A new version of the three-parameter Weibull model, called the new extended Weibull (NEW), has been introduced in the literature to provide an increased or inverted bathtub failure rate. In a survival context, adaptive progressive Type-Ⅱ censoring encourages the statistical inference's efficiency and minimizes the overall testing period during a lifetime experiment. By gathering a NEW sample from the proposed strategy, both likelihood and Bayesian inferential evaluations for the NEW model parameters of life were derived. For each unknown subject, asymptotic confidence intervals by normality and the log-transformed-normality approximations were constructed. Given independent uniform and gamma density priors against squared-error and general-entropy loss functions, Bayesian point and credible estimations were created utilizing several Monte-Carlo Markov-Chain techniques. To appreciate the usefulness of the acquired estimators, a comprehensive simulation analysis was performed by offering different experimental scenarios. To examine the superiority of the proposed model and to exhibit the viability of the proposed approaches in real practice, a pair of data examples, one based on the strength (in gigapascal) of carbon fibers and the other based on the failure times of conductors, were analyzed and the results were observed.
Citation: Hanan Haj Ahmad, Osama E. Abo-Kasem, Ahmed Rabaiah, Ahmed Elshahhat. Survival analysis of newly extended Weibull data via adaptive progressive Type-Ⅱ censoring and its modeling to Carbon fiber and electromigration[J]. AIMS Mathematics, 2025, 10(4): 10228-10262. doi: 10.3934/math.2025466
A new version of the three-parameter Weibull model, called the new extended Weibull (NEW), has been introduced in the literature to provide an increased or inverted bathtub failure rate. In a survival context, adaptive progressive Type-Ⅱ censoring encourages the statistical inference's efficiency and minimizes the overall testing period during a lifetime experiment. By gathering a NEW sample from the proposed strategy, both likelihood and Bayesian inferential evaluations for the NEW model parameters of life were derived. For each unknown subject, asymptotic confidence intervals by normality and the log-transformed-normality approximations were constructed. Given independent uniform and gamma density priors against squared-error and general-entropy loss functions, Bayesian point and credible estimations were created utilizing several Monte-Carlo Markov-Chain techniques. To appreciate the usefulness of the acquired estimators, a comprehensive simulation analysis was performed by offering different experimental scenarios. To examine the superiority of the proposed model and to exhibit the viability of the proposed approaches in real practice, a pair of data examples, one based on the strength (in gigapascal) of carbon fibers and the other based on the failure times of conductors, were analyzed and the results were observed.
| [1] |
C. D. Lai, M. Xie, D. N. P. Murthy, A modified Weibull distribution, IEEE Trans. Reliab., 52 (2003), 33–37. https://doi.org/10.1109/TR.2002.805788 doi: 10.1109/TR.2002.805788
|
| [2] |
G. M. Cordeiro, A. E. Gomes, C. Q. da-Silva, E. M. M. Ortega, The beta exponentiated Weibull distribution, J. Stat. Comput. Simul., 83 (2011), 114–138. https://doi.org/10.1080/00949655.2011.615838 doi: 10.1080/00949655.2011.615838
|
| [3] |
M. Nassar, A. Alzaatreh, M. Mead, O. Abo-Kasem, Alpha power Weibull distribution: Properties and applications, Commun. Stat. Theory Methods, 46 (2017), 10236–10252. https://doi.org/10.1080/03610926.2016.1231816 doi: 10.1080/03610926.2016.1231816
|
| [4] |
H. Haj Ahmad, E. M. Almetwally, A. Rabaiah, D. A. Ramadan, Statistical Analysis of Alpha Power Inverse Weibull Distribution under Hybrid Censored Scheme with Applications to Ball Bearings Technology and Biomedical Data, Symmetry, 15 (2023), 161. https://doi.org/10.3390/sym15010161 doi: 10.3390/sym15010161
|
| [5] | M. Xu, H. Mao, Q-Weibull distributions: Perspectives and applications in reliability engineering, IEEE Trans. Reliab., 2024. https://doi.org/10.1109/TR.2024.3448289 |
| [6] |
X. Peng, Z. Yan, Estimation and application for a new extended Weibull distribution, Reliab. Eng. Syst. Saf., 121 (2014), 34–42. https://doi.org/10.1016/j.ress.2013.07.007 doi: 10.1016/j.ress.2013.07.007
|
| [7] |
J. M. Jia, Z. Z. Yan, X. Y. Peng, A new discrete extended Weibull distribution, IEEE Access, 7 (2019), 175474–175486. https://doi.org/10.1109/ACCESS.2019.2957788 doi: 10.1109/ACCESS.2019.2957788
|
| [8] |
A. Azizi, A. Sayyareh, H. Panahi, Inference about the bivariate new extended Weibull distribution based on complete and censored data, Commun. Stat. Simul. Comput., 51 (2020), 738–756. https://doi.org/10.1080/03610918.2019.1658779 doi: 10.1080/03610918.2019.1658779
|
| [9] |
M. Jovanović, B. Milošević, M. Obradović, Z. Vidović, Inference on reliability of stress-strength model with Peng-Yan extended Weibull distributions, Filomat, 35 (2021), 1927–1948. https://doi.org/10.2298/FIL2106927J doi: 10.2298/FIL2106927J
|
| [10] |
G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab., 42 (1993), 299–302. https://doi.org/10.1109/24.229504 doi: 10.1109/24.229504
|
| [11] |
A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641 doi: 10.1093/biomet/84.3.641
|
| [12] |
N. Balakrishnan, Progressive censoring methodology: An appraisal, Test, 16 (2007), 211–259. https://doi.org/10.1007/s11749-007-0061-y doi: 10.1007/s11749-007-0061-y
|
| [13] | N. Balakrishnan, E. Cramer, The art of progressive censoring, New York: Birkhäuser, 2014. https://doi.org/10.1007/978-0-8176-4807-7 |
| [14] | A. Childs, B. Chandrasekar, N. Balakrishnan, Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, In: Statistical Models and Methods for Biomedical and Technical Systems, Boston: Birkhäuser, 2008,323–334. https://doi.org/10.1007/978-0-8176-4619-6_23 |
| [15] |
D. Kundu, A. Joarder, Analysis of Type-Ⅱ progressively hybrid censored data, Comput. Stat. Data Anal., 50 (2006), 2509–2528. https://doi.org/10.1016/j.csda.2005.05.002 doi: 10.1016/j.csda.2005.05.002
|
| [16] |
H. K. T. Ng, D. Kundu, P. S. Chan, Statistical analysis of exponential lifetimes under an adaptive Type-Ⅱ progressive censoring scheme, Naval Res. Logist., 56 (2009), 687–698. https://doi.org/10.1002/nav.20371 doi: 10.1002/nav.20371
|
| [17] |
C. T. Lin, H. K. T. Ng, P. S. Chan, Statistical inference of Type-Ⅱ progressively censored data with Weibull lifetimes, Commun. Stat. Theory Methods, 38 (2009), 1710–1729. https://doi.org/10.1080/03610920902850069 doi: 10.1080/03610920902850069
|
| [18] |
M. Nassar, O. E. Abo-Kasem, Estimation of the inverse Weibull parameters under adaptive Type-Ⅱ progressive censoring scheme, J. Comput. Appl. Math., 315 (2017), 228–239. https://doi.org/10.1016/j.cam.2016.11.012 doi: 10.1016/j.cam.2016.11.012
|
| [19] |
M. M. M. Mohie El-Din, M. M. Amein, A. R. Shafay, S. Mohamed, Estimation of generalized exponential distribution based on an adaptive progressively Type-Ⅱ censored sample, J. Stat. Comput. Simul., 87 (2017), 1292–1304. https://doi.org/10.1080/00949655.2016.1261863 doi: 10.1080/00949655.2016.1261863
|
| [20] |
S. Liu, W. Gui, Estimating the parameters of the two-parameter Rayleigh distribution based on adaptive Type-Ⅱ progressive censored data with competing risks, Mathematics, 8 (2020), 1783. https://doi.org/10.3390/math8101783 doi: 10.3390/math8101783
|
| [21] |
A. Elshahhat, M. Nassar, Bayesian survival analysis for adaptive Type-Ⅱ progressive censored Hjorth data, Comput. Stat., 36 (2021), 1965–1990. https://doi.org/10.1007/s00180-021-01065-8 doi: 10.1007/s00180-021-01065-8
|
| [22] |
S. Chen, W. Gui, Statistical analysis of a lifetime distribution with a bathtub-shaped failure rate function under adaptive progressive type-Ⅱ censoring, Mathematics, 8 (2020), 670. https://doi.org/10.3390/math8050670 doi: 10.3390/math8050670
|
| [23] |
A. Elshahhat, R. Alotaibi, M. Nassar, Inferences for Nadarajah–Haghighi parameters via Type-Ⅱ adaptive progressive hybrid censoring with applications, Mathematics, 10 (2022), 3775. https://doi.org/10.3390/math10203775 doi: 10.3390/math10203775
|
| [24] |
H. S. Mohammed, M. Nassar, R. Alotaibi, A. Elshahhat, Analysis of adaptive progressive Type-Ⅱ hybrid censored Dagum data with applications, Symmetry, 14 (2022), 2146. https://doi.org/10.3390/sym14102146 doi: 10.3390/sym14102146
|
| [25] |
R. Alotaibi, M. Nassar, A. Elshahhat, Computational analysis of XLindley parameters using adaptive Type-Ⅱ progressive hybrid censoring with applications in chemical engineering, Mathematics, 10 (2022), 3355. https://doi.org/10.3390/math10183355 doi: 10.3390/math10183355
|
| [26] |
A. Henningsen, O. Toomet, maxLik: A package for maximum likelihood estimation in R, Comput. Stat., 26 (2011), 443–458. https://doi.org/10.1007/s00180-010-0217-1 doi: 10.1007/s00180-010-0217-1
|
| [27] |
S. J. Wu, Estimations of the parameters of the Weibull distribution with progressively censored data, J. Jpn. Stat. Soc., 32 (2002), 155–163. https://doi.org/10.14490/jjss.32.155 doi: 10.14490/jjss.32.155
|
| [28] | W. Q. Meeker, L. A. Escobar, Statistical methods for reliability data, New York: John Wiley & Sons, 1998. https://doi.org/10.1080/00401706.2021.1945328 |
| [29] | H. F. Martz, R. A. Waller, Bayesian reliability analysis, New York: Wiley, 1982. |
| [30] |
D. K. Dey, M. Ghosh, C. Srinivasan, Simultaneous estimation of parameters under entropy loss, J. Stat. Plan. Inference, 15 (1987), 347–363. https://doi.org/10.1016/0378-3758(86)90108-4 doi: 10.1016/0378-3758(86)90108-4
|
| [31] |
S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 6 (1984), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596 doi: 10.1109/TPAMI.1984.4767596
|
| [32] |
W. R. Gilks, N. G. Best, K. K. Tan, Adaptive rejection Metropolis sampling within Gibbs sampling, J. R. Stat. Soc. Ser. C Appl. Stat., 44 (1995), 455–472. https://doi.org/10.2307/2986138 doi: 10.2307/2986138
|
| [33] |
L. Devroye, A simple algorithm for generating random varieties with a log-concave density, Computing, 33 (1984), 247–257. https://doi.org/10.1007/bf02242271 doi: 10.1007/bf02242271
|
| [34] |
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092. https://doi.org/10.1063/1.1699114 doi: 10.1063/1.1699114
|
| [35] |
W. R. Gilks, P. Wild, Adaptive rejection sampling for Gibbs sampling, J. R. Stat. Soc. Ser. C Appl. Stat., 41 (1992), 337–348. https://doi.org/10.2307/2347565 doi: 10.2307/2347565
|
| [36] | A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, Bayesian data analysis, 2 Eds., New Brunswick: Chapman and Hall/CRC, New Brunswick, 2004. https://doi.org/10.1201/9780429258411 |
| [37] |
M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Stat., 8 (1999), 69–92. https://doi.org/10.1080/10618600.1999.10474802 doi: 10.1080/10618600.1999.10474802
|
| [38] |
D. Kundu, Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring, Technometrics, 50 (2008), 144–154. https://doi.org/10.1198/004017008000000217 doi: 10.1198/004017008000000217
|
| [39] | M. Bertolacci, armspp: Adaptive Rejection Metropolis Sampling (ARMS) via 'Rcpp', R Package Version 0.0.2 (2019). Available from: https://CRAN.R-project.org/package = armspp. |
| [40] | M. G. Bader, A. M. Priest, Statistical aspects of fiber and bundle strength in composites, in Progress in Science and Engineering of Composites, (1982), 1129–1136. |
| [41] |
D. Kundu, M. Z. Raqab, Estimation of $ R = P(Y<X) $ for three-parameter Weibull distribution, Stat. Probab. Lett., 79 (2009), 1839–1846. https://doi.org/10.1016/j.spl.2009.05.026 doi: 10.1016/j.spl.2009.05.026
|
| [42] | A. Elshahhat, R programming language for data analytics, The 55th Annual International Conference on Data Science, 2022, 1–186. https://doi.org/10.13140/RG.2.2.15044.09607/1 |
| [43] |
L. G. B. Pinho, G. M. Cordeiro, J. S. Nobre, The Harris extended exponential distribution, Commun. Stat. Theory Methods, 44 (2015), 3486–3502. https://doi.org/10.1080/03610926.2013.851221 doi: 10.1080/03610926.2013.851221
|
| [44] |
A. J. Lemonte, G. M. Cordeiro, G. Moreno–Arenas, A new useful three-parameter extension of the exponential distribution, Statistics, 50 (2016), 312–337. https://doi.org/10.1080/02331888.2015.1095190 doi: 10.1080/02331888.2015.1095190
|
| [45] |
J. T. Eghwerido, J. O. Ogbo, A. E. Omotoye, The Marshall-Olkin Gompertz distribution: Properties and applications, Statistica, 81 (2021), 183–215. https://doi.org/10.6092/issn.1973-2201/10993 doi: 10.6092/issn.1973-2201/10993
|
| [46] |
P. E. Oguntunde, O. S. Balogun, H. I. Okagbue, S. A. Bishop, The Weibull-exponential distribution: Its properties and applications, J. Appl. Sci., 15 (2015), 1305–1311. https://doi.org/10.3923/jas.2015.1305.1311 doi: 10.3923/jas.2015.1305.1311
|
| [47] |
P. L. Ramos, F. Louzada, E. Ramos, S. Dey, The Fréchet distribution: Estimation and application–-An overview, J. Stat. Manag. Syst., 23 (2020), 549–578. https://doi.org/10.1080/09720510.2019.1645400 doi: 10.1080/09720510.2019.1645400
|
| [48] | W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech., 18 (1951), 293–297. |
| [49] | N. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, 2 Eds., New York: John Wiley & Sons, 1994. |
| [50] |
R. D. Gupta, D. Kundu, Generalized exponential distribution: Different method of estimations, J. Stat. Comput. Simul., 69 (2001), 315–337. https://doi.org/10.1080/00949650108812098 doi: 10.1080/00949650108812098
|
| [51] | J. F. Lawless, Statistical models and methods for lifetime data, 2 Eds., New Jersey: John Wiley & Sons, 2011. https://doi.org/10.1002/9781118033005 |
| [52] |
H. Jiang, M. Xie, L. C. Tang, Markov chain Monte Carlo methods for parameter estimation of the modified Weibull distribution, J. Appl. Stat., 35 (2008), 647–658. https://doi.org/10.1080/02664760801920846 doi: 10.1080/02664760801920846
|