In this paper, we studied the eigenspace of the regular differentials on a connected nodal curve $ X $ under the action of a finite automorphism group $ G $. We proved that the dimension of the space of $ G $-invariant regular differentials is the arithmetic genus of the quotient nodal curve $ X/G $. In addition, we generalized the Chevalley-Weil formula to nodal curves in the case where $ X/G $ is smooth and gave some examples.
Citation: Yubo Tong. The Chevalley-Weil formula on nodal curves[J]. AIMS Mathematics, 2025, 10(5): 12228-12253. doi: 10.3934/math.2025554
In this paper, we studied the eigenspace of the regular differentials on a connected nodal curve $ X $ under the action of a finite automorphism group $ G $. We proved that the dimension of the space of $ G $-invariant regular differentials is the arithmetic genus of the quotient nodal curve $ X/G $. In addition, we generalized the Chevalley-Weil formula to nodal curves in the case where $ X/G $ is smooth and gave some examples.
| [1] |
F. M. Bleher, T. Chinburg, A. Kontogeorgis, Galois structure of the holomorphic differentials of curves, J. Number Theory, 216 (2020), 1–68. http://dx.doi.org/10.1016/j.jnt.2020.04.015 doi: 10.1016/j.jnt.2020.04.015
|
| [2] |
C. Chevalley, A. Weil, Über das Verhalten der Integrale 1. gattung bei automorphismen des funktionenkörpers, Abh. Math. Semin. Univ. Hambg., 10 (1934), 358–361. http://dx.doi.org/10.1007/BF02940687 doi: 10.1007/BF02940687
|
| [3] | B. Conrad, Grothendieck duality and base change, Berlin: Springer, 2000. https://doi.org/10.1007/b75857 |
| [4] |
G. Ellingsrud, K. Lønsted, An equivariant Lefschetz formula for finite reductive groups, Math. Ann., 251 (1980), 253–261. http://dx.doi.org/10.1007/BF01428945 doi: 10.1007/BF01428945
|
| [5] |
J. Garnek, $p$-group Galois covers of curves in characteristic $p$, Trans. Amer. Math. Soc., 376 (2023), 5857–5897. http://dx.doi.org/10.1090/tran/8932 doi: 10.1090/tran/8932
|
| [6] | J. Harris, I. Morrison, Moduli of curves, New York: Springer, 2006. https://doi.org/10.1007/b98867 |
| [7] | R. Hartshorne, Algebraic geometry, New York: Springer, 1977. https://doi.org/10.1007/978-1-4757-3849-0 |
| [8] |
A. Hurwitz, Über algebraische Gebilde mit eindeutigen transformationen in sich, Math. Ann., 41 (1892), 403–442. https://doi.org/10.1007/BF01443420 doi: 10.1007/BF01443420
|
| [9] |
E. Kani, The Galois-module structure of the space of holomorphic differentials of a curve, J. Reine Angew. Math., 1986 (1986), 187–206. http://dx.doi.org/10.1515/crll.1986.367.187 doi: 10.1515/crll.1986.367.187
|
| [10] |
B. Köck, Galois structure of Zariski cohomology for weakly ramified covers of curves, Amer. J. Math., 126 (2004), 1085–1107. http://dx.doi.org/10.1353/ajm.2004.0037 doi: 10.1353/ajm.2004.0037
|
| [11] | Q. Liu, Algebraic geometry and arithmetic curves, Oxford: Oxford University Press, 2002. https://doi.org/10.1093/oso/9780198502845.001.0001 |
| [12] |
S. Marquès, K. Ward, Holomorphic differentials of certain solvable covers of the projective line over a perfect field, Math. Nachr., 291 (2018), 2057–2083. https://doi.org/10.1002/mana.201500347 doi: 10.1002/mana.201500347
|
| [13] | J. S. Milne, Fields and Galois theory, 2022. Available from: https://jmilne.org/math/ |
| [14] | D. Mumford, Abelian varieties. With appendices by C. P. Ramanujam and J. I. Manin, Oxford: Oxford University Press, 1974. |
| [15] |
S. Nakajima, On Galois module structure of the cohomology groups of an algebraic variety, Invent. Math., 75 (1984), 1–8. https://doi.org/10.1007/BF01403086 doi: 10.1007/BF01403086
|
| [16] |
S. Nakajima, Galois module structure of cohomology groups for tamely ramified coverings of algebraic varieties, J. Number Theory, 22 (1986), 115–123. https://doi.org/10.1016/0022-314X(86)90032-6 doi: 10.1016/0022-314X(86)90032-6
|
| [17] |
R. C. Valentini, M. L. Madan, Automorphisms and holomorphic differentials in characteristic $p$, J. Number Theory, 13 (1981), 106–115. https://doi.org/10.1016/0022-314X(81)90032-9 doi: 10.1016/0022-314X(81)90032-9
|
| [18] |
A. Weil, Über Matrizenringe auf Riemannschen Flächen und den Riemann-Rochschen Satz, Abh. Math. Sem. Univ. Hamburg., 11 (1935), 110–115. https://doi.org/10.1007/BF02940718 doi: 10.1007/BF02940718
|