Research article Special Issues

On perturbed-$ \mathcal{S}_{\tau } $-contractions

  • Received: 26 February 2025 Accepted: 16 May 2025 Published: 23 May 2025
  • MSC : 46T99, 47H10, 54H25

  • This study aims to present novel fixed-point results within the structure of a newly introduced abstract structure known as perturbed metric spaces. As expected, these spaces naturally extend and generalize the classical metric spaces. Consequently, the key results of this study broaden, refine, and broaden the existing fixed-point results in the published outcomes.

    Citation: Ghaziyah Alsahli, Priya Shahi, Erdal Karapınar. On perturbed-$ \mathcal{S}_{\tau } $-contractions[J]. AIMS Mathematics, 2025, 10(5): 11976-11985. doi: 10.3934/math.2025541

    Related Papers:

  • This study aims to present novel fixed-point results within the structure of a newly introduced abstract structure known as perturbed metric spaces. As expected, these spaces naturally extend and generalize the classical metric spaces. Consequently, the key results of this study broaden, refine, and broaden the existing fixed-point results in the published outcomes.



    加载中


    [1] M. Jleli, B. Samet, On Banach's fixed-point theorem in perturbed metric spaces, J. Appl. Anal. Comput., 15 (2025), 993–1001. https://doi.org/10.11948/20240242 doi: 10.11948/20240242
    [2] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed-point theorems via simulation functions, Filomat, 29 (2015), 1189–1194.
    [3] E. Karapinar, fixed-points results via simulation functions, Filomat, 30 (2016), 2343–2350.
    [4] R. Alsubaie, B. Alqahtani, E. Karapinar, A. F. R. L. de Hierro, Extended simulation function via rational expressions, Mathematics, 8 (2020), 710. https://doi.org/10.3390/math8050710 doi: 10.3390/math8050710
    [5] O. Alqahtani, E. Karapinar, A bilateral contraction via simulation function, Filomat, 33 (2019), 4837–4843. https://doi.org/10.2298/FIL1915837A doi: 10.2298/FIL1915837A
    [6] M. A. Alghamdi, S. Gulyaz-Ozyurt, E. Karapinar, A note on extended Z-contraction, Mathematics, 8 (2020), 195. https://doi.org/10.3390/math8020195 doi: 10.3390/math8020195
    [7] R. P. Agarwal, E. Karapinar, Interpolative Rus-Reich-Ciric type contractions via simulation functions, An. St. Univ. Ovidius Constanta, 27 (2019), 137–152. https://doi.org/10.2478/auom-2019-003 doi: 10.2478/auom-2019-003
    [8] H. Aydi, E. Karapinar, V. Rakocevic, Nonunique fixed-point theorems on b-metric spaces via simulation functions, Jordan J. Math. Stat., 12 (2019), 265–288.
    [9] E. Karapinar, F. Khojasteh, An approach to best proximity points results via simulation functions, J. Fixed Point Theory Appl., 19 (2017), 1983–1995. https://doi.org/10.1007/s11784-016-0380-2 doi: 10.1007/s11784-016-0380-2
    [10] M. Aslantas, H. Sahin, D. Turkoglu, Some Caristi type fixed point theorems, J. Anal., 29 (2021), 89–103. https://doi.org/10.1007/s41478-020-00248-8 doi: 10.1007/s41478-020-00248-8
    [11] M. Aslantas, H. Sahin, I. Altun, T. H. S. Saadoon, A new type of $ R $-contraction and its best proximity points, AIMS Mathematics, 9 (2024), 9692–9704. https://doi.org/10.3934/math.2024474 doi: 10.3934/math.2024474
    [12] A. F. Roldan-Lopez-de Hierro, E. Karapınar, C. Roldan-Lopez-de Hierro, J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345–355. https://doi.org/10.1016/j.cam.2014.07.011 doi: 10.1016/j.cam.2014.07.011
    [13] M. Aslantas, Nonunique best proximity point results with an application to nonlinear fractional differential equations, Turk. J. Math., 46 (2022), 25. https://doi.org/10.55730/1300-0098.3311 doi: 10.55730/1300-0098.3311
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(794) PDF downloads(66) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog