This work introduces the closed form approach to generate solitary wave solutions to the modified equal width (MEW) model. This model generalizes the equal width (EW) equation, which characterizes wave propagation in shallow water. It aims to better represent nonlinear and dispersive effects by altering the original model's terms. Because of its simplicity, reliability, and efficiency, the proposed technique has the potential to be applied to a range of nonlinear partial differential equations (NPDEs) in practical research. We also employ the finite difference method to provide the numerical solution for the MEW model. A comparison with the analytical solution we arrived at demonstrates the method's accuracy. This work shows that the numerical method stays stable and accurate despite alterations in time stepping, wave speed, and spatial discretization. This also allows further exploration of nonlinear models that accurately depict significant physical processes in our everyday existence.
Citation: Abdulhamed Alsisi. The powerful closed form technique for the modified equal width equation with numerical simulation[J]. AIMS Mathematics, 2025, 10(5): 11071-11085. doi: 10.3934/math.2025502
This work introduces the closed form approach to generate solitary wave solutions to the modified equal width (MEW) model. This model generalizes the equal width (EW) equation, which characterizes wave propagation in shallow water. It aims to better represent nonlinear and dispersive effects by altering the original model's terms. Because of its simplicity, reliability, and efficiency, the proposed technique has the potential to be applied to a range of nonlinear partial differential equations (NPDEs) in practical research. We also employ the finite difference method to provide the numerical solution for the MEW model. A comparison with the analytical solution we arrived at demonstrates the method's accuracy. This work shows that the numerical method stays stable and accurate despite alterations in time stepping, wave speed, and spatial discretization. This also allows further exploration of nonlinear models that accurately depict significant physical processes in our everyday existence.
| [1] |
S. J. Chen, X. Lü, M. G. Li, F. Wang, Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations, Phys. Scripta, 96 (2021), 095201. https://doi.org/10.1088/1402-4896/abf307 doi: 10.1088/1402-4896/abf307
|
| [2] |
Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 02 (2022), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
|
| [3] |
M. Shakeel, Attaullah, N. A. Shah, J. D. Chung, Application of modified exp-function method for strain wave equation for finding analytical solutions, Ain Shams Eng. J., 14 (2023), 101883. https://doi.org/10.1016/j.asej.2022.101883 doi: 10.1016/j.asej.2022.101883
|
| [4] |
H. Triki, C. Bensalem, A. Biswas, S. Khan, Q. Zhou, S. Adesanya, et al., Self-similar optical solitons with continuous-wave background in a quadratic-cubic non-centrosymmetric waveguide, Opt. Commun., 437 (2019), 392–398. https://doi.org/10.1016/j.optcom.2018.12.074 doi: 10.1016/j.optcom.2018.12.074
|
| [5] |
L. Q. Kong, C. Q. Dai, Some discussions about variable separation of nonlinear models using Riccati equation expansion method, Nonlinear Dynam., 81 (2015), 1553–1561. https://doi.org/10.1007/s11071-015-2089-y doi: 10.1007/s11071-015-2089-y
|
| [6] |
Y. Y. Wang, Y. P. Zhang, C. Q. Dai, Re-study on localized structures based on variable separation solutions from the modified tanh-function method, Nonlinear Dynam., 83 (2016), 1331–1339. https://doi.org/10.1007/s11071-015-2406-5 doi: 10.1007/s11071-015-2406-5
|
| [7] |
A. H. Arnous, M. S. Hashemi, K. S. Nisar, M. Shakeel, J. Ahmad, I. Ahmad, et al., Investigating solitary wave solutions with enhanced algebraic method for new extended Sakovich equations in fluid dynamics, Results Phys., 57 (2024), 107369. https://doi.org/10.1016/j.rinp.2024.107369 doi: 10.1016/j.rinp.2024.107369
|
| [8] |
Y. Zhu, J. Yang, Y. Zhang, W. Qin, S. Wang, J. Li, Ring-like double-breathers in the partially nonlocal medium with different diffraction characteristics in both directions under the external potential, Chaos Soliton. Fract., 180 (2024), 114510. https://doi.org/10.1016/j.chaos.2024.114510 doi: 10.1016/j.chaos.2024.114510
|
| [9] |
G. Arora, R. Rani, H. Emadifar, Soliton: A dispersion-less solution with existence and its types, Heliyon, 8 (2022), e12122. https://doi.org/10.1016/j.heliyon.2022.e12122 doi: 10.1016/j.heliyon.2022.e12122
|
| [10] |
Z. Z. Si, Y. Y. Wang, C. Q. Dai, Switching, explosion, and chaos of multi-wavelength soliton states in ultrafast fiber lasers, Sci. China Phys. Mech., 67 (2024), 274211. https://doi.org/10.1007/s11433-023-2365-7 doi: 10.1007/s11433-023-2365-7
|
| [11] |
M. G. Hafez, M. N. Alam, M. A. Akbar, Exact traveling wave solutions to the Klein-Gordon equation using the novel (G'/G)-expansion method, Results Phys., 4 (2014), 177–184. https://doi.org/10.1016/j.rinp.2014.09.001 doi: 10.1016/j.rinp.2014.09.001
|
| [12] |
H. U. Rehman, I. Iqbal, S. S. Aiadi, N. Mlaiki, M. S. Saleem, Soliton solutions of Klein-Fock-Gordon equation using Sardar subequation method, Mathematics, 10 (2022), 3377. https://doi.org/10.3390/math10183377 doi: 10.3390/math10183377
|
| [13] |
A. Alsisi, Analytical and numerical solutions to the Klein-Gordon model with cubic nonlinearity, Alex. Eng. J., 99 (2024), 31–37. https://doi.org/10.1016/j.aej.2024.04.076 doi: 10.1016/j.aej.2024.04.076
|
| [14] |
M. S. Attaullah, E. R. E. Zahar, N. A. Shah, J. D. Chung, Generalized exp-function method to find closed form solutions of nonlinear dispersive modified Benjamin-Bona-Mahony equation defined by seismic sea waves, Mathematics, 10 (2022), 1026. https://doi.org/10.3390/math10071026 doi: 10.3390/math10071026
|
| [15] | D. Marek, D. Lucjan, Nonlinear Klein-Gordon equation in Cauchy-Navier elastic solid, Cherkasy U. B. Phys. Math. Sci., 1 (2017), 22–29. |
| [16] |
S. I. Zaki, Solitary wave interactions for the modified equal width equation, Comput. Phys. Commun., 126 (2000), 219–231. https://doi.org/10.1016/S0010-4655(99)00471-3 doi: 10.1016/S0010-4655(99)00471-3
|
| [17] |
D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321–330. https://doi.org/10.1017/S0022112066001678 doi: 10.1017/S0022112066001678
|
| [18] |
A. K. M. K. S. Hossain, M. A. Akbar, A. M. Wazwaz, Closed form solutions of complex wave equations via MSE method, Cogent Phys., 4 (2017), 1312751. https://doi.org/10.1080/23311940.2017.1312751 doi: 10.1080/23311940.2017.1312751
|
| [19] |
B. Saka, Algorithms for numerical solution of the modified equal width wave equation using collocation method, Math. Comput. Model., 45 (2007), 1096–1117. https://doi.org/10.1016/j.mcm.2006.09.012 doi: 10.1016/j.mcm.2006.09.012
|
| [20] |
A. M. Wazwaz, The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants, Commun. Nonlinear Sci., 11 (2006), 148–160. https://doi.org/10.1016/j.cnsns.2004.07.001 doi: 10.1016/j.cnsns.2004.07.001
|
| [21] |
B. Saka, I. Dağ, Quartic B-spline collocation method to the numerical solutions of the Burgers' equation, Chaos Soliton. Fract., 32 (2007), 1125–1137. https://doi.org/10.1016/j.chaos.2005.11.037 doi: 10.1016/j.chaos.2005.11.037
|
| [22] |
A. Başhan, N. M. Yağmurlu, Y. Uçar, A. Esen, A new perspective for the numerical solution of the modified equal width wave equation, Math. Method. Appl. Sci., 44 (2021), 8925–8939. https://doi.org/10.1002/mma.7322 doi: 10.1002/mma.7322
|
| [23] |
N. M. Yağmurlu, A. S. Karakaş, A novel perspective for simulations of the MEW equation by trigonometric cubic B-spline collocation method based on Rubin-Graves type linearization, Comput. Methods Diffe., 10 (2022), 1046–1058. https://doi.org/10.22034/cmde.2021.47358.1981 doi: 10.22034/cmde.2021.47358.1981
|
| [24] |
G. Fan, B. Wu, Numerical solutions of the EW and MEW equations using a fourth-order improvised B-spline collocation method, Numerical Algorithms, 98 (2025), 1799–1825. https://doi.org/10.1007/s11075-024-01853-5 doi: 10.1007/s11075-024-01853-5
|
| [25] |
E. Kirli, S. Cikit, A high order accurate hybrid technique for numerical solution of modified equal width equation, Wave Motion, 135 (2025), 103508. https://doi.org/10.1016/j.wavemoti.2025.103508 doi: 10.1016/j.wavemoti.2025.103508
|
| [26] |
I. Onder, M. Cinar, A. Secer, M. Bayram, On soliton solutions of the modified equal width equation, Eng. Computation., 40 (2023), 1063–1083. https://doi.org/10.1108/EC-08-2022-0529 doi: 10.1108/EC-08-2022-0529
|
| [27] |
A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput., 184 (2007), 1002–1014. https://doi.org/10.1016/j.amc.2006.07.002 doi: 10.1016/j.amc.2006.07.002
|
| [28] |
X. Wang, J. Wu, Y. Wang, C. Chen, Extended tanh-function method and its applications in nonlocal complex mKdV equations, Mathematics, 10 (2022), 3250. https://doi.org/10.3390/math10183250 doi: 10.3390/math10183250
|
| [29] |
A. Esen, S. Kutluay, Solitary wave solutions of the modified equal width wave equation, Commun. Nonlinear Sci., 13 (2008), 1538–1546. https://doi.org/10.1016/j.cnsns.2006.09.018 doi: 10.1016/j.cnsns.2006.09.018
|