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Abstract: In this research, I aimed to develop a mathematical system that simulates the mechanics of
lumpy skin disease (LSD) transmission in cattle. The approach of optimal control was used, and the
samples were divided into six categories: Infected, recovered, susceptible, vaccinated, susceptible
vector insects, and infected vector insects. The Runge-Kutta technique from the fourth order was used
to solve the numerical system, and the effects of various preventative actions like treatment,
vaccination, and pesticide spraying on the dissemination of the disease were studied. The stability of
the mathematical model was investigated, and it was determined that the disease-free equilibrium point
is stable when the infection fails to spread within the population. A sensitivity analysis was performed,
and the results showed that the exceedingly sensitive parameters are the natural mortality rate of vector
insects and the vaccination rate. The hypothesis of optimal control was used to identify the optimal
strategies to reduce the disease's proliferation, and it was found that the combination of all measures
significantly reduces the number of infected cases and is a reason for increasing the number of
recovered cattle, emphasizing the significance of other measures like early vaccination and isolation
of infected cattle.
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1. Introduction

LSD is a highly contagious viral disease of cattle. The Neethling virus, a member of the
Capripoxvirus genus, is the cause of it. The sickness is accountable for the significant reduction in
dairy components. Once LSD proliferates among a population, the agricultural society may encounter
significant losses due to animals experiencing abortions, weight reduction, and diminished fertility. It
could potentially result in irreversible harm to the skin. LSD is listed as a notifiable disease by the
World Organization for Animal Health. Notifiable illnesses are those that must be reported within a
specified timeframe upon identification by veterinarians or owners [1]. Although cattle are the primary
animal susceptible to LSD, experimental infections indicate that the virus can also infect sheep, goats,
giraffes, gazelles, and impalas. The designation LSD derives from the observation that the lymph nodes
of the diseased animal enlarge and appear as lumps on the skin. Significant cutaneous nodules develop
on the neck, udder, head, abdomen, limbs, and genitalia of infected cattle, subsequently progressing to
ulcers and ultimately transforming into skin scabs [2]. The sickness evolves within 4 to 14 days [3].
The utilization of attenuated viruses for immunization has proven to be an effective strategy in
controlling LSD [4]. Inoculation with tainted or inadequately attenuated vaccinations can precipitate
outbreaks of lumpy skin disease [5]. The restricted availability of vaccinations complicates the control
of LSD in many regions [6]. Alternative strategies such as killing affected animals, imposing
movement restrictions, and implementing vector control have been employed; however, their efficacy
in the absence of immunization has been inconsistent [7]. Therefore, it is crucial to identify additional
intervention measures to complement immunization efforts in order to reduce LSD transmission
patterns. The documented use of LSD in several countries throughout diverse global regions. The
ailment was originally widespread in Africa, especially in sub-Saharan nations. The initial recorded
instances of LSD occurred in Zambia and Kenya during the 1920s and the 1930s, in turn. LSD later
spread to several African countries, such as Uganda, Tanzania, Sudan, Ethiopia, and South Africa. Over
the past few years, its geographic range has extended beyond Africa. Outbreaks have been documented
in nations throughout Europe, Asia, and the Middle East. Many European countries, including Albania,
North Macedonia, Serbia, Bulgaria, and Greece, have confirmed incidences of LSD. The nations of
the Middle East, Saudi Arabia, Iraq, and Jordan, have also detected the disease [1].

Models for mathematically describing epidemic diseases serve a crucial role in epidemiology.
A range of epidemic systems is being created and utilized for the investigation and management
of numerous diseases, including AIDS/HIV [8], cholera [9], Ebola virus [8,10], TB [11], and
COVID-19 [12,13]. Another objective of epidemic disease modeling is to understand the long-term
dynamics of the disease and to identify requisite management methods [14]. Comprehending the
transmission patterns of an infectious disease is essential for formulating effective control strategies.
Numerous modeling studies employing epidemic data have sought to improve the comprehension of
LSD transmission dynamics by including the rates of incubation, recruitment, vaccination, [15—17]
and essential dynamics (birth and natural mortality) [18,19]. The incidence of LSD has been predicted
using time series analysis and demographic projections in [20,21]. In [22], the authors developed an
LSD nonlinear fractional system that excludes the exposed category, but in [14], the vector population
is disregarded. In [23], the authors examined both populations of cattle and vectors but did not factor
in the decline of infection-induced immunity. Certain studies in 2019 on the malaria and the
coronavirus disease (COVID-19) have included the decline in immunity rate after recovery,
highlighting the significance of this factor in the transportation dynamics of epidemic diseases
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characterized by recurrent incidence (re-infection following recuperation) [24]. Optimal control theory
is utilized not just in engineering and several scientific disciplines but is also regarded as particularly
beneficial in modeling disease epidemic control. This theory encompasses significant principles that
delineate how disease in a particular or extensive zone can be managed using proposed or existing
biological controls. Numerous scholars applied this approach to epidemic models for potential
infection control. To eradicate illness from society, researchers developed various mathematical
models incorporating control variables and effective tactics. In recent decades, various control models
have been presented to eliminate infections from different diseases, including the model of Okosun
and Makinde, which examines the co-infection of cholera and malaria to analyze their interacting
behavior [25]. Ullah and Khan have developed a model of optimal control for the new COVID-19
epidemic and examined the data presented in Pakistan [26]. They determined that the sickness could
be mitigated by implementing of the suggested control techniques.

Research has shown the effectiveness of fractional-order models in capturing memory effects in
epidemic transmission. These models offer promising insights into diseases with long-term
dependencies, such as those found in [27,28], suggesting a potential direction for future extensions of
this classical LSD model. By applying the theory of optimal control to their controlled transmission
dynamics system, Khan et al. investigated the effects of isolation, treatment, and vaccine on infection
reduction. They concluded that the controls were helpful [29]. The fractional order model based on the
Atangana-Baleanu derivative was constructed to describe the LSD dynamics in [30], and formulate an
optimal control problem involving vaccination and quarantine control strategies.

In [30] demonstrated the effectiveness of both pharmaceutical and non-pharmaceutical controls
in mitigating the spread of LSD. This was achieved by replacing a constant treatment rate with a time-
dependent function and introducing a new time-varying parameter to model precautionary measures.
However, the proposed mathematical model in [30] does not account for nonlinear interactions with
insect vector species, leaving important gaps in understanding transmission dynamics. This raises
several critical questions: How does including of biting flies as potential virus carriers influence the
model’s behavior? Could alternative control strategies be designed to target vector populations more
effectively? 1 aim to address these unresolved questions and explore their implications for disease
control.

I aim to extend the LSD model presented in [31] by proposing crucial improvements over previous
studies [30] and [31] as follows:

(1) Incorporating the state variables of biting insects (vector compartments) into the proposed
LSD mathematical model, thereby directly accounting for their epidemiological interactions with cattle
populations.

(2) Formulating a mathematical framework contains three control measures, which are defined as
vaccination control measures, treatment measures and quarantine of infected cattle, and pesticide spray
measures for vectors to control the transmission dynamics of LSD disease.

(3) Constructing and solving a full optimal control problem using Pontryagin’s Maximum Principle.

(4) Deriving the adjoint system and characterizing the optimal controls analytically.

(5) Investigate four optimal control strategies, each with detailed simulation and interpretation.
This article presents a mathematical framework for the LSD model that categorizes the population into
six compartments: Susceptible cattle, vaccinated cattle, infected cattle, recovered cattle, susceptible
vector, and infected vector. The objective is to create a dependable model to assess the impact of control
measures on disease management by evaluating various control strategies. The model's validity
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assessed by demonstrating a unique, positive, and bounded solution. Furthermore, the local stability
of the suggested model at equilibrium points is shown. Analysis of sensitivity is used to identify the
parameters of the model most sensitive to the reproduction number, which may enhance disease control
efforts. Another impetus is to investigate various LSD management options by constructing an optimal
control problem that contains vaccination, quarantine, and pesticide spray control measures to present
different control strategies that reduce the transmission of LSD. To my knowledge, the work described
in this paper has never been done before to limit the spread of LSD.

The organization of the paper is as follows: In Section 2, I delineate the formulation of a nonlinear
and coupled mathematical model for LSD. In Section 3, I display the model's reliability by
demonstrating the existence of a unique solution, along with the positivity and boundedness of the
state variables. In Section 4, I include computations for the equilibrium locations and the calculations
for the fundamental reproduction number R,. Additionally, I conduct a stability study of the
equilibrium points concerning Ro. In Section 5, a sensitivity analysis of the parameters of the model
associated with the reproduction number R, is conducted. In Section 6, I design an ideal control
strategy for effective illness management. Section 7 contains the results and discussions, while the
conclusions of this article are encapsulated in Section 8.

2. Formulation and description of the mathematical model

Mathematical models can provide significant analysis for disease transmission dynamics.
Moreover, a realistic model may aid in forecasting the disease's pattern and assist researchers in
determining the best strategy for halting its spread. Therefore, in this section, a mathematical
formulation of a model describing the transition dynamics of LSD is provided. The mechanics of the
disease's transmission is the first goal, followed by a discussion of the control measures that can be
taken to slow the disease's progress. How the LSD is transmitted is shown in Figure 1.

Infected vectors

g% k“‘*

\

Healthy :anl \

‘ Infected cattle

2 z/ R
wé E_D

contaminated equipment

[— Short route of transmission - Long route of transmission

Figure 1. LSD model transmissions [32].
In this formulation, the total population of cattle N, is subdivided into susceptible cattle S., which

represents the cattle at risk of contracting the virus and getting sick by interacting with infected cattle,
vaccinated V. represents the cattle that are vaccinated. Infected cattle I, which stands as the category
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of cattle in which the virus, settles and becomes infectious and transmits the disease. Recovered cattle
R represents the cattle category that recovers quickly due to its high immunity or good treatment. The
infection between cattle occurs due to vector insects such as mosquitoes, flies, or ticks. The total vector
populations are indicated by Ny, which are partitioned into susceptible Sy, insects and infected insects
I;. During the hot and muggy summer and fall months, when flies are most common, the disease can
spread quickly. Also, three control measures are incorporated to control the spread of infection
transmission, where u, indicates vaccination control measures, u, indicates treatment measures and,
quarantine of infected cattle, and u; indicates pesticide spray measures for vectors.

Based on the previously mentioned considerations, the dynamics of the LSD model can be
represented by the next mathematical system:

dSc(t) i

= (e+u)Sc —viVe,

B (1 —ux)n,Sclc B (1 —u3)n,Scly
! N¢ N¢
ave(t)
dt
dlc(t) _ (1 —uy)n.Scle + (1 —u3)n,Scly
dt N, N,
dRc(t)

dt

dSy(t) L — (1 —ug)nsSylc

= (p +ux)lc — (@ +v1)Re,

dt 2 N,

dly(t) _ (1-u3z)nsSylc
dt Nc

Furthermore, the initial conditions are

S:(0) > 0, V-(0) =0, I.(0) > 0, R.(0) = 0,

where the model parameters are illustrated in Table 1.

— (y2 + u3)Sy,

= (v2 +uz)ly.

—(e+y, +u)Sc + aRg,

—(p+vyito+uy)lg,

Sv(0) >0, v(0) = 0,

Table 1. Values and explanation of the parameters for the LSD model [31].

(D

Parameter Description value
I, Birth rate of cattle 0.5
M1 Contact rate between I and S, 0.2
N, Contact rate between I;; and S 0.3

€ Cattle vaccination rate 0.001
a Waning rate of vaccination 0.01
Y1 Cattle's natural death rate 0.0002
p The recovery rate of cattle 0.07
I1, Recruitment rate of vector 50

Y2 Vector's natural death rate 0.02
N3 Contact rate between Sy, and I- 0.22

o Cattle mortality rate caused by disease 0.027
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3. Mathematical analysis of the LSD model

In this section, I present theorems demonstrating that the LSD model (1) possesses a unique
solution. I include fundamental concepts and theorems from functional analysis to support the
demonstration of the theorems presented [14,23,24].

3.1. Existence of a unique solution

Let the LSD model (1) reform into the specified format.

T~ F(x(©®), X(0) = X,, )

at

where X(t) € C'[0,T] and X(t): R, — RS is a real-valued function that is defined by

X(6) = (Sc(©), Ve (), Ic(£), Re (0, Sy (0, I (1))

with

Xo = (5¢(0),V(0),1£(0), R (0), 5,(0), 1,(0))",

and
T
F(X(®) = (R(X®), R(X®), F(X(®), (X)), Fs(X(©), Fs(X(©))) -
Theorem 1. Assume that the function F(X) satisfies the Lipschitz condition ||F (X;) — F(X;)|le <
h [|X, — X1 ||, Consequently, Eq (2) possesses a unique solution for H = hT < 1.

Proof. The proof of this theorem follows the same manner as Theorem 6 in [14].
3.2 Boundedness and positivity of solutions
In this section, I demonstrate the boundedness and positivity of the model's state variables (1) and
delineate the feasible region for these variables.
Theorem 2. Consider the starting information, denoted as X(0) = 0, where X(t) =

(S c(®), Ve (t),I-(t),Rc(t), Sy (t), Iy (t))T. The solutions of system (1) with positive initial conditions

stay positive for all t = 0. With N (t) = S (t) + Vo (t) + I (t) + R (t) and Ny (t) =S, (t) +
Iy (¢).

Proof. It is assumed that X(0) > 0. Examine the first equation:

dSc A —uxdmle | (L —uz)n,ly
_ = Hl —_ +
dt N¢ N¢

+et+y; +u1>SC + aRg.

It has been demonstrated that all state variables are constrained. Therefore, let
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(1 —ux)nl¢ n (1 —uz)n,ly
N¢ N¢

& =sup +e+y; +u|

dSc

Then —
dt

> I, — &Sc(8).

Application of the Laplace transform on both sides yields the following result:

_ o, 11 Sco
sSc(s) =S¢y 2 - ESc(s) = Sc(s) = ) + Gio

Through the utilization of the inverse Laplace transform gives:

Sq(t) = % (1—e~%) + S et

Since 0 < e™$* < 1and S¢,e~%* = 0, hence it is evident that S.(t) = 0 V¢ > 0.

Likewise, this can be demonstrated for another state variable. Therefore, the viable region for the
proposed model (1) is defined by

0 = W, x Wy, where W, = {(Sc(£), Ve (8), (), Re(£)) € RE:0 < N < j—}

and

I1,
Y, = {(Sv(t), I,(®))eRL0<N, < m}

Theorem 3. The solution X(t) = (S¢(t), Ve (£), Ic(t), Re(£), Sy (£), IV(t))T of the LSD model (1) is
bounded.
Proof. The aggregate populations of cattle and mosquitoes are
Nc(t) = Sc (@) + Ve () + 1c(t) + R (2), 3)
Ny () = Sy(8) + Iy (). (4)

First, Eqs (3) and (4) are differentiated based on time t. This lets us get the next equation from the
system of ordinary differential equations (1) on the right-hand side

dN

d_tC:”1 —alg —y1Ng, ®)
dN

d_tv =II, — (y, + uz)Ny, (6)

with N;(0) = S.(0) + V-(0) + I.(0) + R-(0) and Ny, (0) = S, (0) + I,(0).
Egs (5) and (6) can be expressed in the subsequent forms:

dN
0 ST =N, (7
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dN
d_tV < I — (y; + uz)Ny. (8)

Under the application of the Laplace transform, it simplifies to yield

I
SN¢(s) = N¢, < 5 Y1Nc(s),

I
sNy(s) — Ny, < ?2 — (y2 + uzg)Ny (),
which may be resolved for N (s) and Ny, (s) to obtain

Il Il N,
Ne(s) S — - —2—+ —0
sys. (s+ydvs (+vy)

I I1 N
Ny(s) < —2 2 Vo
s(yzatusz)  (s+yzetuz)(yztus)  (s+yz+ug)

The inverse Laplace transform is used to get the following solutions:
I
N¢(s) < o (1—e™"t) 4+ Np(0)e™ "¢,
1

and

b _ p—(rztu3)t —(y2+u3)t
Ny (s) S(y2+u3) (1 e~ 2Tz )+NV(0)e 2tuz)t,

It may be articulated that

11,
(y2+us)’

lim No(s) <2 and lim Ny (s) <
t—oo Y1 t—oo

Therefore, it can be asserted that solution X (t) is bounded for any t > 0.

For the cattle model (1) to be useful in epidemiology, it is significant to show that the system's
case variables are always non-negative when t > 0. The solution of the cattle model (1) with non-
negative beginning conditions will stay positive at all times t > 0.

4. Stability analysis and equilibrium points
4.1 Disease-free equilibrium point (DFE)
A disease-free equilibrium is a state where a population is devoid of disease. In the lack of LSD,

I = R = I, = 0. Setting all derivatives of the LSD model (1) to zero and establishing I = R = I, =
0, DFE is defined as

E0=( Iy (ug+&)Iy 00 1T, 0).

ugtyite’ yi(ugtys+e)” T uztyy
4.2 Computation of R
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10212

This part explains how R, for the LSD model (1) is calculated utilizing the methodology outlined
in [33]. To do this, the subsequent matrices are derived.
Define x; = I, I, , a new infection matrix (F;):

(1-uy)n4Sclc + (1-uz)n,Scly
Nc¢ N¢

Fi= ,

(1-u3)nsSylc
Nc¢

where N (t) = Sc(t) + Vo (t) + I-(t) + Rc(t) and the transition matrix (V;):

V. = p+yi+o+ uz)’c]
' (y2 + uz)ly

The Jacobian of F; and V;

(A-uxdni S (1-uz)nz Sg

_ 0Fi(Eo) _ N¢ Nc¢ _aviEy) _[ptyvitotu, 0
F= ax;  |(@-uz)mz Sy, 0 and V'= ox; [ 0 Yo +usl’
N¢

The next-generation matrix is K = FV 1,

1- uz)’hsz (1- us)’lzsz
_ (p+yitotuy) (y2 +us3)

K

)

B | (1- u3)n3S;
[Go+7: +o+u)

o

where

* Hl HZ
Couty eV Uz +7v-

*

Then, the reproduction number R, is given as
_ l (1 —u)my:
2(ptritot+u))(u +y+¢)

R,

2
n ( (1 —ux)mvs > n (1 —u3)? nyn3y, 210,
2(ptyito+uy)(u; +y; t+e) M (uzs +v2)2(us + i +e)(p+ys + o+ uy)

Ry =R, +R,, )
where

_ (1 —ux)mvs
20+yi+o+u)(u+ys +¢)

R

R = (A-uy) Mmy1 2 (1-u3)? nyn3y1 21,
2 2( 2 ?
p+y1+o+uy) (U +y1+€) My (uz+y2)?(us+y1+e)(p+y+o+uy)
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and

. _ (1 —u)mys
! (p+yvi+to+u)(u +ys +¢)

_ (1- u3)2n2n3)/121'[2
M (us +v2)2(uy +yi+e)(p+y +o+uy)

R;

The formulas R} and R; are modified to derive the expression for R, in the subsequent analysis of
model (1).

4.3 Local stability of disease-free equilibrium

Theorem 4. The DFE point E, of LSD model (1) is asymptotically stable under local conditions if
Ry < 1 and unstable otherwise.

Proof. The Jacobian matrix of the LSD model (1) is computed at the disease-free equilibrium E|,

](Eo) =

(1 —ux)yim (1 —uz)y1mz
—u —y;—€ 0 -_— a -
U, +y t+e€ U, +yt+e
U +e —V1 0 0 0
(—1+u) my: (1 = uz)y1m2
0 0 —-u-y—-|—————|—-p-0 0 -
U, +y,t+e€ U, +y;t+e
0 0 U, +p —a—Yy, 0
Sy (1 —uz)yins
0 0 - 0 — 0
Scutyr+e) Us Vs
Sy (1 —uz)yins
0 0 A b 0 —Uz —
Scutyr+e) 3T Y2
The eigenvalues of the matrix J(E,) are calculated and yield
M=V, h="U Vo lz3=—U—V—€E,4=—a—V.

The other two roots can be derived from the quadratic characteristic equation provided by

12 + /1611 + az = O, (10)

where
a; = (uz +vz) + (uz +y, +p+0)(1—RY),
a; = (uz +y2)(uz +v, + p+0)(1 —Rp),
R = Ry* + 2R, (1 — Ry).

It is seen in the characteristic equation (10) that all related coefficients a; > 0 for i = 1,2 if and only
if Ry < 1. Using Routh—Hurwitz criteria [24,34], it is simple to demonstrate that from the Hurwitz
aq

1
O az), and |H2| == alaz > 0.

matrix is H, = (
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The model's disease-free equilibrium is asymptotically stable locally when Ry < 1, and unstable
otherwise.

4.4 Endemic equilibrium point (EE)
The endemic equilibrium, represented by E*, is the stable solution that arises from the sustained

presence of disease within the community. The EE is denoted as E* = (S.*,V*,I.5,R:", Sy, I"),
when articulated about the forces of infection S and f3;,, where

S * ﬁ3H1
© T BiBs+ (—a+ B3)B. + Bsys
V= B1Bs11y
© (—a+B3)Bcyvi +v1(BiBs + B3v1)
. Bl
© (—a+B)B(BrHyvi+0)+ (BB + Bav) (B + v +0)
R* = ﬁcnl
BBzt (—a+ B3)B + Bayi’
s =12
V' B4+ B
= By I1,
" Ba(Ba + By
where
_ (I —ux)mle | (1 —ug)n,ly _ (1 —uz)nsl;
o= e g = e

B = (e +uy), Bz = (p +up), Bz = (@ +v1),Bs = (y2 + us).
4.5 Asymptotic stability of the endemic equilibrium point

Theorem 5. The endemic equilibrium of the LSD model (1) is locally asymptotically stable if it
satisfies the Routh—Hurwitz criteria and under the conditions of B, By > 0, and f; > «.

Proof. The Jacobian matrix for the LSD system (1) at E* is derived as follows:

—B1—Bc— 71 0 0 a 0 0
( B —V1 0 0 0 0 \
—~ Be 0 —-f,—v1—0 0 0 0
J(ET) = 0 0 ,322+ y11+ o —PB; 0 0 [
0 0 0 0 —B4 — By 0
0 O O O ﬁV _34

The eigenvalues of the matrix J(E™) are calculated, and three of the eigenvalues are
M =—=PuAy = =Ps— By, A3 = —V1.

AIMS Mathematics Volume 10, Issue 4, 10204-10227.
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The characteristic equation for determining the remaining three eigenvalues is expressed as
A3 +b;A% + byA 4+ by =0, (11)
where
by =B+ B+ B3+ Bc+2y: +o0,
by = (B3+y1)Bc + 26371 +v1* + (B3 + Bc + v1) (B2 + 0) + B1(B, + B3 + ¥4 + 0),

b; = ((31 +v1)Bs + (—a + B3) ﬁc)(ﬁz + 71 +0).

From the characteristic equation (11), the subsequent Hurwitz matrix is derived from the polynomial

equation
by 1 0
H; = <b3 b, b1>.

0 0 bs
where
by =p1+ B+ B3+ Pc+ 2y +0 >0,

b, = (B3+v1)Bc + 283y, + yi2 + (Bs + Bc+v)(Br+0)+p1(Br+ B3 +y1+0)> 0,
bs = ((By +v1)Bs + (—a + Bz)Bc)(B2 + v1 + ) > 0 if and only if B3 > a.

Based on the criteria of Routh-Hurwitz, |Hs| > 0 if by, b,, b; > 0 and b;b, > bs.

Given that all parameters and variables are positive, the characteristic Eq (11) has negative real
parts if the Routh-Hurwitz is satisfied, and the LSD model (1) at E* is asymptotically stable.

5. Sensitivity analysis

Sensitivity analysis enables researchers to examine the sensitivity index of each of the R,
parameters. It provides several significant conclusions, such as whether raising a particular value of
the parameter will be raise the dependent variable's value, R, or cause it to fall to a particular value.
Performing a comprehensive study is essential to developing the best disease control plans. This
process makes it possible to pinpoint the precise R, characteristics that are most sensitive to it. A
parameter can be claimed to be highly sensitive if its sensitivity index reading is high. The normalized
sensitivity technique, which was established and implemented, is used in [31,35] to ascertain the
sensitivity index of every parameter. Parameters with a high sensitivity index might be thought of as
control variables that could aid in lowering the R, value so that the illness is no longer an epidemic.
The next formula is used to calculate a parameter's sensitivity index:

ORy @

X =, (12)

Yo =
0w Ry

w

where @ represents model parameters in which interest is taken.
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This method is used to calculate the sensitivity measures for each parameter are calculated in R,
and the results of this computation are represented graphically in Figure 2, where the ascending and
descending bars indicate the direct and indirect relationships between the parameters and R,
respectively.

Relative Sensitivity of Parameters

Q& s 9 @ ¢ N
6
.(\\ B Q 4

Parameter

0.5F

Sensitivity
o
o

-0.5

Figure 2. The sensitivity index for model parameters.

It is clear from Figure 2 that the parameters that have a positive sensitivity index such as yq, 15,
N3, II,, and 14 have a direct effect on the Ry, i.e., that an increase or decrease in the value of these
parameters causes an increase or decrease in the value of R, which leads to the spread or reduction
of the disease. In contrast, the parameters that have a negative sensitivity index, such as y,, I1;, €, p,
and ¢ have an inverse effect on the increase or decrease in the value of the R,. Since parameters 14,
M2, and 73 are related to the contact rate infected or susceptible cattle with the susceptible or infected
vector, quarantining and treating infected cattle will limit virus transmission, and spraying the infected
vector will also reduce the spread of the virus, which may be effective strategies to limit the spread of
the disease. Moreover, the vaccination rate € has a significant inverse effect on the Ry, which makes
vaccination an effective strategy to reduce the spread of the disease. The behavior of Ry with related
parameters is presented in Figure 3.

R, versus o and n, Ry versus ny and p Rq versus nz and ¢
sisediy T T

Figure 3. The relationship curves of R, against model parameters.
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6. Optima control analysis

Determining a control law for a specified system that achieves a particular criterion is known as
optimal control. A control variable and a function of state are both components of a control issue. A
collection of differential equations outlining the control variables' paths that minimize the cost function
is known as an optimal control. The control can be obtained using the Pontryagin’s maximum
principles (a necessary optimality condition) [36]. Thus, the optimal control theory is the most suitable
mathematical theory for tackling issues involving deploying the best choice to accomplish a specific
objective. Since this boundary-value problem results from taking the derivative of a Hamiltonian, it
has a unique structure.

In this section, I formulate an optimal control issue that contains three control variables that are
dependent on time, which are defined as vaccination control measures (u;), treatment measures and
quarantine of infected cattle (u,), and pesticide spray measures for vectors (u3) for controlling the
transmission dynamics of LSD disease. To accomplish this, the objective function that incorporates
both the controls and infected state variables is defined as follows:

Minimize ] (uy, uz,u5) = [ (Aylc + Agly + 35 (Byu? + Byul + Byud)) dt, (13)

where the nonnegative constants A;, A, and B;, B,, B; stand for the weights of the state variables and
control measures, respectively. Moreover, the objective functional satisfies the following properties [37]:

(1) The control set and associated state variables are nonempty.

(2) The state variables and controls are nonnegative.

(3) The objective functional in the control pair satisfies the necessary convexity.

(4) The state system meets the Lipschitz property relating to the state variables, and the state
solutions are bounded.

(5) The control set U = {uy, uy, u3: 0 < uq,uy,uz < 1, t € [0,T]} is compact.
To establish the requisite optimality criteria derived from Pontryagin’s maximum principle, the
Hamiltonian needs to be constructed (H) as the following form:

(1-ux)n1Sclc  (1-uz)ny Scly
I, — — —

H = Ailc + Agly +3 (Byud + Byuf + +B;u) + s
2 Nc¢ Nc¢

(1-ux) n1 Scl

(A-uz)n2 Scly
N¢

(1=u3) 73 Sy I
(ptyrto+ uz)lc) + P4((P +uy)le — (a + V1)Rc) + s (Hz - % — (2 + u3)5v) +

(1-u3z)n3 Sy I
P = (2 + ua)ly). (14)

where py; k = 1,2, ...,6 are adjoint variables. By deriving the Hamiltonian concerning the state
variables and using the following relation:

dpk 0H
—_— = k = 1,2, ---;6)
dt 0Xk

where y = (S¢, Ve, Ie, Re, Sy, Iy)-
The following system of adjoint variables is derived:
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dp (A —udnle (1 —uz)n,l
1:< 21ty 2T (p1 —p3) + (e +u))(py — p2) + V1D1,

dt N(; NC
dp, _
_dt Y1P2,
dp (1 —ux)n,S (1 —u3z)nsS
= A+ — (0~ p3) +——T (s — De) + (0 + Ux) (P3 — Pa)
dt N¢ N¢
+ (0 +v1)p3,
dp
d_t4 = a(ps —p1) + V1Da

dps _ (1 —u3)nslc

(ps —ps) + (v2 + uz)ps,

dt N(;
d (1-uz)n2 S
% = -4, + %(m —p3) + (¥2 + u3)ps, (15)

subject to the terminal conditions p,(T) = 0;k = 1,2,3,4,5, 6.
Further, the optimal controls under the max-min bounds are given by:

. _ . Sc(p1 —p2)
u; = max {0, min 1,3— ,
1

. . MmSclc(p3 —p1) + IcNc (D3 — P4)
u; = max{0,min{1, )
B,N¢

. Scly(p3—p1)+n3Sylc(pg—ps)+NcS +Iy N
w =max{0,mm{1,"2 clv(p3=p1)+ns VCBPAGI Ps)+NcSyps+ly Nepe) | (16)
sNc¢

7. Numerical simulation

In this section, I verify the theoretical findings discussed above through a numerical simulation
presented in a graphical representation. Moreover, the optimal solutions to the proposed optimal
control problem is presented and analyzed to determine the most reasonable solution for addressing
the proposed problem. For this purpose, the tabular data shown in Table 1 is used in addition to the
following initial values for the variables of status S-(0) = 1000, V:(0) = 20, I(0) = 50, R-(0) =
0, Sy(0) = 2000, and I,(0) = 50. The weight values used in this simulation are 4; = 1, A, = 2,
B; = 0.02, B, = 0.01, and B; = 0.2.

The following four cases are considered using various control variable combinations.

Case 1: Combination of vaccination, treatment with the quarantine of infected cattle, and pesticide
spray for vector control measures (all suggested control measures, i.e., u; # 0, u, # 0, u; # 0).
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This case integrates all suggested control measures to reduce the transmission of LSD. The
behavior of the model compartments with and without controls and the control function are presented
in Figure 4. When vaccination procedures are applied, infected cattle are isolated with treatment, and
the vector is sprayed; an increase in the vaccinated and recovered categories is observed, along with a
noticeable decrease in infected cattle and the vector. Moreover, as it appears from the control profile,
in the case of merging the proposed controls, the period of the controls being at their maximum
potential is short before gradually decreasing. With the isolation of infected animals and their treatment,
in addition to spraying the vectors, vaccination is needed only in the first days of the disease's spread.
After that, it can be gradually reduced.

Case 2: Combination only between treatment with quarantine of infected cattle and pesticide spray for
vector control measures (i.e., u; = 0, u, # 0, uz # 0).

In this case, procedures are applied to isolate and treat infected cattle and spray vectors without
using procedures to vaccinate susceptible cattle. The behavior of the system variables and the priorities
of the applied controls is depicted in Figure 5. A sharp decrease is noticed in the behavior of the curve
of infected cattle and the vectors. Still, in the absence of vaccination procedures, the behavior of the
curve of vaccinated cattle decreases, but not as it is in other cases. The control profile graph, shows
that both applied controls should be implemented with maximum effort before gradually reducing
vector spraying and isolation procedures at approximately 10 and 15 days from the control overlap
period, respectively.

Case 3: Combination only between vaccination and pesticide spray for vector control measures (i.e.,
u; #0,u; =0,u3 #0).

In this case, vaccination of susceptible cattle and spraying vectors are used without
considering the procedures for isolating and treating infected cattle. The simulation of this case is
shown in Figure 6. The graphs show that the application of these controls has a noticeable effect in
decreasing the incidence of infection cattle as well as vectors and increasing the number of vaccinated
and recovered cattle. From the control profile, it appears that when combining these two controls, they
should be used at maximum effort at the beginning of the overlap period and then gradually reduce the
vaccination procedures at approximately 20 days while continuing to use vector spraying at maximum
effort before gradually reducing it at approximately 25 days of the control period.

Case 4: Combination only between vaccination and treatment with quarantine of infected cattle control
measures (i.e., u; # 0,u, # 0, uz = 0).

I focus on applying only vaccination and isolation of infected cattle and treatment without of
measures of spraying vectors. The behavior of state variables in control and uncontrolled cases, in
addition to the control profile, is presented in Figure 7. Applying these control measures results in a
considerable decrease diseased cattle and vectors, and a major percentage of the herd recovers, as
shown in Figure 7. Thus, this case is effective in reducing the LSD, according to the results, but
vaccinating the susceptible cattle and isolation of infected cattle and treatment, particularly early in the
epidemic, should be applied at maximum efforts almost until the end of the overlap period, as shown
in the control profile graph.
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Figure 4. The influence of case 1 on state variables and the behavior of the control profile.
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Figure 5. The influence of case 2 on state variables and the behavior of the control profile.
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8. Conclusions

In this paper, I aim to develop a mathematical model that simulates the dynamics of disease
transmission of LSD in cattle. The approach of the optimal control was used. The Runge-Kutta method
from the fourth order was used to solve the numerical system. The stability of the mathematical model
was analyzed. A sensitivity analysis was performed, and the results showed that the parameters
exhibiting the highest sensitivity are the rate of natural death from vector insects and the vaccination
rate. The optimal control theory was used to identify optimal strategies to reduce disease propagation.
The following points represent the most important results of the research, which are as follows:

e The parameters with the highest sensitivity are the natural mortality rate of vector insects and
the vaccination rate.
e (Combining treatment, vaccination, and pesticide spraying contributes significantly reduces the
rate of infected cases and increases the rate of recovered cases.
e [solating infected animals and completing treatment reduces the spread of the disease among
the sample.
e (Covering the vector insects with pesticides significantly reduces disease transmission through
vectors.
These outputs provide important indicators for those responsible for decision-making to control this
disease and develop strategies to reduce the economic losses resulting from its spread.

The limitation of this study is that the proposed model is a classical ODE model, which does not
account for memory effects that can be captured by fractional-order models. Additionally, empirical
validation with real-world outbreak data was limited due to data unavailability. For future studies,
researchers may address these aspects using advanced modeling frameworks.
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