Research article Special Issues

The Chevalley-Weil formula on nodal curves

  • Received: 06 February 2025 Revised: 02 May 2025 Accepted: 09 May 2025 Published: 27 May 2025
  • MSC : 14H05, 14H20, 14H37

  • In this paper, we studied the eigenspace of the regular differentials on a connected nodal curve $ X $ under the action of a finite automorphism group $ G $. We proved that the dimension of the space of $ G $-invariant regular differentials is the arithmetic genus of the quotient nodal curve $ X/G $. In addition, we generalized the Chevalley-Weil formula to nodal curves in the case where $ X/G $ is smooth and gave some examples.

    Citation: Yubo Tong. The Chevalley-Weil formula on nodal curves[J]. AIMS Mathematics, 2025, 10(5): 12228-12253. doi: 10.3934/math.2025554

    Related Papers:

  • In this paper, we studied the eigenspace of the regular differentials on a connected nodal curve $ X $ under the action of a finite automorphism group $ G $. We proved that the dimension of the space of $ G $-invariant regular differentials is the arithmetic genus of the quotient nodal curve $ X/G $. In addition, we generalized the Chevalley-Weil formula to nodal curves in the case where $ X/G $ is smooth and gave some examples.



    加载中


    [1] F. M. Bleher, T. Chinburg, A. Kontogeorgis, Galois structure of the holomorphic differentials of curves, J. Number Theory, 216 (2020), 1–68. http://dx.doi.org/10.1016/j.jnt.2020.04.015 doi: 10.1016/j.jnt.2020.04.015
    [2] C. Chevalley, A. Weil, Über das Verhalten der Integrale 1. gattung bei automorphismen des funktionenkörpers, Abh. Math. Semin. Univ. Hambg., 10 (1934), 358–361. http://dx.doi.org/10.1007/BF02940687 doi: 10.1007/BF02940687
    [3] B. Conrad, Grothendieck duality and base change, Berlin: Springer, 2000. https://doi.org/10.1007/b75857
    [4] G. Ellingsrud, K. Lønsted, An equivariant Lefschetz formula for finite reductive groups, Math. Ann., 251 (1980), 253–261. http://dx.doi.org/10.1007/BF01428945 doi: 10.1007/BF01428945
    [5] J. Garnek, $p$-group Galois covers of curves in characteristic $p$, Trans. Amer. Math. Soc., 376 (2023), 5857–5897. http://dx.doi.org/10.1090/tran/8932 doi: 10.1090/tran/8932
    [6] J. Harris, I. Morrison, Moduli of curves, New York: Springer, 2006. https://doi.org/10.1007/b98867
    [7] R. Hartshorne, Algebraic geometry, New York: Springer, 1977. https://doi.org/10.1007/978-1-4757-3849-0
    [8] A. Hurwitz, Über algebraische Gebilde mit eindeutigen transformationen in sich, Math. Ann., 41 (1892), 403–442. https://doi.org/10.1007/BF01443420 doi: 10.1007/BF01443420
    [9] E. Kani, The Galois-module structure of the space of holomorphic differentials of a curve, J. Reine Angew. Math., 1986 (1986), 187–206. http://dx.doi.org/10.1515/crll.1986.367.187 doi: 10.1515/crll.1986.367.187
    [10] B. Köck, Galois structure of Zariski cohomology for weakly ramified covers of curves, Amer. J. Math., 126 (2004), 1085–1107. http://dx.doi.org/10.1353/ajm.2004.0037 doi: 10.1353/ajm.2004.0037
    [11] Q. Liu, Algebraic geometry and arithmetic curves, Oxford: Oxford University Press, 2002. https://doi.org/10.1093/oso/9780198502845.001.0001
    [12] S. Marquès, K. Ward, Holomorphic differentials of certain solvable covers of the projective line over a perfect field, Math. Nachr., 291 (2018), 2057–2083. https://doi.org/10.1002/mana.201500347 doi: 10.1002/mana.201500347
    [13] J. S. Milne, Fields and Galois theory, 2022. Available from: https://jmilne.org/math/
    [14] D. Mumford, Abelian varieties. With appendices by C. P. Ramanujam and J. I. Manin, Oxford: Oxford University Press, 1974.
    [15] S. Nakajima, On Galois module structure of the cohomology groups of an algebraic variety, Invent. Math., 75 (1984), 1–8. https://doi.org/10.1007/BF01403086 doi: 10.1007/BF01403086
    [16] S. Nakajima, Galois module structure of cohomology groups for tamely ramified coverings of algebraic varieties, J. Number Theory, 22 (1986), 115–123. https://doi.org/10.1016/0022-314X(86)90032-6 doi: 10.1016/0022-314X(86)90032-6
    [17] R. C. Valentini, M. L. Madan, Automorphisms and holomorphic differentials in characteristic $p$, J. Number Theory, 13 (1981), 106–115. https://doi.org/10.1016/0022-314X(81)90032-9 doi: 10.1016/0022-314X(81)90032-9
    [18] A. Weil, Über Matrizenringe auf Riemannschen Flächen und den Riemann-Rochschen Satz, Abh. Math. Sem. Univ. Hamburg., 11 (1935), 110–115. https://doi.org/10.1007/BF02940718 doi: 10.1007/BF02940718
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(691) PDF downloads(37) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog