This study aims to present novel fixed-point results within the structure of a newly introduced abstract structure known as perturbed metric spaces. As expected, these spaces naturally extend and generalize the classical metric spaces. Consequently, the key results of this study broaden, refine, and broaden the existing fixed-point results in the published outcomes.
Citation: Ghaziyah Alsahli, Priya Shahi, Erdal Karapınar. On perturbed-$ \mathcal{S}_{\tau } $-contractions[J]. AIMS Mathematics, 2025, 10(5): 11976-11985. doi: 10.3934/math.2025541
This study aims to present novel fixed-point results within the structure of a newly introduced abstract structure known as perturbed metric spaces. As expected, these spaces naturally extend and generalize the classical metric spaces. Consequently, the key results of this study broaden, refine, and broaden the existing fixed-point results in the published outcomes.
| [1] |
M. Jleli, B. Samet, On Banach's fixed-point theorem in perturbed metric spaces, J. Appl. Anal. Comput., 15 (2025), 993–1001. https://doi.org/10.11948/20240242 doi: 10.11948/20240242
|
| [2] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed-point theorems via simulation functions, Filomat, 29 (2015), 1189–1194. |
| [3] | E. Karapinar, fixed-points results via simulation functions, Filomat, 30 (2016), 2343–2350. |
| [4] |
R. Alsubaie, B. Alqahtani, E. Karapinar, A. F. R. L. de Hierro, Extended simulation function via rational expressions, Mathematics, 8 (2020), 710. https://doi.org/10.3390/math8050710 doi: 10.3390/math8050710
|
| [5] |
O. Alqahtani, E. Karapinar, A bilateral contraction via simulation function, Filomat, 33 (2019), 4837–4843. https://doi.org/10.2298/FIL1915837A doi: 10.2298/FIL1915837A
|
| [6] |
M. A. Alghamdi, S. Gulyaz-Ozyurt, E. Karapinar, A note on extended Z-contraction, Mathematics, 8 (2020), 195. https://doi.org/10.3390/math8020195 doi: 10.3390/math8020195
|
| [7] |
R. P. Agarwal, E. Karapinar, Interpolative Rus-Reich-Ciric type contractions via simulation functions, An. St. Univ. Ovidius Constanta, 27 (2019), 137–152. https://doi.org/10.2478/auom-2019-003 doi: 10.2478/auom-2019-003
|
| [8] | H. Aydi, E. Karapinar, V. Rakocevic, Nonunique fixed-point theorems on b-metric spaces via simulation functions, Jordan J. Math. Stat., 12 (2019), 265–288. |
| [9] |
E. Karapinar, F. Khojasteh, An approach to best proximity points results via simulation functions, J. Fixed Point Theory Appl., 19 (2017), 1983–1995. https://doi.org/10.1007/s11784-016-0380-2 doi: 10.1007/s11784-016-0380-2
|
| [10] |
M. Aslantas, H. Sahin, D. Turkoglu, Some Caristi type fixed point theorems, J. Anal., 29 (2021), 89–103. https://doi.org/10.1007/s41478-020-00248-8 doi: 10.1007/s41478-020-00248-8
|
| [11] |
M. Aslantas, H. Sahin, I. Altun, T. H. S. Saadoon, A new type of $ R $-contraction and its best proximity points, AIMS Mathematics, 9 (2024), 9692–9704. https://doi.org/10.3934/math.2024474 doi: 10.3934/math.2024474
|
| [12] |
A. F. Roldan-Lopez-de Hierro, E. Karapınar, C. Roldan-Lopez-de Hierro, J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345–355. https://doi.org/10.1016/j.cam.2014.07.011 doi: 10.1016/j.cam.2014.07.011
|
| [13] |
M. Aslantas, Nonunique best proximity point results with an application to nonlinear fractional differential equations, Turk. J. Math., 46 (2022), 25. https://doi.org/10.55730/1300-0098.3311 doi: 10.55730/1300-0098.3311
|