1016/j.jbankfin.2006.10.018 doi: 10.1016/j.jbankfin.2006.10.018
    [29] J. Hull, A. White, Valuation of a CDO and an nth to default CDS without Monte Carlo simulation, J. Deriv., 12 (2004), 8–23. http://dx.doi.org/10.3905/jod.2004.450964 doi: 10.3905/jod.2004.450964
    [30] N. E. Karoui, Y. Jiao, D. Kurtz, Gaussian and poisson approximation: Applications to CDOs tranche pricing, J. Comput. Finance, 12 (2008), 31–58. http://dx.doi.org/10.21314/JCF.2008.180 doi: 10.21314/JCF.2008.180
    [31] K. Neammanee, N. Yonghint, Poisson approximation for call function via Stein-Chen method, Bull. Malays. Math. Sci. Soc., 43 (2020), 1135–1152. https://doi.org/10.1007/s40840-019-00729-5 doi: 10.1007/s40840-019-00729-5
    [32] N. Yonghint, K. Neammanee, Refinement on Poisson approximation of CDOs, Sci. Asia, 47 (2021), 388–392. http://dx.doi.org/10.2306/scienceasia1513-1874.2021.041 doi: 10.2306/scienceasia1513-1874.2021.041
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(818) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog