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Abstract: In this research, I aimed to develop a mathematical system that simulates the mechanics of 

lumpy skin disease  (LSD) transmission in cattle. The approach of optimal control was used, and the 

samples were divided into six categories: Infected, recovered, susceptible, vaccinated, susceptible 

vector insects, and infected vector insects. The Runge-Kutta technique from the fourth order was used 

to solve the numerical system, and the effects of various preventative actions like treatment, 

vaccination, and pesticide spraying on the dissemination of the disease were studied. The stability of 

the mathematical model was investigated, and it was determined that the disease-free equilibrium point 

is stable when the infection fails to spread within the population. A sensitivity analysis was performed, 

and the results showed that the exceedingly sensitive parameters are the natural mortality rate of vector 

insects and the vaccination rate. The  hypothesis of optimal control was used to identify the optimal 

strategies to reduce the disease's proliferation, and it was found that the combination of all measures 

significantly reduces the number of infected cases and is a reason for increasing the number of 

recovered cattle, emphasizing the significance of other measures like early vaccination and isolation 

of infected cattle. 
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1. Introduction 

LSD is a highly contagious viral disease of cattle. The Neethling virus, a member of the 

Capripoxvirus genus, is the cause of it. The sickness is accountable for the significant reduction in 

dairy components. Once LSD proliferates among a population, the agricultural society may encounter 

significant losses due to animals experiencing abortions, weight reduction, and diminished fertility. It 

could potentially result in irreversible harm to the skin. LSD is listed as a notifiable disease by the 

World Organization for Animal Health. Notifiable illnesses are those that must be reported within a 

specified timeframe upon identification by veterinarians or owners [1]. Although cattle are the primary 

animal susceptible to LSD, experimental infections indicate that the virus can also infect sheep, goats, 

giraffes, gazelles, and impalas. The designation LSD derives from the observation that the lymph nodes 

of the diseased animal enlarge and appear as lumps on the skin. Significant cutaneous nodules develop 

on the neck, udder, head, abdomen, limbs, and genitalia of infected cattle, subsequently progressing to 

ulcers and ultimately transforming into skin scabs [2]. The sickness evolves within 4 to 14 days [3]. 

The utilization of attenuated viruses for immunization has proven to be an effective strategy in 

controlling LSD [4]. Inoculation with tainted or inadequately attenuated vaccinations can precipitate 

outbreaks of lumpy skin disease [5]. The restricted availability of vaccinations complicates the control 

of LSD in many regions [6]. Alternative strategies such as killing affected animals, imposing 

movement restrictions, and implementing vector control have been employed; however, their efficacy 

in the absence of immunization has been inconsistent [7]. Therefore, it is crucial to identify additional 

intervention measures to complement immunization efforts in order to reduce LSD transmission 

patterns. The documented use of LSD in several countries throughout diverse global regions. The 

ailment was originally widespread in Africa, especially in sub-Saharan nations. The initial recorded 

instances of LSD occurred in Zambia and Kenya during the 1920s and the 1930s, in turn. LSD later 

spread to several African countries, such as Uganda, Tanzania, Sudan, Ethiopia, and South Africa. Over 

the past few years, its geographic range has extended beyond Africa. Outbreaks have been documented 

in nations throughout Europe, Asia, and the Middle East. Many European countries, including Albania, 

North Macedonia, Serbia, Bulgaria, and Greece, have confirmed incidences of LSD. The nations of 

the Middle East, Saudi Arabia, Iraq, and Jordan, have also detected the disease [1]. 

 Models for mathematically describing epidemic diseases serve a crucial role in epidemiology. 

A range of epidemic systems is being created and utilized for the investigation and management 

of numerous diseases, including AIDS/HIV [8], cholera [9], Ebola virus [8,10], TB [11], and 

COVID-19 [12,13]. Another objective of epidemic disease modeling is to understand the long-term 

dynamics of the disease and to identify requisite management methods [14]. Comprehending the 

transmission patterns of an infectious disease is essential for formulating effective control strategies. 

Numerous modeling studies employing epidemic data have sought to improve the comprehension of 

LSD transmission dynamics by including the rates of incubation, recruitment, vaccination, [15–17] 

and essential dynamics (birth and natural mortality) [18,19]. The incidence of LSD has been predicted 

using time series analysis and demographic projections in [20,21]. In [22], the authors developed an 

LSD nonlinear fractional system that excludes the exposed category, but in [14], the vector population 

is disregarded. In [23], the authors examined both populations of cattle and vectors but did not factor 

in the decline of infection-induced immunity. Certain studies in 2019 on the malaria and the 

coronavirus disease (COVID-19) have included the decline in immunity rate after recovery, 

highlighting the significance of this factor in the transportation dynamics of epidemic diseases 
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characterized by recurrent incidence (re-infection following recuperation) [24]. Optimal control theory 

is utilized not just in engineering and several scientific disciplines but is also regarded as particularly 

beneficial in modeling disease epidemic control. This theory encompasses significant principles that 

delineate how disease in a particular or extensive zone can be managed using proposed or existing 

biological controls. Numerous scholars applied this approach to epidemic models for potential 

infection control. To eradicate illness from society, researchers developed various mathematical 

models incorporating control variables and effective tactics. In recent decades, various control models 

have been presented to eliminate infections from different diseases, including the model of Okosun 

and Makinde, which examines the co-infection of cholera and malaria to analyze their interacting 

behavior [25]. Ullah and Khan have developed a model of optimal control for the new COVID-19 

epidemic and examined the data presented in Pakistan [26]. They determined that the sickness could 

be mitigated by implementing of the suggested control techniques. 

Research has shown the effectiveness of fractional-order models in capturing memory effects in 

epidemic transmission. These models offer promising insights into diseases with long-term 

dependencies, such as those found in [27,28], suggesting a potential direction for future extensions of 

this classical LSD model. By applying the theory of optimal control to their controlled transmission 

dynamics system, Khan et al. investigated the effects of isolation, treatment, and vaccine on infection 

reduction. They concluded that the controls were helpful [29]. The fractional order model based on the 

Atangana-Baleanu derivative was constructed to describe the LSD dynamics in [30], and formulate an 

optimal control problem involving vaccination and quarantine control strategies. 

In [30] demonstrated the effectiveness of both pharmaceutical and non-pharmaceutical controls 

in mitigating the spread of LSD. This was achieved by replacing a constant treatment rate with a time-

dependent function and introducing a new time-varying parameter to model precautionary measures. 

However, the proposed mathematical model in [30] does not account for nonlinear interactions with 

insect vector species, leaving important gaps in understanding transmission dynamics. This raises 

several critical questions: How does including of biting flies as potential virus carriers influence the 

model’s behavior? Could alternative control strategies be designed to target vector populations more 

effectively? I aim to address these unresolved questions and explore their implications for disease 

control. 

I aim to extend the LSD model presented in [31] by proposing crucial improvements over previous 

studies [30] and [31] as follows: 

(1) Incorporating the state variables of biting insects (vector compartments) into the proposed 

LSD mathematical model, thereby directly accounting for their epidemiological interactions with cattle 

populations. 

(2) Formulating a mathematical framework contains three control measures, which are defined as 

vaccination control measures, treatment measures and quarantine of infected cattle, and pesticide spray 

measures for vectors to control the transmission dynamics of LSD disease. 

(3) Constructing and solving a full optimal control problem using Pontryagin’s Maximum Principle. 

(4) Deriving the adjoint system and characterizing the optimal controls analytically. 

(5) Investigate four optimal control strategies, each with detailed simulation and interpretation. 

This article presents a mathematical framework for the LSD model that categorizes the population into 

six compartments: Susceptible cattle, vaccinated cattle, infected cattle, recovered cattle, susceptible 

vector, and infected vector. The objective is to create a dependable model to assess the impact of control 

measures on disease management by evaluating various control strategies. The model's validity 
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assessed by demonstrating a unique, positive, and bounded solution. Furthermore, the local stability 

of the suggested model at equilibrium points is shown. Analysis of sensitivity is used to identify the 

parameters of the model most sensitive to the reproduction number, which may enhance disease control 

efforts. Another impetus is to investigate various LSD management options by constructing an optimal 

control problem that contains vaccination, quarantine, and pesticide spray control measures to present 

different control strategies that reduce the transmission of LSD. To my knowledge, the work described 

in this paper has never been done before to limit the spread of LSD. 

The organization of the paper is as follows: In Section 2, I delineate the formulation of a nonlinear 

and coupled mathematical model for LSD. In Section 3, I display the model's reliability by 

demonstrating the existence of a unique solution, along with the positivity and boundedness of the 

state variables. In Section 4, I include computations for the equilibrium locations and the calculations 

for the fundamental reproduction number R0.  Additionally, I conduct a stability study of the 

equilibrium points concerning R0. In Section 5, a sensitivity analysis of the parameters of the model 

associated with the reproduction number R0  is conducted. In Section 6, I design an ideal control 

strategy for effective illness management. Section 7 contains the results and discussions, while the 

conclusions of this article are encapsulated in Section 8. 

2. Formulation and description of the mathematical model 

Mathematical models can provide significant analysis for disease transmission dynamics. 

Moreover, a realistic model may aid in forecasting the disease's pattern and assist researchers in 

determining the best strategy for halting its spread. Therefore, in this section, a mathematical 

formulation of a model describing the transition dynamics of LSD is provided. The mechanics of the 

disease's transmission is the first goal, followed by a discussion of the control measures that can be 

taken to slow the disease's progress. How the LSD is transmitted is shown in Figure 1. 

 

Figure 1. LSD model transmissions [32]. 

In this formulation, the total population of cattle 𝑁𝐶 is subdivided into susceptible cattle 𝑆𝐶, which 

represents the cattle at risk of contracting the virus and getting sick by interacting with infected cattle, 

vaccinated 𝑉𝐶  represents the cattle that are vaccinated. Infected cattle 𝐼𝐶, which stands as the category 
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of cattle in which the virus, settles and becomes infectious and transmits the disease. Recovered cattle 

𝑅𝐶 represents the cattle category that recovers quickly due to its high immunity or good treatment. The 

infection between cattle occurs due to vector insects such as mosquitoes, flies, or ticks. The total vector 

populations are indicated by 𝑁𝑉 which are partitioned into susceptible 𝑆𝑉 insects and infected insects 

𝐼𝑉. During the hot and muggy summer and fall months, when flies are most common, the disease can 

spread quickly. Also, three control measures are incorporated to control the spread of infection 

transmission, where 𝑢1 indicates vaccination control measures, 𝑢2 indicates treatment measures and, 

quarantine of infected cattle, and 𝑢3 indicates pesticide spray measures for vectors. 

Based on the previously mentioned considerations, the dynamics of the LSD model can be 

represented by the next mathematical system: 

𝑑𝑆𝐶(𝑡)

𝑑𝑡
= Π1 −

(1 − 𝑢2)𝜂1𝑆𝐶𝐼𝐶
𝑁𝐶

−
(1 − 𝑢3)𝜂2𝑆𝐶𝐼𝑉

𝑁𝐶
− (𝜀 + 𝛾1 + 𝑢1)𝑆𝐶 + 𝛼𝑅𝐶 , 

𝑑𝑉𝐶(𝑡)

𝑑𝑡
= (𝜀 + 𝑢1)𝑆𝐶 − 𝛾1𝑉𝐶 , 

𝑑𝐼𝐶(𝑡)

𝑑𝑡
=

(1 − 𝑢2)𝜂1𝑆𝐶𝐼𝐶
𝑁𝐶

+
(1 − 𝑢3)𝜂2𝑆𝐶𝐼𝑉

𝑁𝐶
− (𝜌 + 𝛾1 + 𝜎 + 𝑢2) 𝐼𝐶 , 

𝑑𝑅𝐶(𝑡)

𝑑𝑡
= (𝜌 + 𝑢2)𝐼𝐶 − (𝛼 + 𝛾1)𝑅𝐶 , 

𝑑𝑆𝑉(𝑡)

𝑑𝑡
= Π2 −

(1 − 𝑢3)𝜂3𝑆𝑉𝐼𝐶
𝑁𝐶

− (𝛾2 + 𝑢3)𝑆𝑉 , 

𝑑𝐼𝑉(𝑡)

𝑑𝑡
=

(1−𝑢3)𝜂3𝑆𝑉𝐼𝐶

𝑁𝐶
− (𝛾2 + 𝑢3)𝐼𝑉 .       (1) 

Furthermore, the initial conditions are 

𝑆𝐶(0) > 0,  𝑉𝐶(0) ≥ 0,  𝐼𝐶(0) ≥ 0,  𝑅𝐶(0) ≥ 0, 𝑆𝑉(0) > 0,  𝑉(0) ≥ 0, 

where the model parameters are illustrated in Table 1. 

Table 1. Values and explanation of the parameters for the 𝐿𝑆𝐷 model [31]. 

Parameter Description value 

Π1 Birth rate of cattle 0.5 

𝜂1 Contact rate between 𝐼𝐶 and 𝑆𝐶  0.2 

𝜂2 Contact rate between 𝐼𝑉  and 𝑆𝐶  0.3 

𝜀 Cattle vaccination rate 0.001 

𝛼 Waning rate of vaccination 0.01 

𝛾1 Cattle's natural death rate 0.0002 

𝜌 The recovery rate of cattle 0.07 

Π2 Recruitment rate of vector 50 

𝛾2 Vector's natural death rate 0.02 

𝜂3 Contact rate between 𝑆𝑉 and 𝐼𝐶  0.22 

𝜎 Cattle mortality rate caused by disease 0.027 
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3. Mathematical analysis of the LSD model 

In this section, I present theorems demonstrating that the LSD model (1) possesses a unique 

solution. I include fundamental concepts and theorems from functional analysis to support the 

demonstration of the theorems presented [14,23,24]. 

3.1. Existence of a unique solution 

Let the LSD model (1) reform into the specified format. 

𝑑𝑋

𝑑𝑡
= 𝐹(𝑋(𝑡)), 𝑋(0) = 𝑋0,         (2) 

where 𝑋(𝑡) ∈ 𝐶1[0, 𝑇] and 𝑋(𝑡): ℝ+ → ℝ+
6  is a real-valued function that is defined by 

𝑋(𝑡) = (𝑆𝐶(𝑡), 𝑉𝐶(𝑡), 𝐼𝐶(𝑡), 𝑅𝐶(𝑡), 𝑆𝑉(𝑡), 𝐼𝑉(𝑡))
𝑇
, 

with 

𝑋0 = (𝑆𝐶(0), 𝑉𝐶(0), 𝐼𝐶(0), 𝑅𝐶(0), 𝑆𝑉(0), 𝐼𝑉(0))
𝑇
, 

and 

𝐹(𝑋(𝑡)) = (𝐹1(𝑋(𝑡)), 𝐹2(𝑋(𝑡)), 𝐹3(𝑋(𝑡)), 𝐹4(𝑋(𝑡)), 𝐹5(𝑋(𝑡)), 𝐹6(𝑋(𝑡)))
𝑇
. 

Theorem 1. Assume that the function 𝐹(𝑋) satisfies the Lipschitz condition ‖𝐹(𝑋2) − 𝐹(𝑋1)‖∞ ≤

ℎ ‖𝑋2 − 𝑋1‖∞, Consequently, Eq (2) possesses a unique solution for 𝐻 = ℎ𝑇 < 1. 

Proof. The proof of this theorem follows the same manner as Theorem 6 in [14]. 

3.2 Boundedness and positivity of solutions 

In this section, I demonstrate the boundedness and positivity of the model's state variables (1) and 

delineate the feasible region for these variables. 

Theorem 2. Consider the starting information, denoted as 𝑋(0) ≥  0,  where 𝑋(𝑡) =

(𝑆𝐶(𝑡), 𝑉𝐶(𝑡), 𝐼𝐶(𝑡), 𝑅𝐶(𝑡), 𝑆𝑉(𝑡), 𝐼𝑉(𝑡))
𝑇
. The solutions of system (1) with positive initial conditions 

stay positive for all 𝑡 ≥ 0 . With 𝑁𝐶(𝑡) = 𝑆𝐶 (𝑡) + 𝑉𝐶 (𝑡) + 𝐼𝐶 (𝑡) + 𝑅𝐶 (𝑡)  and 𝑁𝑉(𝑡) = 𝑆𝑉 (𝑡) +

𝐼𝑉 (𝑡). 

Proof. It is assumed that 𝑋(0) ≥  0. Examine the first equation: 

𝑑𝑆𝐶

𝑑𝑡
= 𝛱1 − (

(1 − 𝑢2)𝜂1𝐼𝐶
𝑁𝐶

+
(1 − 𝑢3)𝜂2𝐼𝑉

𝑁𝐶
+ 𝜀 + 𝛾1 + 𝑢1) 𝑆𝐶 + 𝛼𝑅𝐶 . 

It has been demonstrated that all state variables are constrained. Therefore, let 
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𝜉 = 𝑠𝑢𝑝 [
(1 − 𝑢2)𝜂1𝐼𝐶

𝑁𝐶
+

(1 − 𝑢3)𝜂2𝐼𝑉
𝑁𝐶

+ 𝜀 + 𝛾1 + 𝑢1]. 

Then 
𝑑𝑆𝐶

𝑑𝑡
≥ 𝛱1 − 𝜉𝑆𝐶(𝑡). 

Application of the Laplace transform on both sides yields the following result: 

𝑠𝑆𝐶(𝑠) − 𝑆𝐶0
≥

𝛱1

𝑠
− 𝜉𝑆𝐶(𝑠) ⟹ 𝑆𝐶(𝑠) ≥

𝛱1

𝑠(𝑠+𝜉)
+

𝑆𝐶0

(𝑠+𝜉)
. 

Through the utilization of the inverse Laplace transform gives: 

𝑆𝐶(𝑡) ≥
𝛱1

𝜉
(1 − 𝑒−𝜉𝑡) + 𝑆𝐶0

𝑒−𝜉𝑡. 

Since 0 < 𝑒−𝜉𝑡 ≤ 1 and 𝑆𝐶0
𝑒−𝜉𝑡 ≥ 0, hence it is evident that 𝑆𝐶(𝑡) ≥ 0 ∀𝑡 ≥ 0. 

Likewise, this can be demonstrated for another state variable. Therefore, the viable region for the 

proposed model (1) is defined by 

Ω = Ψ𝐶 × Ψ𝑉 , where Ψ𝐶 = {(𝑆𝐶(𝑡), 𝑉𝐶(𝑡), 𝐼𝐶(𝑡), 𝑅𝐶(𝑡)) ∈ ℝ+
4 : 0 ≤ 𝑁𝐶 ≤

𝚷𝟏

𝛾1
} 

and 

Ψ𝑉 = {(𝑆𝑉(𝑡), 𝐼𝑉(𝑡)) ∈ ℝ+
2 : 0 ≤ 𝑁𝑉 ≤

Π2

(𝛾2 + 𝑢3)
}. 

Theorem 3. The solution 𝑋(𝑡) =  (𝑆𝐶(𝑡), 𝑉𝐶(𝑡), 𝐼𝐶(𝑡), 𝑅𝐶(𝑡), 𝑆𝑉(𝑡), 𝐼𝑉(𝑡))
𝑇
 of the LSD model (1) is 

bounded. 

Proof. The aggregate populations of cattle and mosquitoes are 

𝑁𝐶(𝑡) = 𝑆𝐶(𝑡) + 𝑉𝐶(𝑡) + 𝐼𝐶(𝑡) + 𝑅𝐶(𝑡),       (3) 

𝑁𝑉(𝑡) = 𝑆𝑉(𝑡) + 𝐼𝑉(𝑡).         (4) 

First, Eqs (3) and (4) are differentiated based on time t. This lets us get the next equation from the 

system of ordinary differential equations (1) on the right-hand side 

𝑑𝑁𝐶

𝑑𝑡
= 𝛱1 − 𝜎𝐼𝐶 − 𝛾1𝑁𝐶 ,          (5) 

𝑑𝑁𝑉

𝑑𝑡
= 𝛱2 − (𝛾2 + 𝑢3)𝑁𝑉 ,          (6) 

with 𝑁𝐶(0) = 𝑆𝐶(0) + 𝑉𝐶(0) + 𝐼𝐶(0) + 𝑅𝐶(0) and 𝑁𝑉(0) = 𝑆𝑉(0) + 𝐼𝑉(0). 

Eqs (5) and (6) can be expressed in the subsequent forms: 

𝑑𝑁𝐶

𝑑𝑡
≤ 𝛱1 − 𝛾1𝑁𝐶 ,          (7) 
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𝑑𝑁𝑉

𝑑𝑡
≤ 𝛱2 − (𝛾2 + 𝑢3)𝑁𝑉.          (8) 

Under the application of the Laplace transform, it simplifies to yield 

𝑠𝑁𝐶(𝑠) − 𝑁𝐶0
≤

𝛱1

𝑠
− 𝛾1𝑁𝐶(𝑠), 

𝑠𝑁𝑉(𝑠) − 𝑁𝑉0
≤

𝛱2

𝑠
− (𝛾2 + 𝑢3)𝑁𝑉(𝑠), 

which may be resolved for 𝑁𝐶(𝑠) and 𝑁𝑉(𝑠) to obtain 

𝑁𝐶(𝑠) ≤
𝛱1

𝑠𝛾1
−

𝛱1

(𝑠 + 𝛾1)𝛾1
+

𝑁𝐶0

(𝑠 + 𝛾1)
, 

𝑁𝑉(𝑠) ≤
𝛱2

𝑠(𝛾2+𝑢3)
−

𝛱2

(𝑠+𝛾2+𝑢3)(𝛾2+𝑢3)
+

𝑁𝑉0

(𝑠+𝛾2+𝑢3)
. 

The inverse Laplace transform is used to get the following solutions: 

𝑁𝐶(𝑠) ≤
𝛱1

𝛾1

(1 − 𝑒−𝛾1𝑡) + 𝑁𝐶(0)𝑒−𝛾1𝑡, 

and 

𝑁𝑉(𝑠) ≤
𝛱2

(𝛾2+𝑢3)
(1 − 𝑒−(𝛾2+𝑢3)𝑡) + 𝑁𝑉(0)𝑒−(𝛾2+𝑢3)𝑡. 

It may be articulated that 

lim
𝑡⟶∞

𝑁𝐶(𝑠) ≤
𝛱1

𝛾1
 and lim

𝑡⟶∞
𝑁𝑉(𝑠) ≤

𝛱2

(𝛾2+𝑢3)
. 

Therefore, it can be asserted that solution 𝑋(𝑡) is bounded for any 𝑡 ≥ 0. 

For the cattle model (1) to be useful in epidemiology, it is significant to show that the system's 

case variables are always non-negative when 𝑡 > 0. The solution of the cattle model (1) with non-

negative beginning conditions will stay positive at all times 𝑡 > 0. 

4. Stability analysis and equilibrium points 

4.1 Disease-free equilibrium point (DFE) 

A disease-free equilibrium is a state where a population is devoid of disease. In the lack of LSD, 

𝐼𝐶 = 𝑅 = 𝐼𝑉 = 0. Setting all derivatives of the 𝐿𝑆𝐷 model (1) to zero and establishing 𝐼𝐶 = 𝑅 = 𝐼𝑉 =

0, DFE is defined as 

𝐸0 = (
Π1

𝑢1+𝛾1+𝜀
,

(𝑢1+𝜀)Π1

𝛾1(𝑢1+𝛾1+𝜀)
, 0,0,

Π2

𝑢3+𝛾2
, 0). 

4.2 Computation of 𝑅0 
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This part explains how 𝑅0 for the 𝐿𝑆𝐷 model (1) is calculated utilizing the methodology outlined 

in [33]. To do this, the subsequent matrices are derived. 

Define 𝑥𝑖 = 𝐼𝐶 , 𝐼𝑉 , a new infection matrix (ℱ𝑖): 

ℱ𝑖 = [

(1−𝑢2)𝜂1𝑆𝐶𝐼𝐶

𝑁𝐶
+

(1−𝑢3)𝜂2𝑆𝐶𝐼𝑉

𝑁𝐶

(1−𝑢3)𝜂3𝑆𝑉𝐼𝐶

𝑁𝐶

], 

where 𝑁𝐶(𝑡) = 𝑆𝐶(𝑡) + 𝑉𝐶(𝑡) + 𝐼𝐶(𝑡) + 𝑅𝐶(𝑡) and the transition matrix (𝑉𝑖): 

𝑉𝑖 = [
(𝜌 + 𝛾1 + 𝜎 + 𝑢2)𝐼𝐶

(𝛾2 + 𝑢3)𝐼𝑉
]. 

The Jacobian of ℱ𝑖 and 𝑉𝑖 

𝐹 =
𝜕ℱ𝑖(𝐸0)

𝜕𝑥𝑖
= [

(1−𝑢2)𝜂1𝑆 𝐶
∗

𝑁𝐶

(1−𝑢3) 𝜂2 𝑆 𝐶
∗

𝑁𝐶

(1−𝑢3) 𝜂3 𝑆 𝑉
∗  

𝑁𝐶
0

] and 𝑉 =
𝜕𝑉𝑖(𝐸0)

𝜕𝑥𝑖
= [

𝜌 + 𝛾1 + 𝜎 + 𝑢2 0
0 𝛾2 + 𝑢3

]. 

The next-generation matrix is 𝐾 = 𝐹𝑉−1, 

𝐾 =

[
 
 
 
 

(1 − 𝑢2)𝜂1𝑆 𝐶
∗

(𝜌 + 𝛾1 + 𝜎 + 𝑢2)

(1 − 𝑢3)𝜂2𝑆 𝐶
∗

(𝛾2 + 𝑢3)

(1 − 𝑢3)𝜂3𝑆 𝑉
∗

(𝜌 + 𝛾1 + 𝜎 + 𝑢2)
0

]
 
 
 
 

, 

where 

𝑆 𝐶
∗ =

Π1

𝑢1 + 𝛾1 + 𝜀
,  𝑆 𝑉

∗ =
Π2

𝑢3 + 𝛾2
. 

Then, the reproduction number 𝑅0 is given as 

𝑅0 =
1

2

(1 − 𝑢2)𝜂1𝛾1

(𝜌 + 𝛾1 + 𝜎 + 𝑢2)(𝑢1 + 𝛾1 + 𝜀)
 

+√(
(1 − 𝑢2)𝜂1𝛾1

2 (𝜌 + 𝛾1 + 𝜎 + 𝑢2)(𝑢1 + 𝛾1 + 𝜀)
)

2

+
(1 − 𝑢3)

2 𝜂2𝜂3𝛾1
2Π2

Π1 (𝑢3 + 𝛾2)
2(𝑢1 + 𝛾1 + 𝜀)(𝜌 + 𝛾1 + 𝜎 + 𝑢2)

, 

𝑅0 = 𝑅1 + 𝑅2,          (9) 

where 

𝑅1 =
(1 − 𝑢2)𝜂1𝛾1

2(𝜌 + 𝛾1 + 𝜎 + 𝑢2)(𝑢1 + 𝛾1 + 𝜀)
, 

𝑅2 = √(
(1−𝑢2) 𝜂1𝛾1

2 (𝜌+𝛾1+𝜎+𝑢2)(𝑢1+𝛾1+𝜀)
)
2

+
(1−𝑢3)2 𝜂2𝜂3𝛾1

2Π2

Π1 (𝑢3+𝛾2)2(𝑢1+𝛾1+𝜀)(𝜌+𝛾1+𝜎+𝑢2)
, 
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and 

𝑅1
∗ =

(1 − 𝑢2)𝜂1𝛾1

(𝜌 + 𝛾1 + 𝜎 + 𝑢2)(𝑢1 + 𝛾1 + 𝜀)
, 

𝑅2
∗ =

(1 − 𝑢3)
2𝜂2𝜂3𝛾1

2Π2

Π1(𝑢3 + 𝛾2)
2(𝑢1 + 𝛾1 + 𝜀)(𝜌 + 𝛾1 + 𝜎 + 𝑢2)

. 

The formulas 𝑅1
∗ and 𝑅2

∗ are modified to derive the expression for R0 in the subsequent analysis of 

model (1). 

4.3 Local stability of disease-free equilibrium 

Theorem 4. The DFE point 𝐸0 of 𝐿𝑆𝐷 model (1) is asymptotically stable under local conditions if 

𝑅0
∗ < 1 and unstable otherwise. 

Proof. The Jacobian matrix of the 𝐿𝑆𝐷 model (1) is computed at the disease-free equilibrium 𝐸0 

𝐽(𝐸0) = 

(

 
 
 
 
 
 
 
 
 

−𝑢1 − 𝛾1 − 𝜖 0 −
(1 − 𝑢2)𝛾1𝜂1

𝑢1 + 𝛾1 + 𝜖
𝛼 0 −

(1 − 𝑢3)𝛾1𝜂2

𝑢1 + 𝛾1 + 𝜖
𝑢1 + 𝜖 −𝛾1 0 0 0 0

0 0 −𝑢2 − 𝛾1 − (
(−1 + 𝑢2) 𝜂1𝛾1

𝑢1 + 𝛾1 + 𝜖
) − 𝜌 − 𝜎 0 0

(1 − 𝑢3)𝛾1𝜂2

𝑢1 + 𝛾1 + 𝜖

0 0 𝑢2 + 𝜌 −𝛼 − 𝛾1 0 0

0 0 −
𝑆 𝑉

∗ (1 − 𝑢3)𝛾1𝜂3

𝑆 𝐶
∗  (𝑢1 + 𝛾1 + 𝜖)

0 −𝑢3 − 𝛾2 0

0 0
𝑆 𝑉

∗ (1 − 𝑢3)𝛾1𝜂3

𝑆 𝐶
∗ (𝑢1 + 𝛾1 + 𝜖)

0 0 −𝑢3 − 𝛾2
)

 
 
 
 
 
 
 
 
 

. 

The eigenvalues of the matrix 𝐽(𝐸0) are calculated and yield 

𝜆1 = −𝛾1,  𝜆2 = −𝑢3 − 𝛾2, 𝜆3 = −𝑢1 − 𝛾1 − 𝜖 , 𝜆4 = −𝛼 − 𝛾1. 

The other two roots can be derived from the quadratic characteristic equation provided by 

𝜆2 + 𝜆𝑎1 + 𝑎2 = 0,         (10) 

where 

𝑎1 = (𝑢3 + 𝛾2) + (𝑢2 + 𝛾1 + 𝜌 + 𝜎)(1 − 𝑅1
∗), 

𝑎2 = (𝑢3 + 𝛾2)(𝑢2 + 𝛾1 + 𝜌 + 𝜎)(1 − 𝑅0
∗), 

𝑅0
∗ = 𝑅0

2 + 2𝑅1(1 − 𝑅0). 

It is seen in the characteristic equation (10) that all related coefficients 𝑎𝑖 > 0 for 𝑖 = 1,2 if and only 

if 𝑅0
∗ < 1. Using Routh–Hurwitz criteria [24,34], it is simple to demonstrate that from the Hurwitz 

matrix is 𝐻2 = (
𝑎1 1
0 𝑎2

), and |𝐻2| = 𝑎1𝑎2 > 0. 
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The model's disease-free equilibrium is asymptotically stable locally when 𝑅0
∗ < 1, and unstable 

otherwise. 

4.4 Endemic equilibrium point (EE) 

The endemic equilibrium, represented by 𝐸∗, is the stable solution that arises from the sustained 

presence of disease within the community. The EE is denoted as 𝐸∗ = (𝑆𝐶
∗, 𝑉∗, 𝐼𝐶

∗, 𝑅𝐶
∗, 𝑆𝑉

∗, 𝐼𝑉
∗) , 

when articulated about the forces of infection 𝛽𝑐
∗ and 𝛽𝑣

∗, where 

𝑆𝐶
∗ =

𝛽3𝛱1

𝛽1𝛽3 + (−𝛼 + 𝛽3)𝛽𝑐 + 𝛽3𝛾1
, 

𝑉𝑐
∗ =

𝛽1𝛽3𝛱1

(−𝛼 + 𝛽3)𝛽𝑐𝛾1 + 𝛾1(𝛽1𝛽3 + 𝛽3𝛾1)
, 

𝐼𝑐
∗ =

𝛽3𝛽𝑐𝛱1

(−𝛼 + 𝛽3)𝛽𝑐(𝛽2 + 𝛾1 + 𝜎) + (𝛽1𝛽3 + 𝛽3𝛾1)(𝛽2 + 𝛾1 + 𝜎)
, 

𝑅𝑐
∗ =

𝛽𝑐𝛱1

𝛽1𝛽3 + (−𝛼 + 𝛽3)𝛽𝑐 + 𝛽3𝛾1
, 

𝑆𝑉
∗ =

𝛱2

𝛽4 + 𝛽𝑣
,  

𝐼𝑉
∗ =

𝛽𝑉  𝛱2

𝛽4(𝛽4 + 𝛽𝑉)
, 

where 

𝛽𝐶 =
(1 − 𝑢2) 𝜂1𝐼𝑐

∗

𝑁𝐶
+

(1 − 𝑢3)𝜂2𝐼𝑉
∗

𝑁𝐶
, 𝛽𝑉 =

(1 − 𝑢3)𝜂3𝐼𝑐
∗

𝑁𝐶
, 

𝛽1 = (𝜖 + 𝑢1), 𝛽2 = (𝜌 + 𝑢2), 𝛽3 = (𝛼 + 𝛾1), 𝛽4 = (𝛾2 + 𝑢3). 

4.5 Asymptotic stability of the endemic equilibrium point 

Theorem 5. The endemic equilibrium of the 𝐿𝑆𝐷  model (1) is locally asymptotically stable if it 

satisfies the Routh–Hurwitz criteria and under the conditions of 𝛽𝐶 , 𝛽𝑉 > 0, and 𝛽3 > 𝛼. 

Proof. The Jacobian matrix for the LSD system (1) at 𝐸∗ is derived as follows: 

𝐽(𝐸∗) =

(

 
 
 

−𝛽1 − 𝛽𝐶 − 𝛾1 0 0 𝛼 0 0
𝛽1 −𝛾1 0 0 0 0
𝛽𝐶 0 −𝛽2 − 𝛾1 − 𝜎 0 0 0
0 0 𝛽2 + 𝛾1 + 𝜎 −𝛽3 0 0
0 0 0 0 −𝛽4 − 𝛽𝑉 0
0 0 0 0 𝛽𝑉 −𝛽4)

 
 
 

. 

The eigenvalues of the matrix 𝐽(𝐸∗) are calculated, and three of the eigenvalues are 

𝜆1 = −𝛽4, 𝜆2 = −𝛽4 − 𝛽𝑉 , 𝜆3 = −𝛾1. 
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The characteristic equation for determining the remaining three eigenvalues is expressed as 

𝜆3 + b1𝜆
2 + b2𝜆 + b3 = 0,         (11) 

where 

b1 = 𝛽1 + 𝛽2 + 𝛽3 + 𝛽𝐶 + 2𝛾1 + 𝜎, 

b2 = (𝛽3+𝛾1)𝛽𝐶 + 2𝛽3𝛾1 + 𝛾1
2 + (𝛽3 + 𝛽𝐶 + 𝛾1)(𝛽2 + 𝜎) + 𝛽1(𝛽2 + 𝛽3 + 𝛾1 + 𝜎), 

b3 = ((𝛽1 + 𝛾1)𝛽3 + (−𝛼 + 𝛽3) 𝛽𝐶)(𝛽2 + 𝛾1 + 𝜎). 

From the characteristic equation (11), the subsequent Hurwitz matrix is derived from the polynomial 

equation 

𝐻3 = (

b1 1 0
b3 b2 b1

0 0 b3

), 

where 

b1 = 𝛽1 + 𝛽2 + 𝛽3 + 𝛽𝐶 + 2𝛾1 + 𝜎 > 0, 

b2 = (𝛽3+𝛾1)𝛽𝐶 + 2𝛽3𝛾1 + 𝛾1
2 + (𝛽3 + 𝛽𝐶 + 𝛾1)(𝛽2 + 𝜎) + 𝛽1(𝛽2 + 𝛽3 + 𝛾1 + 𝜎) >  0, 

b3 = ((𝛽1 + 𝛾1)𝛽3 + (−𝛼 + 𝛽3)𝛽𝐶)(𝛽2 + 𝛾1 + 𝜎) > 0 if and only if 𝛽3 > 𝛼. 

Based on the criteria of Routh–Hurwitz, |𝐻3| > 0 if 𝑏1, 𝑏2, 𝑏3 > 0 and b1b2 > b3. 

Given that all parameters and variables are positive, the characteristic Eq (11) has negative real 

parts if the Routh-Hurwitz is satisfied, and the LSD model (1) at 𝐸∗ is asymptotically stable. 

5. Sensitivity analysis 

Sensitivity analysis enables researchers to examine the sensitivity index of each of the 𝑅0 

parameters. It provides several significant conclusions, such as whether raising a particular value of 

the parameter will be raise the dependent variable's value, 𝑅0, or cause it to fall to a particular value. 

Performing a comprehensive study is essential to developing the best disease control plans. This 

process makes it possible to pinpoint the precise 𝑅0  characteristics that are most sensitive to it. A 

parameter can be claimed to be highly sensitive if its sensitivity index reading is high. The normalized 

sensitivity technique, which was established and implemented, is used in [31,35] to ascertain the 

sensitivity index of every parameter. Parameters with a high sensitivity index might be thought of as 

control variables that could aid in lowering the 𝑅0 value so that the illness is no longer an epidemic. 

The next formula is used to calculate a parameter's sensitivity index: 

Υ𝜛
𝑅0 =

𝜕𝑅0

𝜕𝜛
×

𝜛

𝑅0
,          (12) 

where 𝜛 represents model parameters in which interest is taken. 
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This method is used to calculate the sensitivity measures for each parameter are calculated in 𝑅0, 

and the results of this computation are represented graphically in Figure 2, where the ascending and 

descending bars indicate the direct and indirect relationships between the parameters and 𝑅0 , 

respectively. 

 

Figure 2. The sensitivity index for model parameters. 

It is clear from Figure 2 that the parameters that have a positive sensitivity index such as 𝛾1, 𝜂2, 

𝜂3, 𝛱2, and  𝜂1 have a direct effect on the 𝑅0, i.e., that an increase or decrease in the value of these 

parameters causes an increase or decrease in the value of  𝑅0, which leads to the spread or reduction 

of the disease. In contrast, the parameters that have a negative sensitivity index, such as 𝛾2, 𝛱1, 𝜀, 𝜌, 

and 𝜎 have an inverse effect on the increase or decrease in the value of the 𝑅0. Since parameters 𝜂1, 

𝜂2, and  𝜂3 are related to the contact rate infected or susceptible cattle with the susceptible or infected 

vector, quarantining and treating infected cattle will limit virus transmission, and spraying the infected 

vector will also reduce the spread of the virus, which may be effective strategies to limit the spread of 

the disease. Moreover, the vaccination rate 𝜀 has a significant inverse effect on the 𝑅0, which makes 

vaccination an effective strategy to reduce the spread of the disease. The behavior of 𝑅0 with related 

parameters is presented in Figure 3. 

 

Figure 3. The relationship curves of 𝑅0 against model parameters. 
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6. Optima control analysis 

Determining a control law for a specified system that achieves a particular criterion is known as 

optimal control. A control variable and a function of state are both components of a control issue. A 

collection of differential equations outlining the control variables' paths that minimize the cost function 

is known as an optimal control. The control can be obtained using the Pontryagin’s maximum 

principles (a necessary optimality condition) [36]. Thus, the optimal control theory is the most suitable 

mathematical theory for tackling issues involving deploying the best choice to accomplish a specific 

objective.  Since this boundary-value problem results from taking the derivative of a Hamiltonian, it 

has a unique structure. 

In this section, I formulate an optimal control issue that contains three control variables that are 

dependent on time, which are defined as vaccination control measures (𝑢1), treatment measures and 

quarantine of infected cattle (𝑢2), and pesticide spray measures for vectors (𝑢3) for controlling the 

transmission dynamics of LSD disease. To accomplish this, the objective function that incorporates 

both the controls and infected state variables is defined as follows: 

Minimize 𝐽(𝑢1, 𝑢2, 𝑢3) = ∫ (𝐴1𝐼𝐶 + 𝐴2𝐼𝑉 +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2)) 𝑑𝑡
𝑇

0
,  (13) 

where the nonnegative constants 𝐴1, 𝐴2 and 𝐵1, 𝐵2, 𝐵3 stand for the weights of the state variables and 

control measures, respectively. Moreover, the objective functional satisfies the following properties [37]: 

(1) The control set and associated state variables are nonempty. 

(2) The state variables and controls are nonnegative. 

(3) The objective functional in the control pair satisfies the necessary convexity. 

(4) The state system meets the Lipschitz property relating to the state variables, and the state 

solutions are bounded. 

(5) The control set ℧ = {𝑢1, 𝑢2, 𝑢3: 0 ≤ 𝑢1, 𝑢2, 𝑢3 ≤ 1, 𝑡 ∈ [0, 𝑇]} is compact. 

To establish the requisite optimality criteria derived from Pontryagin’s maximum principle, the 

Hamiltonian needs to be constructed (𝐻) as the following form: 

𝐻 = 𝐴1𝐼𝐶 + 𝐴2𝐼𝑉 +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + +𝐵3𝑢3

2) + 𝑝1 (Π1 −
(1−𝑢2) 𝜂1 𝑆𝐶 𝐼𝐶

𝑁𝐶
−

(1−𝑢3) 𝜂2 𝑆𝐶 𝐼𝑉

𝑁𝐶
−

(𝜀 + 𝛾1 + 𝑢1)𝑆𝐶 + 𝛼𝑅𝐶) + 𝑝2((𝜀 + 𝑢1)𝑆𝐶 − 𝛾1𝑉𝐶) + 𝑝3 (
(1−𝑢2) 𝜂1 𝑆𝐶 𝐼𝐶

𝑁𝐶
+

(1−𝑢3) 𝜂2 𝑆𝐶 𝐼𝑉

𝑁𝐶
−

(𝜌 + 𝛾1 + 𝜎 + 𝑢2)𝐼𝐶) + 𝑝4((𝜌 + 𝑢2)𝐼𝐶 − (𝛼 + 𝛾1)𝑅𝐶) + 𝑝5 (Π2 −
(1−𝑢3) 𝜂3 𝑆𝑉 𝐼𝐶 

𝑁𝐶
− (𝛾2 + 𝑢3)𝑆𝑉) +

𝑝6(
(1−𝑢3) 𝜂3 𝑆𝑉 𝐼𝐶 

𝑁𝐶
− (𝛾2 + 𝑢3)𝐼𝑉),                (14) 

where 𝑝𝑘; 𝑘 = 1,2, … ,6  are adjoint variables. By deriving the Hamiltonian concerning the state 

variables and using the following relation: 

𝑑𝑝𝑘

𝑑𝑡
= −

𝜕𝐻

𝜕𝜒𝑘
;  𝑘 = 1,2, … ,6, 

where 𝜒𝑘 = (𝑆𝐶 , 𝑉𝐶 , 𝐼𝐶 , 𝑅𝐶 , 𝑆𝑉 , 𝐼𝑉).  

The following system of adjoint variables is derived: 
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𝑑𝑝1

𝑑𝑡
= (

(1 − 𝑢2)𝜂1𝐼𝐶
𝑁𝐶

+
(1 − 𝑢3)𝜂2𝐼𝑉

𝑁𝐶
) (𝑝1 − 𝑝3) + (𝜖 + 𝑢1)(𝑝1 − 𝑝2) + 𝛾1𝑝1, 

𝑑𝑝2

𝑑𝑡
= 𝛾1𝑝2, 

𝑑𝑝3

𝑑𝑡
= −𝐴1 +

(1 − 𝑢2)𝜂1𝑆𝐶

𝑁𝐶

(𝑝1 − 𝑝3) +
(1 − 𝑢3)𝜂3𝑆𝑉

𝑁𝐶

(𝑝5 − 𝑝6) + (𝜌 + 𝑢2)(𝑝3 − 𝑝4)

+ (𝜎 + 𝛾1)𝑝3, 

𝑑𝑝4

𝑑𝑡
= 𝛼( 𝑝4 − 𝑝1) + 𝛾1𝑝4, 

𝑑𝑝5

𝑑𝑡
=

(1 − 𝑢3)𝜂3𝐼𝐶
𝑁𝐶

(𝑝5 − 𝑝6) + (𝛾2 + 𝑢3)𝑝5, 

𝑑𝑝6

𝑑𝑡
= −𝐴2 +

(1−𝑢3) 𝜂2 𝑆𝐶

𝑁𝐶
(𝑝1 − 𝑝3) + (𝛾2 + 𝑢3)𝑝6,      (15) 

subject to the terminal conditions 𝑝𝑘(𝑇) = 0; 𝑘 = 1, 2, 3, 4, 5, 6. 

Further, the optimal controls under the max-min bounds are given by: 

𝑢1
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {1,

𝑆𝐶(𝑝1 − 𝑝2)

𝐵1
}}, 

𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {1,

𝜂1𝑆𝐶𝐼𝐶(𝑝3 − 𝑝1) + 𝐼𝐶𝑁𝐶(𝑝3 − 𝑝4)

𝐵2𝑁𝐶
}}, 

𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {1,

𝜂2𝑆𝐶𝐼𝑉(𝑝3−𝑝1)+𝜂3𝑆𝑉𝐼𝐶(𝑝6−𝑝5)+𝑁𝐶𝑆𝑉𝑝5+𝐼𝑉 𝑁𝐶 𝑝6

𝐵3𝑁𝐶
}}.    (16) 

7. Numerical simulation 

In this section, I verify the theoretical findings discussed above through a numerical simulation 

presented in a graphical representation. Moreover, the optimal solutions to the proposed optimal 

control problem is presented and analyzed to determine the most reasonable solution for addressing 

the proposed problem. For this purpose, the tabular data shown in Table 1 is used in addition to the 

following initial values for the variables of status 𝑆𝐶(0) = 1000, 𝑉𝐶(0) = 20, 𝐼𝐶(0) = 50, 𝑅𝐶(0) =

0 , 𝑆𝑉(0) = 2000 , and 𝐼𝑉(0) = 50 . The weight values used in this simulation are 𝐴1 = 1 , 𝐴2 = 2 , 

𝐵1 = 0.02, 𝐵2 = 0.01, and 𝐵3 = 0.2. 

The following four cases are considered using various control variable combinations. 

Case 1: Combination of vaccination, treatment with the quarantine of infected cattle, and pesticide 

spray for vector control measures (all suggested control measures, i.e., 𝑢1 ≠ 0, 𝑢2 ≠ 0, 𝑢3 ≠ 0). 
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This case integrates all suggested control measures to reduce the transmission of LSD. The 

behavior of the model compartments with and without controls and the control function are presented 

in Figure 4. When vaccination procedures are applied, infected cattle are isolated with treatment, and 

the vector is sprayed; an increase in the vaccinated and recovered categories is observed, along with a 

noticeable decrease in infected cattle and the vector. Moreover, as it appears from the control profile, 

in the case of merging the proposed controls, the period of the controls being at their maximum 

potential is short before gradually decreasing. With the isolation of infected animals and their treatment, 

in addition to spraying the vectors, vaccination is needed only in the first days of the disease's spread. 

After that, it can be gradually reduced. 

Case 2: Combination only between treatment with quarantine of infected cattle and pesticide spray for 

vector control measures (i.e.,  𝑢1 = 0, 𝑢2 ≠ 0, 𝑢3 ≠ 0). 

In this case, procedures are applied to isolate and treat infected cattle and spray vectors without 

using procedures to vaccinate susceptible cattle. The behavior of the system variables and the priorities 

of the applied controls is depicted in Figure 5.  A sharp decrease is noticed in the behavior of the curve 

of infected cattle and the vectors. Still, in the absence of vaccination procedures, the behavior of the 

curve of vaccinated cattle decreases, but not as it is in other cases. The control profile graph, shows 

that both applied controls should be implemented with maximum effort before gradually reducing 

vector spraying and isolation procedures at approximately 10 and 15 days from the control overlap 

period, respectively. 

Case 3: Combination only between vaccination and pesticide spray for vector control measures (i.e., 

𝑢1 ≠ 0, 𝑢2 = 0, 𝑢3 ≠ 0 ). 

In this case, vaccination of susceptible cattle and spraying vectors are used without 

considering the procedures for isolating and treating infected cattle. The simulation of this case is 

shown in Figure 6. The graphs show that the application of these controls has a noticeable effect in 

decreasing the incidence of infection cattle as well as vectors and increasing the number of vaccinated 

and recovered cattle. From the control profile, it appears that when combining these two controls, they 

should be used at maximum effort at the beginning of the overlap period and then gradually reduce the 

vaccination procedures at approximately 20 days while continuing to use vector spraying at maximum 

effort before gradually reducing it at approximately 25 days of the control period. 

Case 4: Combination only between vaccination and treatment with quarantine of infected cattle control 

measures (i.e., 𝑢1 ≠ 0, 𝑢2 ≠ 0, 𝑢3 = 0). 

I focus on applying only vaccination and isolation of infected cattle and treatment without of 

measures of spraying vectors. The behavior of state variables in control and uncontrolled cases, in 

addition to the control profile, is presented in Figure 7. Applying these control measures results in a 

considerable decrease diseased cattle and vectors, and a major percentage of the herd recovers, as 

shown in Figure 7.  Thus, this case is effective in reducing the LSD, according to the results, but 

vaccinating the susceptible cattle and isolation of infected cattle and treatment, particularly early in the 

epidemic, should be applied at maximum efforts almost until the end of the overlap period, as shown 

in the control profile graph.  
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Figure 4. The influence of case 1 on state variables and the behavior of the control profile. 
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Figure 5. The influence of case 2 on state variables and the behavior of the control profile. 
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Figure 6. The effect of case 3 on the state variables and the behavior of the control profile. 
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Figure 7. The influence of case 4 on state variables and the behavior of the control profile. 
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8. Conclusions 

In this paper, I aim to develop a mathematical model that simulates the dynamics of disease 

transmission of LSD in cattle. The approach of the optimal control was used. The Runge-Kutta method 

from the fourth order was used to solve the numerical system. The stability of the mathematical model 

was analyzed. A sensitivity analysis was performed, and the results showed that the parameters 

exhibiting the highest sensitivity are the rate of natural death from vector insects and the vaccination 

rate. The optimal control theory was used to identify optimal strategies to reduce disease propagation. 

The following points represent the most important results of the research, which are as follows:  

• The parameters with the highest sensitivity are the natural mortality rate of vector insects and 

the vaccination rate. 

• Combining treatment, vaccination, and pesticide spraying contributes significantly reduces the 

rate of infected cases and increases the rate of recovered cases. 

• Isolating infected animals and completing treatment reduces the spread of the disease among 

the sample.  

• Covering the vector insects with pesticides significantly reduces disease transmission through 

vectors.  

These outputs provide important indicators for those responsible for decision-making to control this 

disease and develop strategies to reduce the economic losses resulting from its spread. 

The limitation of this study is that the proposed model is a classical ODE model, which does not 

account for memory effects that can be captured by fractional-order models. Additionally, empirical 

validation with real-world outbreak data was limited due to data unavailability. For future studies, 

researchers may address these aspects using advanced modeling frameworks. 
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