In this research, I aimed to develop a mathematical system that simulates the mechanics of lumpy skin disease (LSD) transmission in cattle. The approach of optimal control was used, and the samples were divided into six categories: Infected, recovered, susceptible, vaccinated, susceptible vector insects, and infected vector insects. The Runge-Kutta technique from the fourth order was used to solve the numerical system, and the effects of various preventative actions like treatment, vaccination, and pesticide spraying on the dissemination of the disease were studied. The stability of the mathematical model was investigated, and it was determined that the disease-free equilibrium point is stable when the infection fails to spread within the population. A sensitivity analysis was performed, and the results showed that the exceedingly sensitive parameters are the natural mortality rate of vector insects and the vaccination rate. The hypothesis of optimal control was used to identify the optimal strategies to reduce the disease's proliferation, and it was found that the combination of all measures significantly reduces the number of infected cases and is a reason for increasing the number of recovered cattle, emphasizing the significance of other measures like early vaccination and isolation of infected cattle.
Citation: Awatif J. Alqarni. Modeling and numerical simulation of Lumpy skin disease: Optimal control dynamics approach[J]. AIMS Mathematics, 2025, 10(4): 10204-10227. doi: 10.3934/math.2025465
In this research, I aimed to develop a mathematical system that simulates the mechanics of lumpy skin disease (LSD) transmission in cattle. The approach of optimal control was used, and the samples were divided into six categories: Infected, recovered, susceptible, vaccinated, susceptible vector insects, and infected vector insects. The Runge-Kutta technique from the fourth order was used to solve the numerical system, and the effects of various preventative actions like treatment, vaccination, and pesticide spraying on the dissemination of the disease were studied. The stability of the mathematical model was investigated, and it was determined that the disease-free equilibrium point is stable when the infection fails to spread within the population. A sensitivity analysis was performed, and the results showed that the exceedingly sensitive parameters are the natural mortality rate of vector insects and the vaccination rate. The hypothesis of optimal control was used to identify the optimal strategies to reduce the disease's proliferation, and it was found that the combination of all measures significantly reduces the number of infected cases and is a reason for increasing the number of recovered cattle, emphasizing the significance of other measures like early vaccination and isolation of infected cattle.
| [1] |
A. Kononov, P. Prutnikov, I. Shumilova, S. Kononova, A. Nesterov, O. Byadovskaya, et al., Determination of lumpy skin disease virus in bovine meat and offal products following experimental infection, Transbound. Emerg. Dis., 66 (2019), 1332–1340. https://doi.org/10.1111/tbed.13158 doi: 10.1111/tbed.13158
|
| [2] | X. Roche, A. Rozstalnyy, D. TagoPacheco, C. Pittiglio, A. Kamata, D. Beltran Alcrudo, et al., Introduction and spread of lumpy skin disease in South, East and Southeast Asia: Qualitative risk assessment and management, Rome: Food and Agriculture Organization of the United Nations, 2021. |
| [3] |
Y. Narwal, S. Rathee, Fractional order mathematical modeling of lumpy skin disease, Commun. Faculty Sci. Uni. Ankara Ser. A1 Math. Stat., 73 (2024), 192–210. https://doi.org/10.31801/cfsuasmas.1207144 doi: 10.31801/cfsuasmas.1207144
|
| [4] |
N. Ntombela, M. Matsiela, S. Zuma, S. Hiralal, L. Naicker, N. Mokoena, et al., Production of recombinant lumpy skin disease virus A27L and L1R proteins for application in diagnostics and vaccine development, Vaccine X, 15 (2023), 100384. https://doi.org/10.1016/j.jvacx.2023.100384 doi: 10.1016/j.jvacx.2023.100384
|
| [5] |
A. Mazloum, A. Van Schalkwyk, S. Babiuk, E. Venter, D. B. Wallace, A. Sprygin, Lumpy skin disease: history, current understanding and research gaps in the context of recent geographic expansion, Front. Microbiol., 14 (2023), 1266759. https://doi.org/10.3389/fmicb.2023.1266759 doi: 10.3389/fmicb.2023.1266759
|
| [6] |
L. Khan, I. A. Khan, M. Gul, M. B. Riaz, A. Khan, M. Saleem, et al., A comprehensive review on lumpy skin disease, Pure Appl. Biol., 13 (2024), 341–350. https://doi.org/10.19045/bspab.2024.130031 doi: 10.19045/bspab.2024.130031
|
| [7] |
E. Renald, J. Buza, J. M. Tchuenche, V. G. Masanja, The role of modeling in the epidemiology and control of lumpy skin disease: a systematic review, Bull. Natl. Res. Centre, 47 (2023), 141. https://doi.org/10.1186/s42269-023-01111-z doi: 10.1186/s42269-023-01111-z
|
| [8] |
W. Ahmad, M. Abbas, Effect of quarantine on transmission dynamics of Ebola virus epidemic: a mathematical analysis, Eur. Phys. J. Plus, 136 (2021), 355. https://doi.org/10.1140/epjp/s13360-021-01360-9 doi: 10.1140/epjp/s13360-021-01360-9
|
| [9] |
D. Baleanu, F. A. Ghassabzade, J. J. Nieto, A. Jajarmi, On a new and generalized fractional model for a real cholera outbreak, Alex. Eng. J., 61 (2022), 9175–9186. https://doi.org/10.1016/j.aej.2022.02.054 doi: 10.1016/j.aej.2022.02.054
|
| [10] |
M. D. Ahmad, M. Usman, A. Khan, M. Imran, Optimal control analysis of Ebola disease with control strategies of quarantine and vaccination, Infect. Dis. Poverty, 5 (2016), 72. https://doi.org/10.1186/s40249-016-0161-6 doi: 10.1186/s40249-016-0161-6
|
| [11] | F. Agusto, Optimal chemoprophylaxis and treatment control strategies of a tuberculosis transmission model, World J. Model. Simul., 5 (2009), 163–173. |
| [12] |
A. I. K. Butt, M. Imran, S. Batool, M. A. Nuwairan, Theoretical analysis of a COVID-19 CF-fractional model to optimally control the spread of pandemic, Symmetry, 15 (2023), 380. https://doi.org/10.3390/sym15020380 doi: 10.3390/sym15020380
|
| [13] |
A. Butt, W. Ahmad, M. Rafiq, D. Baleanu, Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic, Alex. Eng. J., 61 (2022), 7007–7027. https://doi.org/10.1016/j.aej.2021.12.042 doi: 10.1016/j.aej.2021.12.042
|
| [14] |
A. I. K. Butt, H. Aftab, M. Imran, T. Ismaeel, Mathematical study of lumpy skin disease with optimal control analysis through vaccination, Alex. Eng. J., 72 (2023), 247–259. https://doi.org/10.1016/j.aej.2023.03.073 doi: 10.1016/j.aej.2023.03.073
|
| [15] |
W. Molla, K. Frankena, M. De Jong, Transmission dynamics of lumpy skin disease in Ethiopia, Epidemiol. Infect., 145 (2017), 2856–2863. https://doi.org/10.1017/S0950268817001637 doi: 10.1017/S0950268817001637
|
| [16] |
R. Magori-Cohen, Y. Louzoun, Y. Herziger, E. Oron, A. Arazi, E. Tuppurainen, et al., Mathematical modelling and evaluation of the different routes of transmission of lumpy skin disease virus, Vet. Res., 43 (2012), 1. https://doi.org/10.1186/1297-9716-43-1 doi: 10.1186/1297-9716-43-1
|
| [17] |
S. Gubbins, A. Stegeman, E. Klement, L. Pite, A. Broglia, J. C. Abrahantes, Inferences about the transmission of lumpy skin disease virus between herds from outbreaks in Albania in 2016, Prev. Vet. Med., 181 (2020), 104602. https://doi.org/10.1016/j.prevetmed.2018.12.008 doi: 10.1016/j.prevetmed.2018.12.008
|
| [18] |
Z. Stojmanovski, Space-time permutation model applied to the past outbreak data of lumpy skin disease in the Balkan Peninsula from August 2015 to July 2017, Vet. Glasnik, 72 (2018), 44–55. https://doi.org/10.2298/VETGL171027003S doi: 10.2298/VETGL171027003S
|
| [19] |
B. Mat, M. S. Arikan, A. C. Akin, M. B. Çevrimli, H. Yonar, M. A. Tekindal, Determination of production losses related to lumpy skin disease among cattle in Turkey and analysis using SEIR epidemic model, BMC Vet. Res., 17 (2021), 300. https://doi.org/10.1186/s12917-021-02983-x doi: 10.1186/s12917-021-02983-x
|
| [20] |
V. Punyapornwithaya, O. Arjkumpa, N. Buamithup, N. Kuatako, K. Klaharn, C. Sansamur, et al., Forecasting of daily new lumpy skin disease cases in Thailand at different stages of the epidemic using fuzzy logic time series, NNAR, and ARIMA methods, Prev. Vet. Med., 217 (2023), 105964. https://doi.org/10.1016/j.prevetmed.2023.105964 doi: 10.1016/j.prevetmed.2023.105964
|
| [21] |
S. Moonchai, A. Himakalasa, T. Rojsiraphisal, O. Arjkumpa, P. Panyasomboonying, N. Kuatako, et al., Modelling epidemic growth models for lumpy skin disease cases in Thailand using nationwide outbreak data, 2021–2022, Infect. Dis. Model., 8 (2023), 282–293. https://doi.org/10.1016/j.idm.2023.02.004 doi: 10.1016/j.idm.2023.02.004
|
| [22] |
A. Elsonbaty, M. Alharbi, A. El-Mesady, W. Adel, Dynamical analysis of a novel discrete fractional lumpy skin disease model, PDE Appl. Math., 9 (2024), 100604. https://doi.org/10.1016/j.padiff.2023.100604 doi: 10.1016/j.padiff.2023.100604
|
| [23] |
W. F. Alfwzan, M. H. DarAssi, F. Allehiany, M. A. Khan, M. Y. Alshahrani, E. M. Tag-eldin, A novel mathematical study to understand the Lumpy skin disease (LSD) using modified parameterized approach, Results Phys., 51 (2023), 106626. https://doi.org/10.1016/j.rinp.2023.106626 doi: 10.1016/j.rinp.2023.106626
|
| [24] |
E. Renald, V. G. Masanja, J. M. Tchuenche, J. Buza, A deterministic mathematical model with non-linear least squares method for investigating the transmission dynamics of lumpy skin disease, Healthcare Analyt., 5 (2024), 100343. https://doi.org/10.1016/j.health.2024.100343 doi: 10.1016/j.health.2024.100343
|
| [25] |
H. Alrabaiah, M. A. Safi, M. H. DarAssi, B. Al-Hdaibat, S. Ullah, M. A. Khan, et al., Optimal control analysis of hepatitis B virus with treatment and vaccination, Results Phys., 19 (2020), 103599. https://doi.org/10.1016/j.rinp.2020.103599 doi: 10.1016/j.rinp.2020.103599
|
| [26] |
S. Ullah, M. A. Khan, Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study, Chaos Solitons Fract., 139 (2020), 110075. https://doi.org/10.1016/j.chaos.2020.110075 doi: 10.1016/j.chaos.2020.110075
|
| [27] |
M. S. Abdo, K. Shah, H. A. Wahash, S. K. Panchal, On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative, Chaos Solitons Fract., 135 (2020), 109867. https://doi.org/10.1016/j.chaos.2020.109867 doi: 10.1016/j.chaos.2020.109867
|
| [28] |
A. Alderremy, J. Gómez-Aguilar, S. Aly, K. M. Saad, A fuzzy fractional model of coronavirus (COVID-19) and its study with Legendre spectral method, Results Phys., 21 (2021), 103773. https://doi.org/10.1016/j.rinp.2020.103773 doi: 10.1016/j.rinp.2020.103773
|
| [29] | M. A. Khan, S. A. A. Shah, S. Ullah, K. O. Okosun, M. Farooq, Optimal control analysis of the effect of treatment, isolation and vaccination on hepatitis B virus, J. Biol. Syst., 28 (2020), 351–376. https://doi.org/10.1142/S0218339020400057 |
| [30] |
A. I. K. Butt, Dynamical modeling of Lumpy skin disease using Atangana-Baleanu derivative and optimal control analysis, Model. Earth Syst. Environ., 11 (2025), 27. https://doi.org/10.1007/s40808-024-02239-1 doi: 10.1007/s40808-024-02239-1
|
| [31] | O. Falowo, J. Owolabi, O. Oludoun, R. Akingbade, Mathematical modelling of lumpy skin disease in dairy cow, IOP Conf. Ser.: Earth Environ. Sci., 1219 (2023), 012007. |
| [32] | Lumpy Skin Disease Virus, Octavoscene, 2022. Available from: https://www.octavoscene.co.za/3497-2/. |
| [33] |
K. Dietz, The estimation of the basic reproduction number for infectious diseases, Stat. Meth. Med. Res., 2 (1993), 23–41. https://doi.org/10.1177/096228029300200103 doi: 10.1177/096228029300200103
|
| [34] |
M. Khan, K. Ali, E. Bonyah, K. Okosun, S. Islam, A. Khan, Mathematical modeling and stability analysis of Pine Wilt Disease with optimal control, Sci. Rep., 7 (2017), 3115. https://doi.org/10.1038/s41598-017-03179-w doi: 10.1038/s41598-017-03179-w
|
| [35] |
N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0 doi: 10.1007/s11538-008-9299-0
|
| [36] | L.S. Pontryagin, Mathematical theory of optimal processes, London: Routledge, 2018. |
| [37] |
H. M. Ali, I. G. Ameen, Save the pine forests of wilt disease using a fractional optimal control strategy, Chaos Solitons Fract., 132 (2020), 109554. https://doi.org/10.1016/j.chaos.2019.109554 doi: 10.1016/j.chaos.2019.109554
|