This paper proposes a fractional-order quaternion-valued neural network (FOQVNN) model with dual proportional delays, neutral delays, and parameter uncertainties. By leveraging classical lemmas and a relaxed linear matrix inequality (LMI) condition, we prove not only the uniqueness of the equilibrium point in the proposed model, but also the global robust stability of this equilibrium. Finally, numerical simulations were provided to validate the theoretical results.
Citation: Guoqing Jiang, Xiaolan Liu, Lei Wang, Chongwei Zheng. Stability analysis of fractional-order quaternion-valued neural networks with multiple delays and parameter uncertainties[J]. AIMS Mathematics, 2025, 10(5): 12205-12227. doi: 10.3934/math.2025553
This paper proposes a fractional-order quaternion-valued neural network (FOQVNN) model with dual proportional delays, neutral delays, and parameter uncertainties. By leveraging classical lemmas and a relaxed linear matrix inequality (LMI) condition, we prove not only the uniqueness of the equilibrium point in the proposed model, but also the global robust stability of this equilibrium. Finally, numerical simulations were provided to validate the theoretical results.
| [1] |
J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. U.S.A., 81 (1984), 3088–3092. http://dx.doi.org/10.1073/pnas.81.10.3088 doi: 10.1073/pnas.81.10.3088
|
| [2] |
S. Rout, Seethalakshmy, P. Srivastava, J. Majumdar, Multi-modal image segmentation using a modified Hopfield neural network, Pattern Recogn., 31 (1998), 743–750. http://dx.doi.org/10.1016/S0031-3203(97)00089-7 doi: 10.1016/S0031-3203(97)00089-7
|
| [3] |
R. Sammouda, N. Adgaba, A. Touir, A. A. Alghamdi, Agriculture satellite image segmentation using a modified artificial Hopfield neural network, Comput. Human Behav., 30 (2014), 436–441. http://dx.doi.org/10.1016/j.chb.2013.06.025 doi: 10.1016/j.chb.2013.06.025
|
| [4] |
P. N. Suganthan, E. K. Teoh, D. P. Mital, Pattern recognition by homomorphic graph matching using Hopfield neural networks, Image Vision Comput., 13 (1995), 45–60. http://dx.doi.org/10.1016/0262-8856(95)91467-R doi: 10.1016/0262-8856(95)91467-R
|
| [5] |
N. Laskaris, S. Fotopoulos, P. Papathanasopoulos, A. Bezerianos, Robust moving averages, with Hopfield neural network implementation, for monitoring evoked potential signals, Electroenceph. Clin. Neurophysiol., 104 (1997), 151–156. https://doi.org/10.1016/S0168-5597(97)96681-8 doi: 10.1016/S0168-5597(97)96681-8
|
| [6] |
D. Calabuig, J. F. Monserrat, D. Gmez-Barquero, O. Lázaro, An efficient dynamic resource allocation algorithm for packet-switched communication networks based on Hopfield neural excitation method, Neurocomputing, 71 (2008), 3439–3446. https://doi.org/10.1016/j.neucom.2007.10.009 doi: 10.1016/j.neucom.2007.10.009
|
| [7] |
S. Abe, J. Kawakami, K. Hirasawa, Solving inequality constrained combinatorial optimization problems by the Hopfield neural networks, Neural Netw., 5 (1992), 663–670. https://doi.org/10.1016/S0893-6080(05)80043-7 doi: 10.1016/S0893-6080(05)80043-7
|
| [8] |
H. Tamura, Z. Zhang, X. Xu, M. Ishii, Z. Tang, Lagrangian object relaxation neural network for combinatorial optimization problems, Neurocomputing, 68 (2005), 297–305. https://doi.org/10.1016/j.neucom.2005.03.003 doi: 10.1016/j.neucom.2005.03.003
|
| [9] |
L. Ma, Z. Wang, Y. Liu, F. E. Alsaadi, A note on guaranteed cost control for nonlinear stochastic systems with input saturation and mixed time-delays, Internat. J. Robust Nonlinear Control, 27 (2017), 4443–4456. https://doi.org/10.1002/rnc.3809 doi: 10.1002/rnc.3809
|
| [10] |
H. Wang, Y. Yu, G. Wen, Stability analysis of fractional-order Hopfield neural networks with time delays, Neural Netw., 55 (2014), 98–109. https://doi.org/10.1016/j.neunet.2014.03.012 doi: 10.1016/j.neunet.2014.03.012
|
| [11] |
P. Baldi, A. F. Atiya, How delays affect neural dynamics and learning, IEEE Trans. Neural Netw., 5 (1994), 612–621. https://doi.org/10.1109/72.298231 doi: 10.1109/72.298231
|
| [12] | D. S. Chen, Y. He, X. C. Shangguan, Robust delay-dependent stability for uncertain linear systems with time-varying delay, In: IECON 2023- 49th Annual conference of the IEEE industrial electronics society, Singapore: IEEE, 2023, 1–5. https://doi.org/10.1109/IECON51785.2023.10312728 |
| [13] |
P. L. Liu, Exponential delay dependent stabilization for time-varying delay systems with saturating actuator, J. Dyn. Sys., Meas., Control, 133 (2011), 014502. https://doi.org/10.1115/1.4002713 doi: 10.1115/1.4002713
|
| [14] |
F. H. Hsiao, S. D. Xu, C. Y. Lin, Z. R. Tsai, Robustness design of fuzzy control for nonlinear multiple time-delay large-scale systems via neural-network-based approach, IEEE Trans. Syst. Man Cybernet. B, 38 (2008), 244–251. https://doi.org/10.1109/TSMCB.2006.890304 doi: 10.1109/TSMCB.2006.890304
|
| [15] |
Q. Song, J. Cao, Passivity of uncertain neural networks with both leakage delay and time-varying delay, Nonlinear Dyn., 67 (2012), 1695–1707. https://doi.org/10.1007/s11071-011-0097-0 doi: 10.1007/s11071-011-0097-0
|
| [16] |
X. Hu, L. Liang, X. Chen, L. Deng, Y. Ji, Y. Ding, A systematic view of model leakage risks in deep neural network systems, IEEE Trans. Comput., 71 (2022), 3254–3267. https://doi.org/10.1109/TC.2022.3148235 doi: 10.1109/TC.2022.3148235
|
| [17] |
C. Dovrolis, D. Stiliadis, P. Ramanathan, Proportional differentiated services: Delay differentiation and packet scheduling, IEEE/ACM Trans. Netw., 10 (2002), 12–26. https://doi.org/10.1145/316194.316211 doi: 10.1145/316194.316211
|
| [18] |
L. Zhou, Delay-dependent exponential synchronization of recurrent neural networks with multiple proportional delays, Neural Process. Lett., 42 (2015), 619–632. https://doi.org/10.1007/s11063-014-9377-2 doi: 10.1007/s11063-014-9377-2
|
| [19] |
W. Shen, X. Zhang, Y. Wang, Stability analysis of high order neural networks with proportional delays, Neurocomputing, 372 (2020), 33–39. https://doi.org/10.1016/j.neucom.2019.09.019 doi: 10.1016/j.neucom.2019.09.019
|
| [20] |
M. Liu, I. Dassios, F. Milano, On the stability analysis of systems of neutral delay differential equations, Circuits Syst. Signal Process., 38 (2019), 1639–1653. https://doi.org/10.1007/s00034-018-0943-0 doi: 10.1007/s00034-018-0943-0
|
| [21] |
K. Sasikala, D. Piriadarshani, V. Govindan, M. I. Khan, M. Gupta, A. Z. Koryogdiev, et al., Analyze the eigenvalues of a neutral delay differential equation by employing the generalized lambert W function, Contemp. Math., 5 (2024), 1495–1504. https://doi.org/10.37256/cm.5220243909 doi: 10.37256/cm.5220243909
|
| [22] |
Q. Song, Y. Chen, Z. Zhao, Y. Liu, F. E. S. Alsaadi, Robust stability of fractional-order quaternion-valued neural networks with neutral delays and parameter uncertainties, Neurocomputing, 420 (2021), 70–81. https://doi.org/10.1016/j.neucom.2020.08.059 doi: 10.1016/j.neucom.2020.08.059
|
| [23] |
T. Yu, D. Cao, W. Huang, Robust decentralized stabilization for large-scale time-delay system via impulsive control, IMA J. Math. Control Inform., 36 (2019), 1181–1198. https://doi.org/10.1093/imamci/dny024 doi: 10.1093/imamci/dny024
|
| [24] |
H. L. Li, J. Cao, C. Hu, H. Jiang, F. E. Alsaadi, Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks, IEEE Trans. Neural Netw. Learn. Syst., 35 (2024), 14178–14189. https://doi.org/10.1109/TNNLS.2023.3274959 doi: 10.1109/TNNLS.2023.3274959
|
| [25] |
F. Li, H. Wang, T. Yu, S. Duan, S. Wen, T. Huang, Observer-based quasi-projective functional synchronization of parameters mismatch dynamical networks with mixed time-varying delays under impulsive controllers, IEEE Trans. Syst. Man Cybernet. Syst., 54 (2024), 7647–7656. https://doi.org/10.1109/TSMC.2024.3457513 doi: 10.1109/TSMC.2024.3457513
|
| [26] |
H. L. Li, C. Hu, L. Zhang, H. Jiang, J. Cao, Non-separation method-based robust finite-time synchronization of uncertain fractional-order quaternion-valued neural networks, Appl. Math. Comput., 409 (2021), 126377. https://doi.org/10.1016/j.amc.2021.126377 doi: 10.1016/j.amc.2021.126377
|
| [27] |
Z. Q. Zhang, W. B. Liu, D. M. Zhou, Global asymptotic stability to a generalized Cohen-Grossberg BAM neural networks of neutral type delays, Neural Netw., 25 (2012), 94–105. https://doi.org/10.1016/j.neunet.2011.07.006 doi: 10.1016/j.neunet.2011.07.006
|
| [28] |
Z. Zhang, J. Cao, Finite-time synchronization for fuzzy inertial neural networks by maximum value approach, IEEE Trans. Fuzzy Syst., 30 (2022), 1436–1446. https://doi.org/10.1109/TFUZZ.2021.3059953 doi: 10.1109/TFUZZ.2021.3059953
|
| [29] |
Z. Zhang, J. Cao, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method, IEEE Trans. Neural Netw. Learn. Syst., 30 (2019), 1476–1485. https://doi.org/10.1109/TNNLS.2018.2868800 doi: 10.1109/TNNLS.2018.2868800
|
| [30] | T. Parcollet, M. Ravanelli, M. Morchid, G. Linarès, C. Trabelsi, R. De Mori, et al., Quaternion neural networks, In: International conference on learning representations, 2019. |
| [31] |
X. Chen, Z. Li, Q. Song, J. Hu, Y. Tan, Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Netw., 91 (2017), 55–65. https://doi.org/10.1016/j.neunet.2017.04.006 doi: 10.1016/j.neunet.2017.04.006
|
| [32] |
Z. Tu, J. Cao, A. Alsaedi, T. Hayat, Global dissipativity analysis for delayed quaternion-valued neural networks, Neural Netw., 89 (2017), 97–104. https://doi.org/10.1016/j.neunet.2017.01.006 doi: 10.1016/j.neunet.2017.01.006
|
| [33] | D. Baleanu, V. E. Balas, P. Agarwal, Fractional order systems and applications in engineering, Academic Press, 2023. |
| [34] |
L. Chen, Y. Chai, R. Wu, T. Ma, H. Zhai, Dynamic analysis of a class of fractional-order neural networks with delay, Neurocomputing, 111 (2013), 190–194. https://doi.org/10.1016/j.neucom.2012.11.034 doi: 10.1016/j.neucom.2012.11.034
|
| [35] |
T. Hu, Z. He, X. Zhang, S. Zhong, Finite-time stability for fractional-order complex-valued neural networks with time delay, Appl. Math. Comput., 365 (2020), 124715. https://doi.org/10.1016/j.amc.2019.124715 doi: 10.1016/j.amc.2019.124715
|
| [36] |
R. Rakkiyappan, G. Velmurugan, J. Cao, Stability analysis of fractional-order complex-valued neural networks with time delays, Chaos Solitons Fract., 78 (2015), 179–316. https://doi.org/10.1016/j.chaos.2015.08.003 doi: 10.1016/j.chaos.2015.08.003
|
| [37] |
R. Rakkiyappan, G. Velmurugan, J. Cao, Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays, Nonlinear Dyn., 78 (2014), 2823–2836. https://doi.org/10.1007/s11071-014-1628-2 doi: 10.1007/s11071-014-1628-2
|
| [38] |
X. You, Q. Song, Z. Zhao, Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays, Neural Netw., 123 (2020), 248–260. https://doi.org/10.1016/j.neunet.2019.12.012 doi: 10.1016/j.neunet.2019.12.012
|
| [39] |
U. Humphries, G. Rajchakit, P. Kaewmesri, P. Chanthorn, R. Sriraman, R. Samidurai, et al., Global stability analysis of fractional-order quaternion-valued bidirectional associative memory neural networks, Mathematics, 8 (2020), 801. https://doi.org/10.3390/math8050801 doi: 10.3390/math8050801
|
| [40] |
M. S. Ali, G. Narayanan, S. Nahavandi, J. L. Wang, J. Cao, Global dissipativity analysis and stability analysis for fractional-order quaternion-valued neural networks with time delays, IEEE Trans. Syst. Man Cybernet. Syst., 52 (2021), 4046–4056. https://doi.org/10.1109/TSMC.2021.3065114 doi: 10.1109/TSMC.2021.3065114
|
| [41] |
B. Li, B. Tang, New stability criterion for fractional-order quaternion-valued neural networks involving discrete and leakage delays, J. Math., 2021 (2021), 9988073. https://doi.org/10.1155/2021/9988073 doi: 10.1155/2021/9988073
|
| [42] |
Y. Wu, Z. Tu, N. Dai, L. Wang, N. Hu, T. Peng, Stability analysis of quaternion-valued neutral neural networks with generalized activation functions, Cogn. Comput., 16 (2024), 392–403. https://doi.org/10.1007/s12559-023-10212-w doi: 10.1007/s12559-023-10212-w
|
| [43] |
Q. Song, L. Yang, Y. Liu, F. E. S. Alsaadi, Stability of quaternion-valued neutral-type neural networks with leakage delay and proportional delays, Neurocomputing, 521 (2023), 191–198. https://doi.org/10.1016/j.neucom.2022.12.009 doi: 10.1016/j.neucom.2022.12.009
|