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1. Introduction

The Weibull distribution’s versatility makes it a part of a collection of the most renowned lifespan
models in reliability research. Although widely used in reliability analysis, the classical
three-parameter Weibull distribution has inherent constraints when modeling complex failure
behaviors. Specifically, it cannot adequately capture failure rates that exhibit both increasing and
decreasing trends, particularly those that follow an upside-down bathtub shape. This limitation arises
because the hazard rate function of the three-parameter Weibull model is strictly monotonic (either
increasing, decreasing, or constant), making it unsuitable for systems where failure rates initially
decrease due to early-life improvements and later increase due to aging effects. To overcome this
limitation, several extensions of the Weibull distribution have been proposed in the literature, for
example, the modified Weibull distribution by [1], the beta exponentiated Weibull distribution by [2],
alpha power Weibull by [3] and [4], and recently the Q-Weibull distribution by [5].

Peng and Yan [6], introduced a new generalization of the Weibull distribution, which is referred to
as the three-parameter new extended Weibull (NEW) distribution. Assume Y to be a random variable
for the unit’s lifetime that has NEW(∆) such that ∆ = (µ, θ, σ)T is the parameters vector. The
additional term e−µy−1

makes the NEW distribution more flexible in modeling non-monotonic failure
rates, including the upside-down bathtub shape. The respective cumulative distribution function
(CDF) F(·), and probability density function (PDF) f (·) of the NEW distribution are given by

F(y;∆) = 1 − e(−σyθe−µy−1
), y > 0, (1.1)

and

f (y;∆) = σ(µ + θy)yθ−2e(−µy−1−σyθe−µy−1
), (1.2)

where θ > 0 and µ > 0 control the shape of the NEW distribution while the parameter σ > 0 controls
its scale. At a certain time t > 0, the reliability function (RF, say R(·)) and the hazard rate function
(HRF, say h(·)), are

R(t;∆) = exp(−σtθe−µt−1
), t > 0, (1.3)

and

h(t;∆) = σ(µ + θt)tθ−2e−µt−1
. (1.4)

respectively. From (1.1) several sub-models can be derived as special members, such as: (i) Weibull
(at µ = 0), (ii) Rayleigh (at µ = 0 and θ = 2), and (iii) exponential (at µ = 0 and θ = 1) distributions.
Using σ = 1 and some choices of µ and θ, Figure 1 displays several shapes of (1.2) and (1.4) functions.
Figure 1 shows that the density of the NEW model can be symmetric with right (or left) skewness and
that its HRF has an increasing or upside-down bathtub curve.

Many studies in the literature have considered this model in different scenarios; for example, Jia
et al. [7] introduced the discrete NEW model; Azizi et al. [8] analyzed the bivariate NEW model
from complete and censored data; and Jovanović et al. [9] discussed the reliability estimation problem
of stress-strength of the NEW model. Peng and Yan [6] discussed various estimations of the NEW
parameters. They also stated that the shape of NEW’s hazard rate is quite simple and depends only on
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a single parameter, whereas the shape of the hazard rate of the exponentiated Weibull and Marshall-
Olkin extended Weibull distributions, suggested by Mudholkar and Srivastava [10] and Marshall and
Olkin [11], respectively, has two parameters and produces a more complicated distribution.
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Figure 1. The PDF (left) and HRF (right) shapes of the NEW distribution.

Censoring mechanisms, from the point of view of cost, time, or both constraints, are beneficial
for use in the statistical reliability analysis of a produced subject, such as a system or device. Type-
I censoring has a predetermined time, while Type-II censoring has predetermined failure units. The
progressive censoring scheme has been studied by many researchers, see [12–15], which allows the
removal of units at different stages of an experiment. An extension version of the progressive censoring
scheme, presented by Ng et al. [16], is called the adaptive progressively Type II censoring (A-PT2-C).
This scheme ensures the ability to balance the total test time, test cost, and efficient sample size.
However, as noted by Ng et al. [16], this censoring effectively estimates the parameters when the entire
test time is unimportant. This mechanism ensures that the experimenter stops the experiment once the
necessary units to fail k are observed and the total time of the test does not exceed the specified time
(T ). As a result, the A-PT2-C mechanism increases the accuracy of the acquired statistical inference,
ensures that the experimenter controls the life test when he desires to obtain the required number of
failures, and strikes a balance between the total test time, test cost, and effective sample size. This
makes A-PT2-C particularly useful in reliability studies where long test durations may be impractical
or costly. In addition, this mechanism dynamically adjusts the removal of surviving units based on
observed failure times, thereby improving the precision of parameter estimation.

Suppose T is the threshold time point, k is the effective sample size, and R = (R1,R2, . . . ,Rk) is the
progressive censoring. Let Yi:k:n, i = 1, . . . , k be the time of the ith failed item. At the time Y1:k:n occurs,
R1 of (n − 1) live units are selected randomly and dropped out of the test. Next, when Y2:k:n occurs,
n − R1 − 2 survival units are randomly removed, and so on. However, if Yk:k:n < T , the experiment
stops at Yk:k:n; otherwise, the experiment stops at T . The adaptation suggested by Ng et al. [16], when
Yd:k:n < T < Yd+1:k:n < Yk:k:n, instructs the researcher to stop removing any living units by setting Ri = 0
for i = d + 1, d + 2, . . . , k − 1, and thus the number of staying items is given by Rk = n − k −

∑d
i=1 Ri.
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Figure 2 illustrates the censoring framework under the A-PT2-C mechanism.

Figure 2. Illustration of A-PT2-C.

For various lifetime models, several authors have investigated the proposed strategy; see, for
example, Lin et al. [17], Nassar and Abo-Kasem [18], Mohie El-Din et al. [19], Liu and Gui [20],
Elshahhat and Nassar [21], Chen and Gui [22], Elshahhat et al. [23], Mohammed et al. [24], Alotaibi
et al. [25], among others. Although the NEW distribution could be highly useful in reliability analysis
as its hazard curves are increasing or upside-down bath-tubed, no work has yet studied the frequentist
(or Bayes) estimation of µ, θ, σ, R(t), or h(t) in the presence of A-PT2-C data. As a result, the
motivation for this work emerged from: (i) the NEW distribution’s possibility to model a wide range
of data with varying failure rates; (ii) the A-PT2-C’s ability to increase the accuracy of the offered
estimators; and (iii) several authors are studying the estimation of all unknown subjects. Before
proceeding, and for distinction, Figure 3 shows a flowchart of all the estimation methodologies
proposed in this work.

So, to close this gap, the main point of this study is fourfold:

• Derive the maximum likelihood (ML) and Bayes estimators of µ, θ, σ, R(t), and h(t).
• Implement Markov Chain Monte Carlo (MCMC) techniques with the square error loss (SEL) and

the asymmetric general-entropy loss (GEL), to approximate the acquired Bayes estimators using
independent gamma priors.
• Construct asymptotic confidence intervals (ACIs) of all unknown quantities via two normality

approximations, namely: (i) the asymptotic distribution of ML estimators; and (ii) the asymptotic
distribution of log-ML estimators. Create Bayes credible intervals (BCIs) and highest posterior
density (HPD) intervals depending on the MCMC of µ, θ, σ, h(t), and R(t).
• Compare the proposed methodologies via extensive Monte Carlo simulations and report some

general recommendations. Offering the usefulness of the NEW model and the applicability of the
proposed methods by studying two different sets of real examples from the engineering field.
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Figure 3. Flowchart of the proposed estimation approaches.

The remaining parts are presented as follows: The ML and Bayesian estimators are studied in
Sections 2 and 3, respectively. In Section 4, simulation outputs are emphasized. Section 5 examines
data applications. Conclusions are observed in Section 6.

2. Classical inference

One of the most common frequentist methods of estimation, named ML, is considered to obtain
point and interval estimators of µ, θ, σ, R(t), and h(t).

2.1. ML estimator

Suppose {y,R} = {(y1:k:n,R1), . . . , (yd:k:n,Rd),T, (yd+1:k:n, 0), . . . , (yk−1:k:n, 0), (yk:k:n,Rk)} is an A-PT2-
C sample with a continuous distribution, hence, the joint likelihood function of this data type is

L(∆|y) = C
∏k

i=1
f (yi,∆)

∏d

i=1
[1 − F(yi,∆)]Ri [1 − F(yk,∆)]Rk , (2.1)

where yi is used for simplicity and C =
∏k

i=1

[
n − i + 1 −

∑max{i−1,d}
j=1 R j

]
.

Assume the lifetimes follow the new distribution with CDF and PDF as written by Eqs (1.1) and
(1.2) respectively. Then, the likelihood function can be expressed after ignoring any constant term as

L (∆| y) ∝ σk exp
(
−

[
σξ(y; µ, θ) + µ

∑k

i=1
y−1

i

])∏k

i=1
(µ + θyi)yθi , (2.2)

where ξ(y; µ, θ) =
∑k

i=1 yθi e
−µy−1

i +
∑d

i=1 Riyθi e
−µy−1

i + Rkyθke
−µy−1

k .

Equivalently, the log-likelihood function (l(·) = log L(·)) is expressed as

l (∆| y) ∝ k log (σ) − σξ(y; θ, µ) − µ
∑k

i=1
y−1

i + θ
∑k

i=1
yi +

∑k

i=1
log(µ + θyi). (2.3)

The ML estimators (MLEs) of µ, θ and σ which are referred to as µ̂, θ̂ and σ̂, respectively, are
derived by obtaining the following first (partial) derivatives:

∂l
∂µ

= −σξ∗µ −
∑k

i=1
y−1

i +
∑k

i=1
(µ + θyi)−1, (2.4)
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∂l
∂θ

= −σξ∗θ +
∑k

i=1
yi

[
1 + (µ + θyi)−1

]
, (2.5)

and

∂l
∂σ

= σ−1k − ξ(y; µ, θ),

respectively, where
ξ∗µ = −

∑k
i=1 yθ−1

i e−µy−1
i −

∑d
i=1 Riyθ−1

i e−µy−1
i − Rkyθ−1

k e−µy−1
k

and
ξ∗θ =

∑k
i=1 yθi log(yi)e−µy−1

i +
∑d

i=1 Riyθi log(yi)e−µy−1
i + Rkyθk log(yk)e−µy−1

k .
It is obvious, from Eqs (2.4) and (2.5), that the system of nonlinear equations requires a numerical

iterative technique to solve it and evaluate the desired estimators. Numerically, with R( 4.2.2)
software language, and the ‘maxLik’ command is employed. For more details, one may refer to
Henningsen and Toomet [26] which implements the Newton-Raphson method in ml maximization.

Remark 1: Using (2.2), we’ve extended related works in the literature and they are obtained as special
cases, such as:

• Peng and Yan [6]’s results, in the case of NEW distribution from PT2-C data, by setting T → ∞.
• Ng et al. [16]’s results, in the case of exponential distribution from A-PT2-C data, by setting

(µ, θ) = (0, 1).
• Lin et al. [17]’s results, in the case of Weibull distribution from A-PT2-C data, by setting µ = 0.
• Wu [27]’s results, in the case of Weibull distribution from PT2-C data, by setting µ = 0 and

T → ∞.

Once µ̂, θ̂, and σ̂ are evaluated, following the invariance property, the MLE for R(t) along with h(t)
are obtained from (1.3) and (1.4) so that

R̂(t) = exp(−σ̂tθ̂e−µ̂t−1
) and ĥ(t) = σ̂(µ̂ + θ̂t)tθ̂−2e−µ̂t−1

,

respectively, for t > 0.

2.2. Approximate interval estimator

In this subsection, the asymptotic normality property of the MLE and the log-transformed-MLE for
µ, θ, σ, R(t), and h(t) are employed to create the associated bounds of ACIs. First, we need to derive the
estimate of the variance of each MLE. It is known, from the general large sample theory, that the MLEs
µ̂, θ̂, and σ̂ are normally approximate (NA) distributed, ∆̂ ∼ N(∆, I−1(∆)), with mean ∆ and I−1(·) as the
variance-covariance matrix. Taking second-partially derivatives of (2.3), locally at ∆ = ∆̂, the Fisher
components li j, i and j = 1, 2, 3 are listed in Appendix 1. So, the estimated asymptotic variances and
covariances of µ̂, θ̂, and σ̂ are given by

I−1(∆̂) �


−l11 −l12 −l13

−l22 −l23

−l33


−1

(∆=∆̂)

=


v̂11 v̂12 v̂13

v̂22 v̂23

v̂33

 . (2.6)
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Thus, the 100(1 − ε)% ACIs based on the normal approximation (say ACI-NA) of the MLEs µ̂, θ̂
and σ̂ can be constructed, respectively, as(

µ̂ ∓ z ε
2

√
v̂11

)
,
(
θ̂ ∓ z ε

2

√
v̂22

)
, and

(
σ̂ ∓ z ε

2

√
v̂33

)
,

where zε/2, with upper probability ε/2, is the standard normal distribution’s percentile.
On the other side, in terms of obtaining ACIs for R(t) and h(t), the delta method is used to estimate

the variances of their MLEs R̂(t) and ĥ(t). However, the approximate variances for v̂ar(R̂(t)) and
v̂ar(ĥ(t)) are expressed as

v̂ar(R̂(t)) ≈ [ΣRI−1(∆̂)Σ>R ] and v̂ar(ĥ(t)) ≈ [ΣhI−1(∆̂)Σ>h ],

respectively. To establish this goal, we need to obtain ΣR and Σh as

ΣR =

[
∂R
∂µ
,
∂R
∂θ
,
∂R
∂σ

]
(µ̂,θ̂,σ̂)

and Σh =

[
∂h
∂µ
,
∂h
∂θ
,
∂h
∂σ

]
(µ̂,θ̂,σ̂)

,

such as
∂R
∂µ

= σtθ−1e−µt−1
R(t;∆), ∂R

∂θ
= −σtθ log(t)e−µt−1

R(t;∆), ∂R
∂σ

= tθe−µt−1
R(t;∆),

∂h
∂µ

= σtθ−2
(
1 − t−1(µ + θt)

)
e−µt−1

, ∂h
∂θ

= σtθ−1e−µt−1
(
1 + (µ + θt)t−1 log(t)

)
, and ∂h

∂σ
= σ−1h(t;∆),

where R(t;∆) and h(t;∆) are available in (1.3) and (1.4), respectively.
Hence, the (1 − ε)100% ACIs for R(t) and h(t) are created, respectively, as

R̂(t) ∓ z ε
2

√
v̂ar(R̂(t)) , ĥ(t) ∓ z ε

2

√
v̂ar(ĥ(t)).

Practically, the main weakness of the conventional ACI-NA is that it sometimes produces a
negative lower bound for a parameter that supports positive values. To handle this drawback, instead
of replacing a negative value with zero, Meeker and Escobar [28] proposed the ACI based on the
normally log-transformation-based (NL) of the MLE (say ACI-NL) for unknown parameter(s) that
take positive values. Comparing the ACI-NA and ACI-NL methods, they also mentioned that the ACI
has a higher coverage probability based on the former than the latter. On the other hand, the log
transformation reduces the skewness often present in the sampling distribution of MLEs, making the
normal approximation more accurate for finite samples. Hence, the 100(1 − ε)% ACI-NL of µ, θ and
σ are given by

exp
(
log(µ̂) ∓ z ε

2

√
v̂11

µ̂

)
, exp

(
log(θ̂) ∓ z ε

2

√
v̂22

θ̂

)
, and exp

(
log(σ̂) ∓ z ε

2

√
v̂33

σ̂

)
,

respectively. Similarly, the (1 − ε)100% two-sided intervals for h(t) and R(t) are created as

exp

log(R̂(t)) ∓ z ε
2

√
v̂ar(R̂(t))

R̂(t)

 and exp

log(ĥ(t)) ∓ z ε
2

√
v̂ar(ĥ(t))

ĥ(t)

 ,
respectively.
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3. Bayesian inference

The Bayesian estimations of µ, θ, σ, h(t), R(t) are provided in this section, concerning symmetric
and asymmetric loss functions. First, we suppose µ, θ, and σ are stochastically independent to each
other.

3.1. Prior and loss functions

Following Peng and Yan [6], the prior distributions of µ and θ are the uniform distributions, denoted
by η1(·) and η2(·), respectively, as

η1(µ; ε1) ∝ ε−1
1 , ε1 > µ > 0, (3.1)

η2(θ; ε2) ∝ ε−1
2 , ε2 > θ > 0, (3.2)

and the natural PDF of σ is the gamma, say G(σ; a1, a2), density as

G(σ; a1, a2) ∝ σa1−1e−a2σ, σ > 0, (3.3)

where the hyperparameters εi and ai > 0 for i = 1, 2 are selected to give prior information about µ, θ,
and σ. It is important to remember that (i) the gamma density has been utilized to adapt support for σ
because it is straightforward, concise, and flexible; (ii) there is no information about µ and θ, so less
information will be available regarding these parameters. It has also been chosen due to its conjugacy
properties, which simplify posterior computation and ensure analytical tractability. Since any
suggested values of ε1 and ε2 do not affect the Bayesian estimates, to avoid computational dilemmas,
Peng and Yan [6] used εi = 1 for i = 1, 2.

Consequently, the joint prior PDF ( Π(·)) for µ, θ, and σ is

Π(∆) ∝ η1(µ; ε1) × η2(θ; ε2) × G(σ; a1, a2)
∝ ε−1

1 ε
−1
2 σ

a1−1e−a2σ, µ, θ, σ > 0. (3.4)

A major issue in Bayesian estimation is determining the loss function since it may explore
overestimation and underestimation of the study. One of the most commonly seen symmetric losses in
Bayesian theory is the SEL function, which posits the overestimation and underestimation to be
handled evenly because it is simple to implement and very simple for inferential concerns. However,
the SEL (say LS ) and its Bayes estimator (say ρ̃S (·) of ρ(·)), where ρ(·) denotes a parametric function
of µ, θ and σ, are given by

LS (ρ(Θ), ρ̃(Θ)) = (ρ̃(Θ) − ρ(Θ))2, (3.5)

and

ρ̃S (Θ) =

∫
µ

∫
θ

∫
σ

ρ(Θ)Π(∆)L (∆| y) dσdθdµ,

respectively, for more information, refer to Martz and Waller [29].
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Additionally, GEL is one of the most generally asymmetric loss functions. The main feature, if
one treats the GEL function, is that it has diverse importance for overestimation and underestimation.
However, the GEL (say LG) and its Bayes estimator (say ρ̃G(·) of ρ(·)), respectively, are given by

LG(ρ(Θ), ρ̃(Θ)) ∝
(
ρ̃(Θ)
ρ(Θ)

)ν
− ν log

(
ρ̃(Θ)
ρ(Θ)

)
− 1, ν , 0. (3.6)

and

ρ̃G(Θ) =

[∫
µ

∫
θ

∫
σ

(ρ(Θ))−ν Π(∆)L (∆| y) dσdθdµ
]−1/ν

,

for further details, refer to Dey et al. [30]. Without loss of generality, we’ve utilized two well-known
functions, SEL and GEL. Additionally, one can easily incorporate other losses.

3.2. Posterior distribution

The joint posterior density, say Ω(·), is given by

Ω (∆| y) =
Π(∆)L (∆| y)∫
Π(∆)L (∆| y) d∆

. (3.7)

Now, from (2.2) and (3.4), joint posterior PDF, (Ω(·)), for µ, θ and σ is

Ω (∆| y) = D−1σk+a1−1 exp
(
−

[
σ(a2 + ξ(y; µ, θ)) + µ

∑k

i=1
y−1

i

])∏k

i=1
(µ + θyi)yθi , (3.8)

where

D =

∫
µ

∫
θ

∫
σ

σk+a1−1 exp
(
−

[
σ(a2 + ξ(y; µ, θ)) + µ

∑k

i=1
y−1

i

])∏k

i=1
(µ + θyi)yθi dσdθdµ.

The analytical solution for the Bayes estimations using SEL and GEL functions for µ, θ, σ, R(t), or
h(t) is not available. To solve this problem, we propose to consider the Gibbs sampler, which produces
a Markov chain, whose constant density is the objective posterior density, and to approximate Bayes
estimates, see Geman and Geman [31]. Thus, after a finite number of iterations, we’re guaranteed that
the sequential values for the Markov chain are converging to the desired posterior.

Now, to draw a sample from (3.8) via the Gibbs sampling procedure, the conditional PDF of each
unknown parameter given the data must first be obtained.

Remark 2: The conditional PDF of σ, denoted by σ|y, µ, θ, has gamma density as

σ|y, µ, θ ∼ G(σ; k + a1, a2 + ξ(y; µ, θ)), (3.9)

where (k + a1) is the shape parameter and (a2 + ξ(y; µ, θ)) is the scale parameter.

Remark 3: The conditional PDF of µ given the data y, sayH∗µ(·), is a log-concave function as

H∗µ (µ|y, θ, σ) ∝ exp
(
−

[
σξ(y; µ, θ) + µ

∑k

i=1
y−1

i

]) k∏
i=1

(µ + θyi). (3.10)
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Similarly, the conditional density of θ given the data y, sayH∗θ (·), is also a log-concave function as

H∗θ (θ|y, µ, σ) ∝ exp (−σξ(y; µ, θ))
∏k

i=1
(µ + θyi)yθi . (3.11)

Proof. See Appendix 2.
As a result, to develop the Bayes estimates of σ, we directly generate samples of σ from (3.9)

via any gamma simulator. It is also noticeable, from (3.10) and (3.11), that the conditional PDFs
for µ and θ can’t be tended mathematically to which standard model. For this purpose, when the
posterior PDF is complex and its evaluation is computationally demanding, Gilks et al. [32] proposed
the adaptive rejection Metropolis sampling (ARMS) strategy. We thus employ the ARMS to adopt the
Bayes estimates of µ and θ. Other sampling techniques to draw MCMC samples from the log-concave
density, e.g., Devroye’s algorithm (by Devroye [33]) Metropolis-Hastings algorithm (by Metropolis
et al. [34]), or adaptive rejection algorithm (by Gilks and Wild [35]), can be easily incorporated; for
additional details see Gelman et al. [36].

3.3. Adaptive rejection Metropolis sampling

To collect samples from the posterior PDFs of µ, θ and σ, we present the following procedure:

Step 1. Set starting values of (µ, θ, σ), say (µ0, θ0, σ0).

Step 2. Let j = 1.

Step 3. Create σ j from G(σ; k + a1, a2 + ξ(y; µ j−1, θ j−1)).

Step 4. Generate µ j by the ARMS algorithm fromH∗µ
(
µ|y, θ j−1, σ j

)
.

Step 5. Generate θ j by the ARMS algorithm fromH∗θ
(
θ|y, µ j, σ j

)
.

Step 6. Replace µ, θ and σ in (1.3) and (1.4) by their µ j, θ j and σ j to calculate R j(t) and h j(t) for t > 0.

Step 7. Assume j = j + 1.

Step 8. Redo the steps from 3 to 7, B number of times, and get µ j, θ j, σ j, R j(t), and h j(t) with j =

1, 2, . . . ,B. After that, eliminate first B◦ draws as a burn in.

Step 9. Find the Bayesian estimators for µ, θ, σ, R(t), or h(t), which is abbreviated in the following
formula by δ, relative to the SEL and GEL functions, so that

δ̃S =
1

B − B◦

∑M

j=B◦+1
δ j,

δ̃G =

[
1

B − B◦

∑B

j=B◦+1

(
δ j

)−ν]−1/ν

, ν , 0,

respectively.

Step 10. Create the BCI of δ by arranging the MCMC samples in an ascending way so that
δ(B◦+1), δ(B◦+2), . . . , δ(B). Hence, the 100(1 − ε)% BCI estimator for δ is(

δ(B−B◦)(ε/2), δ(B−B◦)(1−(ε/2))
)
.
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Step 11. Construct the HPD interval for δ by arranging the MCMC samples in an ascending way as
δ(B◦+1), δ(B◦+2), . . . , δ(B). Next, the (1 − ε)100% interval estimation for δ can be given as

(δ( j∗), δ( j∗+(1−ε)(B−B◦))),

such that
δ( j∗+[(1−ε)(B−B◦)]) − δ( j∗) = min

16 j6ε(B−B◦)
(δ( j+[(1−ε)(B−B◦)]) − δ j),

and [q] stands for the greatest value equal or less than to q, for additional information, see Chen
and Shao [37].

4. Monte Carlo comparisons

For evaluating the behavior of the acquired point and interval estimators (from both classical and
Bayesian setups) of µ, θ, σ, R(t), and h(t), extensive Monte Carlo simulations are implemented. To
achieve this goal, depends on different options of T , which represents the threshold time. Let n be the
number of the experimental units, k be the size of censored units, and R be the progressive pattern,
also suppose that large 1,000 A-PT2-C samples are collected from the NEW(0.4, 0.8, 0.2) distribution.
Taking t = 0.1, the plausible values of R(t) and h(t) are selected to be 0.87453 and 0.16087,
respectively. All theoretical results are examined using various combinations of T , n, k, and R so that
n = (40, 80), T = (2, 5), and k is specified as a percentage failure for every n as FP%=n

k × 100%,
namely: FP%=50 and 75%. To highlight the performance of the removal pattern, different fashions of
the progressive censoring (R1,R2, . . . ,Rk) are also adopted, namely:

Scheme-1 : (n − k, 0k−1);

Scheme-2 : (0
k
2−1, n − k, 0

k
2 );

and
Scheme-3 : (0k−1, n − k),

where 0k−1 (for example) means 0 repeated k − 1 times.
To get a A-PT2-C sample from the NEW distribution, after assigning values of T , n, k, and Ri, i =

1, 2, . . . , k, do the next steps:

Step 1: Simulate a usual PT2-C sample as:

i. Obtain k independent observations called ψ1, ψ2, . . . , ψk.

ii. Set qi = ψ

(
i+

∑k
j=k−i+1 R j

)−1

i , i = 1, 2, . . . , k.
iii. Suppose ui = 1 − (qkqk−1 · · · qk−i+1) with i = 1, 2, . . . , k. Thus, ui, i = 1, 2, . . . , k is the PT2-C

sample with size k following U(0, 1) distribution.
iv. Set Yi = F−1(ui; µ, θ, σ), i = 1, 2, . . . , k, as the PT2-C sample with NEW(µ, θ, σ).

Step 2: Obtain d at T , where Yd < T < Yd+1, and discard the staying sample Yi, i = d + 2, . . . , k.

Step 3: From
[
1 − F (yd+1)

]−1 f (y), obtain Yd+2, . . . ,Yk.
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To calculate the proposed Bayes objectives, with the Gibbs technique discussed in Section 3, the
first 2,000 variates out of a total of 12,000 MCMC samples are abandoned as burn in. So, from the
staying 10,000 MCMC samples, the Bayesian estimation for µ, θ, σ, R(t) or h(t) under the SEL and
GEL (for (ν = −2,+2)) along with their 95% BCI/HPD intervals are rated. To see the effects of the
suggested priors on the Bayes’ computations, besides (a1, a2) = (1, 5), we have taken εi, i = 1, 2.
According to Kundu [38]’s idea, the specified values of a1 and a2 are set so that the prior expectation
equals the actual value of σ. Recall that the selected values ε1 and ε2 do not affect the Bayes results,
and the hyperparameters ai, i = 1, 2 are set so that the prior average reflects the actual value of σ.
To assign the starting point values of µ, θ, and σ used in frequentist and Bayes MCMC calculations,
it should be noted here that the suggested plausible values of µ, θ, and σ are taken as initial guesses
to run ML optimizations while the fitted MLEs of µ, θ, and σ (in each iteration) are utilized as initial
guesses to run the proposed MCMC sampler.

However, the average for the point estimators (Av.Es) for µ, θ, σ, R(t) or h(t), denoted by π, is
written by

Av.E( ˆ̂πι) =
1
K

K∑
i=1

ˆ̂π(i)
ι , ι = 1, . . . , 5,

such that K is the replications number, ˆ̂π(i) is a point estimate of π at the ith simulated sample, π1 = µ,
π2 = θ, π3 = σ, π4 = R(t) and π5 = h(t).

The evaluation for point estimators of π is performed upon two standards, (i) root of mean squared
error (RMSE), and (ii) mean relative absolute bias (MRAB), for ι = 1, . . . , 5, as

RMSE(ˆ̂πι) =

√√
1
K

K∑
i=1

(
ˆ̂π(i)
ι − πι

)2
and MRAB(ˆ̂πι) =

1
K

K∑
i=1

1
πι

∣∣∣ ˆ̂π(i)
ι − πι

∣∣∣,
respectively.

Comparing interval estimates of π is also performed depending on two criteria, namely: (i) average
confidence length (ACL), and (ii) coverage percentage (CP), for ι = 1, . . . , 5, as

ACL(1−ε)%(πι) =
1
K

K∑
i=1

(
U ˆ̂π(i)

ι
− L ˆ̂π(i)

ι

)
, CP(1−ε)%(πι) =

1
K

K∑
i=1

J (
L ˆ̂π(i)

ι
;U ˆ̂π(i)

ι

) (πι),

respectively, where J(·) is the indicator operator and (L(·),U(·)) denotes the interval bounds of 100(1−
ε)% an interval estimate of πι.

Using ‘maxLik’ with ‘armspp’ libraries suggested by Henningsen and Toomet [26] and Bertolacci
[39], respectively, the point and interval estimates along with their RMSEs, MRABs, ACLs, and CPs
for the parameters µ, θ, σ, and the functions R(t) and h(t) are obtained. These libraries were installed
in the R programming software (version 4.2.2) and their investigations were performed on a laptop
with a Core(TM) i5-5200M processor and 8.00 GB of RAM. Furthermore, we recommend performing
a sensitivity analysis to measure the validity of the proposed censoring experimental tests.

To distinguish, in Tables 1–5, the Av.Es, RMSEs, and MRABs are listed in the first, second, and
third columns, respectively. Further, in Tables 6–10, the ACLs and CPs are listed in the first and
second, respectively.

From Tables 1–10, based on the smallest value for RMSE, MRAB, and ACL, and the biggest values
of CP, one can adopt the below remarks:
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• Overall, the acquired point and interval estimation for the NEW distribution parameters µ, θ and
σ, or its reliability and hazard functions R(t) and h(t), perform well.
• As n (or FP%) increases, the accuracy of the estimation results becomes better. The same fact is

also noted as
∑k

i=1 Ri decreases.
• As T increases, it is noted that

– The RMSEs and MRABs of µ, σ and R(t) increase, while those of θ and h(t) decrease.
– The ACLs of µ and θ increase, while those ofσ, R(t) and h(t) decrease. The opposite behavior

of the same parameters, in the case of their simulated CP values, is reached.

• Comparing the suggested estimation methods, as the MCMC method has further prior
information, the performance of the Bayes results for all parameters is strongly higher when
comparing them to those produced by the likelihood methods.
• Comparing the proposed loss functions in Bayesian analysis, it is clear that the GEL emerges as

the better loss compared to its competitive symmetric loss.
• Comparing the proposed interval inferential methods, due to the fact that the Bayesian intervals

have additional prior information, both BCI and HPD interval estimates of µ, θ, σ, R(t) and h(t)
implement more satisfactorily than those created from the ACI-NA (or ACI-NL) method. It is
also noted that the calculated interval limits of R(t) lie in its theoretical range (0,1).
• On the other hand, in most cases, the best interval bounds for µ, θ and σ are developed by the

ACI-NA method, while those for R(t) and h(t) are developed with the ACI-NL technique.
• In particular, in terms of the smallest ACL and highest CP values, the HPD intervals of µ, θ, σ,

R(t) or h(t) behave more satisfactorily than others.
• Comparing the proposed censoring schemes, it is noticed that the suggested estimates of µ, θ, σ,

R(t) and h(t) developed under Scheme-1 ‘left censoring’ perform superior to others. This holds
for the fact that the overall duration testing by Scheme-1 is high compared to any other, and the
collected data develop more knowledge about µ, θ, σ, R(t) and h(t) rather than others.
• To sum up, the Bayes’ estimation methodology via the Gibbs sampling (to obtain MCMC variates

of σ) and the ARMS (to adopt MCMC variates of µ and θ) is recommended for evaluating the
NEW lifetime model from the suggested mechanism.
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Table 1. The point evaluations of µ.

T n[FP%] Scheme MLE SEL GEL

ν→ -2 +2

2 40[50%] 1 0.2984 0.2358 0.7351 0.2057 0.0914 0.3737 0.2066 0.0892 0.3641 0.2027 0.0893 0.3661
2 0.3229 0.2659 0.8154 0.2835 0.1245 0.5054 0.2839 0.1239 0.5019 0.2822 0.1232 0.4985
3 0.5615 0.4723 1.2170 0.2966 0.1353 0.5724 0.2970 0.1348 0.5702 0.2955 0.1342 0.5671

40[75%] 1 0.2957 0.2261 0.7330 0.1919 0.0871 0.3618 0.1926 0.0855 0.3554 0.1897 0.0859 0.3585
2 0.2964 0.2478 0.7665 0.2677 0.1160 0.4734 0.2684 0.1149 0.4688 0.2656 0.1138 0.4642
3 0.5229 0.4555 1.1154 0.2956 0.1248 0.5224 0.2961 0.1241 0.5201 0.2943 0.1230 0.5143

80[50%] 1 0.2634 0.1345 0.4682 0.1686 0.0704 0.2987 0.1694 0.0682 0.2904 0.1663 0.0696 0.2980
2 0.2784 0.1668 0.5379 0.2804 0.1092 0.4400 0.2810 0.1082 0.4374 0.2788 0.1068 0.4294
3 0.5634 0.4178 1.0270 0.2749 0.1218 0.5075 0.2756 0.1207 0.5027 0.2729 0.1197 0.4984

80[75%] 1 0.2610 0.1322 0.4583 0.1953 0.0702 0.2804 0.1963 0.0671 0.2672 0.1921 0.0674 0.2710
2 0.2582 0.1341 0.4657 0.2645 0.1008 0.3997 0.2653 0.0991 0.3941 0.2620 0.0973 0.3848
3 0.5381 0.4101 1.0037 0.2783 0.1133 0.4646 0.2790 0.1119 0.4598 0.2759 0.1103 0.4517

5 40[50%] 1 0.3142 0.2303 0.7380 0.2561 0.1135 0.4611 0.2567 0.1126 0.4580 0.2546 0.1121 0.4562
2 0.3043 0.2351 0.7533 0.2649 0.1158 0.4619 0.2654 0.1149 0.4563 0.2633 0.1142 0.4535
3 0.4187 0.3486 1.2133 0.2713 0.1212 0.4986 0.2717 0.1205 0.4951 0.2699 0.1199 0.4923

40[75%] 1 0.3042 0.2199 0.7148 0.2336 0.1008 0.4050 0.2344 0.0991 0.3973 0.2310 0.0985 0.3953
2 0.3024 0.2279 0.7369 0.2571 0.1112 0.4512 0.2579 0.1098 0.4454 0.2547 0.1088 0.4411
3 0.3534 0.3207 1.0396 0.2621 0.1150 0.4731 0.2628 0.1138 0.4683 0.2599 0.1128 0.4642

80[50%] 1 0.2679 0.1347 0.4656 0.2453 0.0908 0.3531 0.2459 0.0894 0.3479 0.2435 0.0884 0.3440
2 0.2698 0.1382 0.4860 0.2618 0.0978 0.3814 0.2625 0.0964 0.3763 0.2598 0.0949 0.3689
3 0.3959 0.2802 0.9913 0.2629 0.1019 0.4044 0.2634 0.1009 0.4000 0.2612 0.0998 0.3948

80[75%] 1 0.2652 0.1329 0.4641 0.2263 0.0818 0.3166 0.2272 0.0795 0.3059 0.2234 0.0786 0.3030
2 0.2676 0.1362 0.4783 0.2544 0.0954 0.3751 0.2553 0.0934 0.3677 0.2516 0.0916 0.3591
3 0.2999 0.1788 0.6242 0.2580 0.0993 0.3943 0.2588 0.0976 0.3880 0.2554 0.0960 0.3805

Table 2. The point evaluations of θ.

T n[FP%] Scheme MLE SEL GEL

ν→ -2 +2

2 40[50%] 1 0.8106 0.2245 0.2218 0.8101 0.0956 0.0932 0.8102 0.0947 0.0923 0.8098 0.0946 0.0922
2 0.8034 0.4313 0.5124 0.7233 0.3473 0.3258 0.7237 0.3465 0.3252 0.7224 0.3457 0.3240
3 0.2556 0.6307 0.7199 0.5447 0.4658 0.4041 0.5448 0.4656 0.4034 0.5444 0.4656 0.4034

40[75%] 1 0.7966 0.1724 0.1724 0.8048 0.0752 0.0761 0.8049 0.0741 0.0750 0.8045 0.0740 0.0750
2 0.7514 0.1885 0.1867 0.7967 0.0887 0.0877 0.7968 0.0875 0.0863 0.7963 0.0875 0.0863
3 0.3662 0.5756 0.6466 0.9901 0.2973 0.2713 0.9908 0.1202 0.2705 0.9893 0.2958 0.2695

80[50%] 1 0.8045 0.1465 0.1443 0.8060 0.0669 0.0670 0.8061 0.0656 0.0658 0.8057 0.0655 0.0658
2 0.8007 0.1492 0.1463 0.8028 0.0860 0.0824 0.8030 0.0845 0.0807 0.8023 0.0844 0.0807
3 0.2874 0.5213 0.6408 0.8446 0.1210 0.1112 0.9904 0.2966 0.1103 0.8443 0.1199 0.1101

80[75%] 1 0.7998 0.1209 0.1184 0.8046 0.0557 0.0550 0.8047 0.0541 0.0534 0.8042 0.0541 0.0534
2 0.7727 0.1464 0.1339 0.7915 0.0616 0.0616 0.7917 0.0598 0.0597 0.7911 0.0599 0.0598
3 0.3292 0.4936 0.5905 0.8077 0.0779 0.0766 0.8078 0.0767 0.0754 0.8073 0.0766 0.0753

5 40[50%] 1 0.7742 0.2101 0.2090 0.8032 0.1052 0.0993 0.8033 0.1043 0.0986 0.8029 0.1043 0.0986
2 0.7900 0.2300 0.2270 0.8014 0.1319 0.1228 0.8015 0.1309 0.1218 0.8009 0.1308 0.1219
3 0.6821 0.3572 0.3572 0.8432 0.1925 0.1816 0.8436 0.1908 0.1801 0.8419 0.1901 0.1796

40[75%] 1 0.7750 0.1820 0.1769 0.7992 0.0866 0.0806 0.7993 0.0856 0.0793 0.7988 0.0855 0.0794
2 0.7830 0.1947 0.1870 0.7916 0.0956 0.0913 0.7917 0.0945 0.0902 0.7912 0.0945 0.0903
3 0.5860 0.3305 0.3435 0.9331 0.1903 0.1797 0.9333 0.1895 0.1788 0.9325 0.1889 0.1782

80[50%] 1 0.7773 0.1440 0.1422 0.7977 0.0690 0.0674 0.7978 0.0677 0.0661 0.7974 0.0677 0.0661
2 0.7877 0.1543 0.1521 0.7930 0.0846 0.0829 0.7932 0.0831 0.0815 0.7926 0.0831 0.0815
3 0.6712 0.2566 0.2608 0.8093 0.1790 0.1644 0.8097 0.1782 0.1632 0.8081 0.1777 0.1626

80[75%] 1 0.7900 0.1254 0.1240 0.8022 0.0607 0.0598 0.8023 0.0592 0.0584 0.8019 0.0592 0.0584
2 0.7935 0.1312 0.1295 0.7966 0.0671 0.0662 0.7967 0.0655 0.0647 0.7962 0.0655 0.0647
3 0.5692 0.3126 0.2089 0.9189 0.1381 0.1348 0.9191 0.1358 0.1326 0.9183 0.1354 0.1324
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Table 3. The point evaluations of σ.

T n[FP%] Scheme MLE SEL GEL

ν→ -2 +2

2 40[50%] 1 0.4428 0.1940 0.3260 0.3545 0.1559 0.2624 0.3573 0.1460 0.2457 0.3516 0.1450 0.2441
2 0.4516 0.1845 0.3567 0.3476 0.1639 0.2871 0.3504 0.1534 0.2687 0.3448 0.1524 0.2670
3 0.4687 0.2231 0.4186 0.3679 0.1885 0.3370 0.3708 0.1802 0.3222 0.3657 0.1791 0.3202

40[75%] 1 0.4372 0.1543 0.2719 0.3432 0.1304 0.2188 0.3459 0.1220 0.2048 0.3404 0.1212 0.2035
2 0.4558 0.1587 0.2828 0.3578 0.1341 0.2277 0.3607 0.1255 0.2131 0.3549 0.1247 0.2117
3 0.4566 0.1872 0.3397 0.3584 0.1582 0.2735 0.3613 0.1512 0.2698 0.3563 0.1503 0.2615

80[50%] 1 0.4276 0.1108 0.2091 0.3357 0.0937 0.1683 0.3383 0.0877 0.1575 0.3330 0.0871 0.1565
2 0.4196 0.1145 0.2199 0.3294 0.0968 0.1770 0.3320 0.0906 0.1657 0.3267 0.0900 0.1646
3 0.3109 0.1653 0.3348 0.2440 0.1397 0.2695 0.2460 0.1335 0.2577 0.2426 0.1327 0.2560

80[75%] 1 0.4171 0.0924 0.1745 0.3275 0.0781 0.1405 0.3301 0.0731 0.1315 0.3248 0.0726 0.1307
2 0.4301 0.0945 0.1778 0.3376 0.0799 0.1431 0.3403 0.0748 0.1339 0.3349 0.0743 0.1331
3 0.2848 0.1382 0.3080 0.2235 0.1168 0.2480 0.2253 0.1117 0.2371 0.2222 0.1110 0.2356

5 40[50%] 1 0.4735 0.1994 0.3615 0.3717 0.1685 0.2910 0.3747 0.1611 0.2782 0.3695 0.1600 0.2765
2 0.4791 0.2219 0.3959 0.3761 0.1875 0.3187 0.3791 0.1793 0.3047 0.3738 0.1782 0.3028
3 0.6447 0.3320 0.6380 0.5061 0.2806 0.5136 0.5101 0.2626 0.4807 0.5020 0.2609 0.4776

40[75%] 1 0.4561 0.1753 0.3116 0.3580 0.1481 0.2509 0.3609 0.1416 0.2398 0.3559 0.1407 0.2383
2 0.4679 0.1845 0.3370 0.3673 0.1559 0.2713 0.3702 0.1491 0.2594 0.3651 0.1481 0.2577
3 0.6530 0.2933 0.5347 0.5126 0.2478 0.4541 0.5150 0.2320 0.4182 0.5118 0.2305 0.4152

80[50%] 1 0.4387 0.1248 0.2356 0.3444 0.1055 0.1896 0.3471 0.1008 0.1813 0.3423 0.1002 0.1801
2 0.4359 0.1413 0.2754 0.3422 0.1194 0.2217 0.3449 0.1142 0.2119 0.3401 0.1135 0.2106
3 0.5576 0.2844 0.5083 0.4377 0.2265 0.3918 0.4412 0.2197 0.3830 0.4342 0.2188 0.3805

80[75%] 1 0.4273 0.1068 0.2039 0.3355 0.0903 0.1641 0.3381 0.0863 0.1569 0.3334 0.0857 0.1559
2 0.4270 0.1170 0.2228 0.3352 0.0989 0.1794 0.3378 0.0945 0.1715 0.3332 0.0939 0.1704
3 0.5125 0.2444 0.4428 0.4023 0.2065 0.3565 0.4055 0.1933 0.3337 0.3991 0.1920 0.3315

Table 4. The point evaluations of R(t).

T n[FP%] Scheme MLE SEL GEL

ν→ -2 +2

2 40[50%] 1 0.8688 0.0781 0.0767 0.8788 0.0470 0.0450 0.8814 0.0337 0.0329 0.8708 0.0309 0.0307
2 0.8749 0.0791 0.0778 0.8607 0.0506 0.0482 0.8666 0.0358 0.0337 0.8448 0.0348 0.0319
3 0.8567 0.0930 0.0879 0.8712 0.0564 0.0543 0.8778 0.0426 0.0413 0.8662 0.0419 0.0402

40[75%] 1 0.8687 0.0756 0.0739 0.8751 0.0433 0.0407 0.8779 0.0272 0.0281 0.8666 0.0287 0.0269
2 0.8663 0.0764 0.0746 0.8759 0.0468 0.0445 0.8787 0.0308 0.0313 0.8675 0.0295 0.0287
3 0.8448 0.0826 0.0812 0.8636 0.0523 0.0489 0.8669 0.0332 0.0334 0.8534 0.0301 0.0324

80[50%] 1 0.8671 0.0741 0.0731 0.8751 0.0335 0.0313 0.8814 0.0262 0.0247 0.8710 0.0247 0.0238
2 0.8640 0.0744 0.0739 0.8770 0.0372 0.0350 0.8841 0.0298 0.0296 0.8740 0.0285 0.0273
3 0.8562 0.0805 0.0794 0.8589 0.0416 0.0384 0.8700 0.0320 0.0317 0.8572 0.0290 0.0297

80[75%] 1 0.8673 0.0733 0.0715 0.8788 0.0327 0.0307 0.8779 0.0192 0.0177 0.8668 0.0233 0.0226
2 0.8650 0.0736 0.0718 0.8797 0.0311 0.0313 0.8816 0.0274 0.0266 0.8689 0.0240 0.0231
3 0.8668 0.0791 0.0780 0.8482 0.0386 0.0373 0.8624 0.0296 0.0292 0.8399 0.0256 0.0254

5 40[50%] 1 0.8621 0.0770 0.0755 0.8739 0.0524 0.0498 0.8768 0.0313 0.0299 0.8653 0.0301 0.0299
2 0.8625 0.0787 0.0770 0.8724 0.0612 0.0585 0.8778 0.0332 0.0325 0.8664 0.0324 0.0324
3 0.9091 0.0794 0.0792 0.8746 0.0619 0.0634 0.8775 0.0362 0.0351 0.8660 0.0355 0.0346

40[75%] 1 0.8644 0.0762 0.0748 0.8770 0.0473 0.0447 0.8750 0.0297 0.0286 0.8631 0.0290 0.0288
2 0.8724 0.0774 0.0757 0.8720 0.0490 0.0466 0.8754 0.0306 0.0295 0.8636 0.0301 0.0301
3 0.8647 0.0785 0.0769 0.8749 0.0510 0.0484 0.8798 0.0329 0.0312 0.8688 0.0325 0.0296

80[50%] 1 0.8614 0.0754 0.0743 0.8725 0.0346 0.0324 0.8754 0.0272 0.0250 0.8654 0.0231 0.0222
2 0.8637 0.0766 0.0744 0.8728 0.0411 0.0387 0.8757 0.0285 0.0260 0.8649 0.0250 0.0242
3 0.9068 0.0776 0.0756 0.8707 0.0544 0.0582 0.8780 0.0298 0.0271 0.8618 0.0264 0.0263

80[75%] 1 0.8644 0.0747 0.0736 0.8739 0.0339 0.0318 0.8738 0.0260 0.0245 0.8638 0.0233 0.0224
2 0.8655 0.0748 0.0737 0.8735 0.0367 0.0345 0.8767 0.0267 0.0255 0.8641 0.0244 0.0236
3 0.8696 0.0755 0.0742 0.8752 0.0382 0.0364 0.8764 0.0277 0.0266 0.8668 0.0252 0.0245
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Table 5. The point evaluations of h(t).

T n[FP%] Scheme MLE SEL GEL

ν→ -2 +2

2 40[50%] 1 0.3754 0.2054 0.4801 0.3514 0.0932 0.2080 0.4056 0.0420 0.1045 0.4012 0.0419 0.1040
2 0.3689 0.2070 0.4840 0.3164 0.1182 0.2437 0.3653 0.0599 0.1285 0.3613 0.0597 0.1497
3 0.4012 0.2164 0.5062 0.3671 0.1333 0.2965 0.4239 0.0641 0.1675 0.4192 0.0638 0.1668

40[75%] 1 0.3774 0.2051 0.4792 0.3544 0.0927 0.1945 0.4093 0.0417 0.1012 0.4048 0.0415 0.1008
2 0.3706 0.2056 0.4817 0.3524 0.1034 0.2190 0.4069 0.0453 0.1145 0.4025 0.0452 0.1280
3 0.3704 0.2133 0.4983 0.3644 0.1315 0.2767 0.4208 0.0611 0.1503 0.4162 0.0608 0.1449

80[50%] 1 0.3774 0.2039 0.4762 0.3541 0.0773 0.1618 0.4089 0.0411 0.0978 0.4044 0.0409 0.0975
2 0.3699 0.2061 0.4807 0.3503 0.0845 0.1798 0.4045 0.0439 0.1075 0.4000 0.0437 0.1070
3 0.4708 0.2121 0.4965 0.3736 0.1263 0.2656 0.4314 0.0554 0.1455 0.4266 0.0552 0.1382

80[75%] 1 0.3589 0.1997 0.4619 0.3567 0.0620 0.1293 0.4119 0.0388 0.0945 0.4074 0.0387 0.0941
2 0.3779 0.2045 0.4775 0.3535 0.0692 0.1460 0.4082 0.0424 0.1063 0.4037 0.0422 0.1058
3 0.4473 0.2113 0.4943 0.3667 0.1000 0.2356 0.4234 0.0544 0.1388 0.4187 0.0541 0.1140

5 40[50%] 1 0.3947 0.2070 0.4842 0.3541 0.1323 0.2744 0.4088 0.0455 0.1150 0.4068 0.0453 0.1148
2 0.2463 0.2076 0.4857 0.3518 0.1420 0.3446 0.4062 0.0466 0.1185 0.4041 0.0464 0.1183
3 0.3912 0.2116 0.4948 0.3547 0.1560 0.3293 0.4095 0.0552 0.1405 0.4075 0.0551 0.1402

40[75%] 1 0.3831 0.2065 0.4829 0.3554 0.1101 0.2370 0.4105 0.0443 0.1118 0.4084 0.0442 0.1116
2 0.3642 0.2070 0.4842 0.3539 0.1123 0.2407 0.4087 0.0453 0.1151 0.4067 0.0451 0.1149
3 0.3830 0.2105 0.4918 0.3620 0.1233 0.2607 0.4180 0.0538 0.1322 0.4159 0.0536 0.1319

80[50%] 1 0.3847 0.2058 0.4810 0.3569 0.0878 0.1849 0.4122 0.0431 0.1059 0.4101 0.0429 0.1057
2 0.3818 0.2066 0.4829 0.3559 0.1041 0.2235 0.4109 0.0448 0.1106 0.4089 0.0446 0.1104
3 0.2429 0.2081 0.4866 0.3588 0.1357 0.3442 0.4143 0.0478 0.1210 0.4122 0.0476 0.1207

80[75%] 1 0.3765 0.2047 0.4780 0.3580 0.0777 0.1648 0.4134 0.0415 0.0995 0.4113 0.0414 0.0993
2 0.3756 0.2058 0.4808 0.3569 0.0863 0.1833 0.4121 0.0439 0.1064 0.4100 0.0437 0.1062
3 0.3708 0.2064 0.4819 0.3649 0.0966 0.2142 0.4214 0.0458 0.1098 0.4193 0.0456 0.1095

Table 6. The 95% interval evaluations of µ.

n[FP%] Scheme ACI-NA BCI ACI-NA BCI
ACI-NL HPD ACI-NL HPD

T → 2 5

40[50%] 1 0.859 0.938 0.395 0.963 0.885 0.929 0.385 0.953
0.962 0.931 0.371 0.965 0.994 0.924 0.375 0.955

2 0.879 0.936 0.406 0.961 0.872 0.927 0.388 0.951
0.987 0.930 0.391 0.963 1.032 0.922 0.381 0.951

3 0.986 0.929 0.480 0.956 1.073 0.918 0.405 0.947
1.025 0.926 0.436 0.959 1.113 0.916 0.395 0.949

40[75%] 1 0.800 0.946 0.357 0.968 0.804 0.934 0.342 0.959
0.891 0.938 0.332 0.970 0.912 0.929 0.331 0.960

2 0.810 0.945 0.372 0.967 0.814 0.931 0.353 0.958
0.915 0.936 0.342 0.969 0.919 0.927 0.342 0.959

3 0.834 0.943 0.391 0.965 0.907 0.925 0.360 0.955
0.949 0.933 0.369 0.967 0.977 0.922 0.350 0.957

80[50%] 1 0.551 0.957 0.290 0.973 0.554 0.947 0.311 0.963
0.711 0.951 0.282 0.974 0.799 0.941 0.303 0.964

2 0.592 0.955 0.320 0.970 0.595 0.943 0.319 0.961
0.769 0.948 0.312 0.971 0.913 0.937 0.312 0.961

3 0.613 0.954 0.370 0.968 0.674 0.938 0.348 0.958
0.905 0.937 0.355 0.969 0.960 0.931 0.340 0.960

80[75%] 1 0.533 0.961 0.257 0.976 0.530 0.951 0.265 0.966
0.604 0.955 0.236 0.977 0.658 0.945 0.257 0.968

2 0.550 0.958 0.301 0.974 0.552 0.948 0.279 0.964
0.650 0.952 0.287 0.975 0.705 0.941 0.271 0.965

3 0.575 0.957 0.344 0.971 0.611 0.944 0.284 0.961
0.727 0.948 0.318 0.973 0.814 0.939 0.275 0.963
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Table 7. The 95% interval evaluations of θ.

n[FP%] Scheme ACI-NA BCI ACI-NA BCI
ACI-NL HPD ACI-NL HPD

T → 2 5

40[50%] 1 0.797 0.942 0.284 0.967 0.811 0.936 0.291 0.961
0.839 0.937 0.275 0.969 0.852 0.931 0.286 0.963

2 0.818 0.940 0.313 0.964 0.831 0.934 0.307 0.958
0.860 0.935 0.309 0.965 0.872 0.928 0.303 0.959

3 1.023 0.932 0.465 0.953 1.262 0.924 0.514 0.947
1.137 0.930 0.458 0.954 1.498 0.919 0.507 0.949

40[75%] 1 0.538 0.951 0.257 0.970 0.657 0.945 0.256 0.964
0.549 0.950 0.254 0.971 0.680 0.943 0.253 0.965

2 0.652 0.947 0.284 0.967 0.664 0.941 0.304 0.961
0.685 0.945 0.280 0.967 0.686 0.939 0.301 0.961

3 0.670 0.946 0.440 0.956 0.964 0.940 0.499 0.950
0.691 0.944 0.434 0.958 0.978 0.938 0.493 0.951

80[50%] 1 0.490 0.956 0.237 0.974 0.549 0.950 0.246 0.968
0.506 0.955 0.234 0.975 0.560 0.948 0.243 0.969

2 0.566 0.952 0.275 0.969 0.558 0.946 0.281 0.963
0.574 0.950 0.272 0.970 0.570 0.944 0.278 0.965

3 0.569 0.952 0.311 0.963 0.788 0.946 0.363 0.957
0.578 0.951 0.302 0.965 0.796 0.945 0.358 0.960

80[75%] 1 0.320 0.967 0.211 0.977 0.456 0.961 0.226 0.971
0.344 0.965 0.208 0.978 0.463 0.960 0.213 0.973

2 0.453 0.960 0.259 0.972 0.461 0.954 0.279 0.966
0.460 0.959 0.256 0.973 0.467 0.954 0.276 0.967

3 0.463 0.959 0.285 0.968 0.534 0.953 0.358 0.962
0.469 0.957 0.281 0.970 0.566 0.951 0.353 0.964

Table 8. The 95% interval evaluations of σ.

n[FP%] Scheme ACI-NA BCI ACI-NA BCI
ACI-NL HPD ACI-NL HPD

T → 2 5

40[50%] 1 0.712 0.946 0.620 0.965 0.626 0.949 0.535 0.974
0.797 0.939 0.616 0.966 0.680 0.947 0.529 0.976

2 0.795 0.940 0.648 0.959 0.742 0.945 0.5854 0.968
0.915 0.932 0.641 0.960 0.830 0.938 0.5796 0.970

3 0.841 0.936 0.673 0.955 0.827 0.942 0.607 0.965
0.949 0.928 0.662 0.956 0.926 0.930 0.598 0.966

40[75%] 1 0.630 0.954 0.593 0.973 0.553 0.959 0.467 0.983
0.685 0.950 0.588 0.974 0.673 0.951 0.457 0.985

2 0.672 0.9490 0.615 0.968 0.649 0.952 0.518 0.978
0.739 0.9430 0.608 0.970 0.714 0.946 0.504 0.980

3 0.800 0.941 0.624 0.963 0.701 0.947 0.562 0.973
0.905 0.933 0.618 0.964 0.776 0.942 0.558 0.975

80[50%] 1 0.453 0.960 0.411 0.978 0.404 0.965 0.341 0.988
0.475 0.958 0.392 0.979 0.419 0.964 0.339 0.989

2 0.523 0.957 0.463 0.975 0.463 0.962 0.391 0.985
0.559 0.954 0.453 0.976 0.485 0.960 0.384 0.986

3 0.592 0.952 0.520 0.971 0.539 0.957 0.455 0.980
0.613 0.950 0.512 0.972 0.575 0.954 0.448 0.982

80[75%] 1 0.408 0.964 0.353 0.983 0.328 0.971 0.277 0.991
0.425 0.962 0.347 0.984 0.349 0.969 0.272 0.991

2 0.439 0.9590 0.377 0.978 0.431 0.961 0.364 0.988
0.459 0.9560 0.370 0.979 0.451 0.958 0.361 0.989

3 0.548 0.954 0.474 0.971 0.471 0.959 0.332 0.981
0.573 0.951 0.466 0.973 0.493 0.957 0.326 0.982
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Table 9. The 95% interval evaluations of R(t).

n[FP%] Scheme ACI-NA BCI ACI-NA BCI
ACI-NL HPD ACI-NL HPD

T → 2 5

40[50%] 1 0.242 0.943 0.167 0.965 0.232 0.948 0.159 0.969
0.240 0.945 0.165 0.967 0.231 0.948 0.157 0.968

2 0.248 0.941 0.179 0.9610 0.235 0.945 0.175 0.965
0.246 0.943 0.177 0.9630 0.233 0.946 0.172 0.966

3 0.261 0.937 0.207 0.957 0.238 0.943 0.210 0.961
0.259 0.938 0.206 0.958 0.235 0.944 0.200 0.963

40[75%] 1 0.226 0.952 0.164 0.968 0.228 0.950 0.125 0.972
0.225 0.953 0.162 0.970 0.227 0.951 0.123 0.971

2 0.228 0.951 0.173 0.964 0.230 0.949 0.166 0.971
0.226 0.953 0.172 0.966 0.229 0.949 0.164 0.970

3 0.256 0.945 0.183 0.961 0.233 0.945 0.182 0.968
0.254 0.946 0.181 0.963 0.232 0.946 0.180 0.967

80[50%] 1 0.221 0.953 0.124 0.976 0.226 0.952 0.115 0.975
0.219 0.955 0.122 0.978 0.224 0.951 0.113 0.974

2 0.225 0.952 0.133 0.972 0.227 0.951 0.124 0.973
0.223 0.954 0.131 0.975 0.226 0.950 0.122 0.974

3 0.237 0.948 0.152 0.968 0.230 0.948 0.153 0.972
0.233 0.950 0.151 0.970 0.228 0.947 0.151 0.973

80[75%] 1 0.216 0.957 0.119 0.983 0.221 0.955 0.092 0.987
0.215 0.958 0.118 0.984 0.220 0.954 0.091 0.988

2 0.221 0.954 0.125 0.980 0.223 0.953 0.118 0.985
0.220 0.955 0.123 0.982 0.222 0.954 0.116 0.986

3 0.228 0.951 0.129 0.978 0.225 0.952 0.130 0.981
0.226 0.953 0.127 0.980 0.223 0.953 0.128 0.980

Table 10. The 95% interval evaluations of h(t).

n[FP%] Scheme ACI-NA BCI ACI-NA BCI
ACI-NL HPD ACI-NL HPD

T → 2 5

40[50%] 1 0.673 0.950 0.445 0.967 0.671 0.952 0.428 0.974
0.671 0.952 0.419 0.970 0.667 0.953 0.406 0.976

2 0.679 0.948 0.512 0.959 0.677 0.949 0.496 0.962
0.676 0.949 0.482 0.963 0.673 0.951 0.466 0.965

3 0.709 0.944 0.604 0.956 0.693 0.946 0.591 0.958
0.704 0.945 0.570 0.959 0.688 0.949 0.550 0.961

40[75%] 1 0.671 0.953 0.439 0.970 0.669 0.955 0.317 0.976
0.668 0.954 0.417 0.973 0.664 0.957 0.297 0.980

2 0.679 0.950 0.480 0.965 0.673 0.951 0.441 0.968
0.673 0.952 0.451 0.967 0.668 0.953 0.419 0.971

3 0.703 0.947 0.504 0.962 0.687 0.948 0.490 0.963
0.701 0.948 0.480 0.964 0.683 0.950 0.461 0.967

80[50%] 1 0.665 0.958 0.328 0.977 0.659 0.960 0.300 0.980
0.660 0.960 0.319 0.978 0.655 0.961 0.292 0.981

2 0.670 0.952 0.340 0.975 0.671 0.953 0.335 0.977
0.667 0.953 0.330 0.976 0.665 0.955 0.324 0.978

3 0.691 0.949 0.417 0.973 0.680 0.950 0.410 0.974
0.682 0.951 0.399 0.971 0.677 0.952 0.391 0.972

80[75%] 1 0.658 0.960 0.299 0.980 0.601 0.964 0.216 0.986
0.656 0.961 0.291 0.981 0.596 0.965 0.209 0.987

2 0.667 0.957 0.328 0.979 0.661 0.958 0.299 0.983
0.662 0.958 0.318 0.980 0.658 0.959 0.291 0.984

3 0.673 0.953 0.358 0.977 0.667 0.957 0.332 0.979
0.671 0.954 0.350 0.978 0.662 0.956 0.322 0.981
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5. Real-world applications

To examine the efficacy and fitness of the suggested estimation methods, two real-world scenarios
illustrate the potentiality of this model, which is to perform analyses for those real data sets that are
gathered from the engineering experiment.

5.1. Carbon fibers data

Carbon fiber was widely used in the industry due to its great tensile strength, low density, strong
thermal properties, electrical conductivities, chemical stability, and high thermal. So, fibers are used
today to produce several components that are needed with light weight and high strength. This
application examines the strength of single carbon fibers measured in gigapascal pascal (GPa) at
gauge lengths of 20 mm under stress, and impregnated thousand-carbon fibers; refer to Table 11. The
dataset was provided by Badar and Priest [40] and discussed by Kundu and Raqab [41].

Table 11. Strength data in GPa for 74 carbon fibers.

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958
1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179
2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382
2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554
2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726
2.770 2.773 2.800 2.809 2.809 2.818 2.818 2.821 2.821 2.848
2.848 2.880 2.880 2.954 3.012 3.067 3.084 3.090 3.096 3.128
3.233 3.433 3.585 3.585

Now, based on six different criteria, which are: the negative log likelihood (NL), consistent Akaike
(CAI), Akaike (A), Bayesian (B), Hannan-Quinn (HQ), and the Kolmogorov-Smirnov (KS) test with
the corresponding P-value methods, the NEW lifetime distribution is compared to other common
distributions in the literature as competitors, namely: Harris extended-exponential (HEE(µ, θ, σ)),
Marshall-Olkin extended-exponential (MOEE(µ, θ, σ)), Marshall-Olkin Gompertz (MOG(µ, θ, σ)),
exponentiated Weibull (EW(µ, θ, σ)), Weibull-exponential (WE(µ, θ, σ)), inverse Weibull (IW(θ, σ)),
Weibull (W(θ, σ)), gamma (G(θ, σ)), and generalized exponential (GE(θ, σ)) distributions. The CDFs,
for y > 0 and µ, θ, σ > 0, for the competing models of the NEW distribution, are reported in Table 12.
For each model, through the method of ML, each parameter with its standard error (St.Er) in addition
to the goodness-of-fit-criteria are evaluated, see Table 13. The best model of fit must give the lowest
value of all the given criteria, and give the highest value of P. It is evident, from Table 13, that the
NEW model fits the carbon fibers data superior to the other competing models. Also, in Figure 4,
different plots are treated to reinforce the numerical findings indexed in Table 13, namely: (i)
estimated densities with data histograms, (ii) estimated reliability functions, and (iii) total time on a
test (TTT) plots of all competitive life models. It indicates, however, that the NEW model fits the
carbon fibers data set satisfactorily and validates the numerical findings. It also reveals that the failure
rate shape for the carbon fibers data increases, since the NEW distribution can present an increasing
failure rate, which means that it can be adequately used to fit the carbon fibers data. For more
information on the data representations and visual aids proposed here, we recommend following the
workshop presented by Elshahhat [42].
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Table 12. Competing lifetime distributions for the NEW distribution.

Model CDF Author(s)

HEE 1 − (σ exp(−µθy)(1 − (1 − σ) exp(−µθy)))−
1
µ Pinho et al. [43]

MOEE (1 − exp(1 − (1 + µy)θ))(1 − (1 − σ) exp(1 − (1 + µy)θ))−1 Lemonte et al. [44]
MOG (1 − exp(− µ

θ
eµy − 1)))(1 − (1 − σ) exp( µ

θ
(1 − eµy))−1 Eghwerido et al. [45]

EW (1 − exp(−(σy)µ))θ Mudholkar and Srivastava [10]
WE 1 − exp(−σ(exp(µy) − 1)θ) Oguntunde et al. [46]
IW e−σy−θ Ramos et al. [47]
W 1 − exp(−σyθ) Weibull [48]
G 1

Γ(θ) γ (θ, µy) Johnson et al. [49]
GE (1 − exp(−σy))θ Gupta and Kundu [50]

Table 13. Fit results for the NEW and other models for carbon fibers data.

Model MLE(St.Er) NL A CA B HQ KS

µ θ σ Statistic P-value

NEW 5.9388(7.0814) 3.4070(2.7981) 0.3355(1.8194) 51.137 108.27 108.62 113.22 110.45 0.0598 0.9537
HEE 0.5800(0.2313) 3.2119(1.0139) 155.28(46.555) 63.738 133.48 133.82 140.39 136.23 0.1963 0.0665
MOEE 24.849(28.315) 67.816(26.836) 0.0275(0.0329) 53.091 112.18 112.52 119.09 114.94 0.0637 0.9419
MOG 0.2511(0.2791) 15.491(18.903) 0.9886(0.3980) 54.782 115.56 115.91 122.48 118.32 0.0738 0.8152
EW 0.4068(0.0446) 1.6369(0.9195) 4.4322(1.2970) 51.152 108.30 108.65 115.22 111.06 0.0600 0.9525
WE 0.2664(0.0709) 4.1130(0.4931) 0.8277(1.2611) 52.236 110.47 110.81 117.38 113.23 0.0766 0.7785
IW - 4.1092(0.3231) 24.111(5.7406) 69.099 142.02 142.19 146.63 143.86 0.1453 0.0878
W - 5.1255(0.3318) 0.0067(0.0023) 52.308 108.62 108.78 115.19 111.03 0.0743 0.8088
G - 24.227(3.9558) 9.7796(1.6134) 53.165 110.33 110.50 114.94 112.17 0.0681 0.8821
GE - 85.764(30.812) 1.9993(0.1695) 58.810 121.62 121.79 126.23 123.46 0.0982 0.4740
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Figure 4. The fitted PDFs (a), fitted RFs (b), and TTT (c) plots of the NEW and its competing
models from carbon fibers data.

From the carbon fibers dataset, and using k = 34 with various options of T and R, the artificial A-
PT2-C sampling schemes are created and recorded in Table 14. Using the Gibbs steps investigated in
Section 3, we ignored the first 10,000 samples out of 50,000 MCMC samples. The calculated MLEs of
µ, θ, and σ are chosen as initial guesses for employing the MCMC algorithms. Since prior information
on µ and θ is not possible, the Bayesian estimators for µ, θ, σ, R(t), and h(t) (at t = 1.5), from a
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non-informative prior, are acquired against both SEL and GEL (for ν = (−5,−0.05,+5)) functions. For
the calculation logic, the hyperparameter values are specified to be 0.001. Table 15 displays the point
estimation (with their St.Ers) of µ, θ, σ, R(t), and h(t). In Table 15, the point estimate (along with its
St.Er) is displayed in the first and second columns, respectively. Additionally, the two interval bounds
(with their interval lengths (ILs)), developed by 95% asymptotic (NA/NL) and Bayesian (BCI/HPD)
intervals, of the same unknown quantities, are computed and presented in Table 16. To perform the
MCMC method, the classical estimators’ for µ, θ, and σ are taken as the starting guesses. Tables 15
and 16 stated, in charge of the lowest St.Er and IL values, that the given interval and point estimates
calculated from the proposed Bayes MCMC technique act better than those calculated from the ML
method.
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Figure 5. Profile log-likelihood functions for µ, θ, and σ from carbon fibers data.

To show that the attained MLEs exist and are unique, for all generated samples in Table 14, the
profile log-likelihood of µ, θ and σ are shown in Figure 5. As we anticipated, Figure 5 supported the
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numerical values reported in Table 15. One of the biggest issues when adopting the Gibbs process is
proving Markovian convergence. For this objective, from each created sample, Figure 6 depicts both
the trace plot and the density plot of all unknown parameters. In each subplot in Figure 6, the sample
mean as well as the two bounds of 95% Bayes credible intervals are represented as blue solid (—)
and dashed (- - -) horizontal lines, respectively. Figure 6 shows that the suggested Gibbs sampling is
convergent adequately and indicates that the densities of µ, θ and σ are almost symmetric, while those
of R(t) and h(t) are negatively and positively-skewed, respectively.

Again, based on 40,000 MCMC variates collected from all created samples, useful statistics,
namely, mean, mode, three quartiles (Qi, i = 1, 2, 3), standard deviation (St.D.), and skewness (Sk.) of
µ, θ, σ, R(t), and h(t) are obtained; see Table 17. It supports the same numerical findings shown in
Table 15 and confirms the same graphical facts shown in Figure 6.

Table 14. Three A-PT2-C samples from carbon fibers.

Sample Scheme T (d) Rk Censored Sample

1 (104 , 0∗30) 1.4(2) 20 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179,
2.224, 2.240, 2.253, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382,
2.426, 2.434, 2.490, 2.511

2 (0∗15, 104 , 0∗15) 2.2(18) 10 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.179, 2.224, 2.272,
2.274, 2.301, 2.382, 2.426, 2.434, 2.435, 2.490, 2.535, 2.554, 2.633,
2.642, 2.648, 2.684, 2.697

3 (0∗30, 104) 2.43(32) 20 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179,
2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382,
2.382, 2.426, 2.434, 2.511

Table 15. Point estimates of µ, θ, σ, R(t) and h(t) from carbon fibers data.

Sample Par. MLE SEL GEL

ν→ -5 -0.05 +5

1 µ 10.105 1.0987 10.038 0.1009 10.040 0.0657 10.038 0.0671 10.037 0.0685
θ 1.3527 0.5751 1.2891 0.0976 1.2976 0.0551 1.2871 0.0656 1.2763 0.0764
σ 15.974 7.9715 15.909 0.1038 15.910 0.0641 15.909 0.0651 15.908 0.0661

R(1.5) 0.9677 0.0154 0.9672 0.0019 0.9672 0.0005 0.9672 0.0005 0.9672 0.0005
h(1.5) 0.1769 0.0636 0.1774 0.0101 0.1785 0.0016 0.1771 0.0002 0.1757 0.0012

2 µ 4.7867 14.5981 4.7198 0.1026 4.7223 0.0644 4.7192 0.0676 4.7159 0.0708
θ 3.6552 6.6844 3.5952 0.0955 3.5983 0.0569 3.5945 0.0607 3.5906 0.0646
σ 0.1327 1.5899 0.1320 0.0093 0.1332 0.0005 0.1316 0.0011 0.1300 0.0028

R(1.5) 0.9763 0.0154 0.9759 0.0021 0.9759 0.0004 0.9759 0.0004 0.9759 0.0004
h(1.5) 0.1097 0.0381 0.1097 0.0094 0.1113 0.0016 0.1093 0.0004 0.1073 0.0024

3 µ 7.5759 5.2159 7.5087 0.1031 7.5104 0.0655 7.5083 0.0675 7.5063 0.0696
θ 2.3540 2.4615 2.2917 0.0969 2.2965 0.0575 2.2906 0.0634 2.2845 0.0695
σ 1.6019 6.8020 1.6019 0.0010 1.6019 0.0000 1.6019 0.0000 1.6019 0.0000

R(1.5) 0.9737 0.0137 0.9731 0.0016 0.9732 0.0005 0.9731 0.0006 0.9731 0.0006
h(1.5) 0.1316 0.0479 0.1324 0.0077 0.1333 0.0018 0.1322 0.0006 0.1311 0.0005
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Table 16. Interval estimation for µ, θ, σ, R(t) and h(t) with carbon fibers data.

Sample Par. ACI-NA ACI-NL BCI HPD

Lower Upper IL Lower Upper IL Lower Upper IL Lower Upper IL

1 µ 7.9517 12.259 4.3069 8.1657 12.505 4.3396 9.8948 10.191 0.2959 9.8932 10.187 0.2936
θ 0.2256 2.4798 2.2542 0.5879 3.1122 2.5243 1.1472 1.4341 0.2869 1.1371 1.4216 0.2845
σ 0.3505 31.598 31.248 6.0070 42.480 36.473 15.748 16.068 0.3195 15.771 16.085 0.3148

R(1.5) 0.9376 0.9979 0.0602 0.9381 0.9983 0.0603 0.9635 0.9706 0.0071 0.9635 0.9706 0.0071
h(1.5) 0.0523 0.3015 0.2492 0.0875 0.3578 0.2703 0.1591 0.1983 0.0391 0.1587 0.1977 0.0390

2 µ 0.0000 33.398 33.398 0.0121 38.877 38.865 4.5703 4.8723 0.3020 4.5686 4.8694 0.3008
θ 0.0000 16.756 16.756 0.1015 31.690 31.589 3.4519 3.7425 0.2906 3.4395 3.7285 0.2890
σ 0.0000 3.2488 3.2488 0.0014 6.5148 6.1534 0.1138 0.1509 0.0371 0.1135 0.1503 0.0368

R(1.5) 0.9461 1.0064 0.0603 0.9466 1.0069 0.0603 0.9716 0.9797 0.0081 0.9718 0.9799 0.0080
h(1.5) 0.0350 0.1844 0.1494 0.0555 0.2167 0.1612 0.0925 0.1293 0.0368 0.0922 0.1287 0.0365

3 µ 0.0000 17.799 17.799 1.9651 29.207 27.241 7.3578 7.6621 0.3042 7.3588 7.6624 0.3036
θ 0.0000 7.1784 7.1784 0.3032 18.276 17.973 2.1468 2.4372 0.2903 2.1384 2.4253 0.2869
σ 0.0000 14.934 14.934 0.0004 2.1394 2.1390 1.5999 1.6039 0.0040 1.6000 1.6039 0.0039

R(1.5) 0.9469 1.0005 0.0537 0.9472 1.0009 0.0537 0.9700 0.9760 0.0060 0.9700 0.9759 0.0060
h(1.5) 0.0378 0.2254 0.1876 0.0645 0.2684 0.2039 0.1182 0.1481 0.0299 0.1177 0.1475 0.0298

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 6. Density and Trace (left and right) plots for µ, θ, σ, R(t) and h(t) from carbon fibers
data.
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Table 17. Statistics for 40,000 Markovian variates of µ, θ, σ, R(t) and h(t) from carbon fibers
data.

Sample Par. Mean Mode Q1 Q2 Q3 St.D. Sk.

1 µ 10.038 9.9055 9.9872 10.038 10.088 0.0756 0.1108
θ 1.2891 1.2359 1.2375 1.2887 1.3392 0.0740 0.0705
σ 15.909 15.716 15.856 15.909 15.964 0.0810 -0.0643

R(1.5) 0.9672 0.9655 0.9660 0.9673 0.9685 0.0018 -0.1809
h(1.5) 0.1774 0.1838 0.1703 0.1770 0.1839 0.0101 0.2297

2 µ 4.7198 4.5846 4.6677 4.7201 4.7717 0.0777 0.0183
θ 3.5952 3.4400 3.5450 3.5943 3.6453 0.0744 0.0597
σ 0.1320 0.1338 0.1257 0.1318 0.1382 0.0093 0.0492

R(1.5) 0.9759 0.9749 0.9746 0.9760 0.9773 0.0021 -0.2492
h(1.5) 0.1097 0.1100 0.1032 0.1093 0.1159 0.0094 0.2190

3 µ 7.5087 7.3737 7.4557 7.5095 7.5614 0.0783 0.0157
θ 2.2917 2.1389 2.2415 2.2905 2.3417 0.0742 0.0380
σ 1.6019 1.6020 1.6012 1.6018 1.6025 0.0010 0.0087

R(1.5) 0.9731 0.9724 0.9721 0.9732 0.9742 0.0015 -0.1839
h(1.5) 0.1324 0.1315 0.1271 0.1320 0.1375 0.0077 0.2054

One of the basic affairs in reliability analysis is how to distinguish the real action of the reliability
parameter R(t) at every data point. Thus, to highlight the effectiveness of the reliability parameter,
Figure 7 shows the estimates provided by the asymptotic methods (ACI-NA-ACI-NL techniques) and
Bayes’ approaches (BCI-HPD interval techniques) using the three proposed samples. It is evidence
that interval estimation of R(t) created by the ACI-NA behave well compared to the ACI-NL, while the
results created from the BCI and HPD interval techniques almost approach each other.
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Figure 7. Plots for reliability interval estimates from carbon fibers data.

5.2. Electromigration data

In actuality, failures in microcircuits can occur due to the movement of atoms in the circuit’s
conductors, a phenomenon known as electromigration. This application displays the lifetime analysis
of 59 conductors recorded by an accelerated life test; see Table 18. This dataset does not include
censored observations and was taken from Lawless [51].
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Table 18. Failure times from an accelerated life test of 59 conductors.

2.997 4.137 4.288 4.531 4.700 4.706 5.009 5.381 5.434 5.459
5.589 5.640 5.807 5.923 6.033 6.071 6.087 6.129 6.352 6.369
6.476 6.492 6.515 6.522 6.538 6.545 6.573 6.725 6.869 6.923
6.948 6.956 6.958 7.024 7.224 7.365 7.398 7.459 7.489 7.495
7.496 7.543 7.683 7.937 7.945 7.974 8.120 8.336 8.532 8.591
8.687 8.799 9.218 9.254 9.289 9.663 10.092 10.491 11.038

Just like our calculations in Subsection 5.1, we shall compare the NEW distribution against the
same competitors shown in Table 12. The MLEs with their St.Ers are listed in 19, in addition, the
fitness measures: NL, A, CA, B, HQ, and KS distance with the P-value are provided in Table 19.
The results in 19 indicate that the NEW distribution has a better fit to the conductors’ data than other
distributions. Figure 8 shows graphically the relative histograms of the conductors data set and the
fitted PDFs, fitted/empirical RFs, and TTT plots. The same numerical findings are also supported by
Figure 8. Figure 8(c) indicates that the TTT plot for the conductors data displays an increasing failure
rate, so the proposed model can be adapted to fit this data type because it can present an increasing
failure rate.

Table 19. Fit results of the NEW with competing models from conductors’ data.

Model MLE(St.Er) NL A CA B HQ KS

µ θ σ Statistic P-value

NEW 22.832(10.988) 1.5700(1.4875) 0.8922(3.9683) 111.31 227.66 227.88 231.82 229.28 0.0682 0.9291
HEE 0.7360(0.2791) 0.9650(0.2776) 174.79(67.749) 116.33 238.67 239.11 244.90 241.10 0.1474 0.1391
MOEE 3.9335(2.6170) 57.257(34.093) 0.0733(0.0647) 113.657 233.31 233.75 239.55 235.75 0.0766 0.8533
MOG 0.1059(0.0905) 9.3193(8.4746) 0.2855(0.1058) 116.797 239.59 240.03 245.83 242.03 0.1167 0.3694
EW 0.1610(0.0350) 2.4940(2.0190) 3.0657(1.1400) 111.34 228.62 229.06 234.85 231.05 0.0704 0.9122
WE 0.1335(0.0211) 2.9312(0.3529) 0.1754(0.1117) 114.10 234.20 234.64 240.44 236.64 0.1245 0.2948
IW - 2.9749(0.2178) 206.25(76.331) 126.09 256.19 256.40 260.34 256.81 0.1706 0.0573
W - 3.1119(0.0728) 0.0020(0.0002) 119.70 243.40 243.61 247.55 245.02 0.1996 0.0155
G - 18.104(3.3030) 2.5933(0.4797) 111.83 228.87 229.31 235.11 231.31 0.0707 0.9091
GE - 52.026(19.122) 0.6412(0.0622) 114.95 233.89 234.11 238.05 235.52 0.1042 0.5103
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Figure 8. The fitted PDFs (a), fitted RFs (b), and TTT (c) curves for the NEW and its
alternative models from conductors example.
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Now, by taking k = 29 and with different selections for T and R, we create three A-PT2-C
sampling schemes considering the complete conductors’ data and reporting them in Table 20. For
each generated A-PT2-C data, the maximum likelihood with 95% ACI-NA/ACI-NL intervals
estimates as well as the Bayes based on 95% BCI/HPD intervals estimates of µ, θ, σ, R(t), and h(t) (at
t = 5) are calculated. Following the Gibbs algorithm proposed in Section 3, to evaluate the Bayes’
estimations, 50,000 variates, with the first 10,000 abandoned, are created. Then, the Bayes estimates
against the SEL and GEL (for ν = (−5,−0.05,+5)) are derived. Tables 21 and 22 report the point and
interval results with the corresponding St.Ers and ILs for µ, θ, σ, R(t), and h(t). To collect the desired
MCMC variates of µ, θ, and σ, the MLEs of µ, θ, and σ are selected as starting points. The profile
log-likelihood curves are plotted and shown in Figure 9. It is noted, from Table 21, that the Bayes’
estimates of µ, θ, σ, R(t), and h(t) perform better compared to the frequentist estimates. The interval
limits of µ, θ, σ, R(t), and h(t) developed by the asymptotic procedure (ACI-NA/ACI-NL) and Bayes
procedure (BCI/HPD) are very similar.
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Figure 9. The profile log-likelihood functions of µ, θ and σ from conductors data.

To assess whether the simulated MCMC samples achieve proper convergence, Figure 10 illustrates
the density and trace plots for µ, θ, σ, R(t), and h(t), based on the generated samples in Table 20. The
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figure confirms that the proposed Gibbs sampling method converges effectively and that the chosen
burn-in size is sufficient to eliminate the influence of initial values. Additionally, these plots indicate
that the estimates for µ, θ, and σ are approximately symmetrical, whereas the estimates for R(t) and
h(t) exhibit negative and positive skewness, respectively.

Table 20. Three A-PT2-C samples from conductors data.

Sample Scheme T (d) Rk Censored sample

1 (56, 0∗23) 4.8(4) 10 2.997, 4.137, 4.288, 4.706, 5.009, 5.381, 5.434, 5.459, 5.589, 5.640,
5.807, 5.923, 6.087, 6.129, 6.352, 6.369, 6.476, 6.515, 6.522, 6.538,
6.545, 6.573, 6.725, 6.869, 6.923, 6.958, 7.024, 7.224, 7.459

2 (0∗12, 56, 0∗11) 6.2(15) 15 2.997, 4.137, 4.288, 4.531, 4.700, 4.706, 5.009, 5.381, 5.434, 5.459,
5.589, 5.640, 5.807, 5.923, 6.033, 6.492, 6.538, 6.545, 6.573, 6.725,
6.923, 6.948, 6.956, 6.958, 7.024, 7.224, 7.365, 7.398, 7.459

3 (0∗23, 56) 6.6(25) 20 2.997, 4.137, 4.288, 4.531, 4.700, 4.706, 5.009, 5.381, 5.434, 5.459,
5.589, 5.640, 5.807, 5.923, 6.033, 6.071, 6.087, 6.129, 6.352, 6.369,
6.476, 6.492, 6.515, 6.522, 6.538, 6.725, 6.923, 6.948, 6.956

Table 21. Point estimates of µ, θ, σ, R(t) and h(t) from conductors data.

Sample Par. MLE SEL GEL

ν→ -5 -0.05 +5

1 µ 11.745 9.6431 11.6424 0.1421 11.644 0.1006 11.642 0.1026 11.640 0.1047
θ 3.7628 2.0566 3.7080 0.0897 3.7108 0.0520 3.7074 0.0554 3.7039 0.0589
σ 0.0025 0.0133 0.0025 0.0001 0.0025 0.0000 0.0025 0.0000 0.0025 0.0000

R(5) 0.9025 0.0345 0.9079 0.0116 0.9081 0.0056 0.9078 0.0053 0.9075 0.0050
h(5) 0.1254 0.0331 0.1169 0.0171 0.1207 0.0047 0.1160 0.0093 0.1112 0.0141

2 µ 6.0586 6.8345 5.9539 0.1438 5.9572 0.1014 5.9531 0.1054 5.9490 0.1095
θ 4.1053 1.3812 4.0444 0.0985 4.0473 0.0580 4.0437 0.0617 4.0399 0.0654
σ 0.0006 0.0022 0.0006 0.0001 0.0007 0.0000 0.0006 0.0000 0.0006 0.0000

R(5) 0.8725 0.0410 0.8775 0.0166 0.8781 0.0056 0.8774 0.0049 0.8767 0.0041
h(5) 0.1450 0.0335 0.1371 0.0215 0.1429 0.0021 0.1357 0.0093 0.1283 0.0167

3 µ 7.1852 11.749 7.0816 0.1441 7.0844 0.1008 7.0809 0.1043 7.0773 0.1078
θ 4.3088 2.1736 4.2443 0.1025 4.2473 0.0615 4.2436 0.0652 4.2398 0.0690
σ 0.0003 0.0017 0.0003 0.0000 0.0003 0.0000 0.0003 0.0000 0.0003 0.0000

R(5) 0.9316 0.0229 0.9346 0.0094 0.9348 0.0032 0.9346 0.0030 0.9343 0.0028
h(5) 0.0815 0.0186 0.0767 0.0123 0.0801 0.0014 0.0759 0.0056 0.0717 0.0098
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Table 22. Interval estimation for µ, θ, σ, R(t) and h(t) of conductors data.

Sample Par. ACI-NA ACI-NL BCI HPD

Lower Upper IL Lower Upper IL Lower Upper IL Lower Upper IL

1 µ 0.0000 30.645 30.645 2.3494 58.712 56.363 11.453 11.837 0.3838 11.460 11.842 0.3814
θ 0.0000 7.7936 7.7936 1.2891 10.983 9.6943 3.5638 3.8449 0.2811 3.5669 3.8465 0.2797
σ 0.0000 0.0286 0.0286 0.0000 79.552 79.552 0.0023 0.0027 0.0004 0.0023 0.0027 0.0004

R(5) 0.8349 0.9701 0.1352 0.8374 0.9727 0.1353 0.8866 0.9265 0.0399 0.8884 0.9283 0.0398
h(5) 0.0604 0.1903 0.1299 0.0747 0.2104 0.1357 0.0901 0.1483 0.0582 0.0882 0.1460 0.0579

2 µ 0.0000 19.454 19.454 0.6640 55.283 54.619 5.7651 6.1467 0.3816 5.7542 6.1328 0.3786
θ 1.3983 6.8124 5.4141 2.1231 7.9382 5.8150 3.8981 4.1968 0.2987 3.8981 4.1965 0.2984
σ 0.0000 0.0049 0.0049 0.0000 0.6235 0.6235 0.0005 0.0008 0.0003 0.0005 0.0008 0.0003

R(5) 0.7921 0.9530 0.1608 0.7957 0.9568 0.1611 0.8442 0.9067 0.0625 0.8453 0.9075 0.0622
h(5) 0.0793 0.2107 0.1314 0.0922 0.2281 0.1360 0.1012 0.1796 0.0784 0.1017 0.1800 0.0783

3 µ 0.0000 30.213 30.213 0.2915 77.126 76.835 6.8784 7.2771 0.3987 6.8777 7.2667 0.3890
θ 0.0487 8.5689 8.5202 1.6032 11.581 9.9777 4.0923 4.4012 0.3089 4.0912 4.3993 0.3081
σ 0.0000 0.0036 0.0036 0.0000 23.643 23.643 0.0002 0.0004 0.0002 0.0002 0.0004 0.0002

R(5) 0.8867 0.9764 0.0897 0.8878 0.9775 0.0898 0.9159 0.9506 0.0348 0.9175 0.9521 0.0345
h(5) 0.0449 0.1180 0.0731 0.0520 0.1276 0.0756 0.0566 0.1011 0.0446 0.0556 0.0995 0.0440

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 10. Density and Trace (left and right) plots of µ, θ, σ, R(t) and h(t) for conductors
data.
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Table 23. Statistics for 40,000 Markovian variates of µ, θ, σ, R(t) and h(t) from conductors
data.

Sample Par. Mean Mode Q1 Q2 Q3 St.D. Sk.

1 µ 11.642 11.413 11.576 11.642 11.709 0.0987 0.0290
θ 3.7080 3.6597 3.6614 3.7090 3.7566 0.0711 -0.0943
σ 0.0025 0.0026 0.0025 0.0025 0.0026 0.0001 -0.0005

R(5) 0.9079 0.9093 0.9012 0.9082 0.9151 0.0103 -0.2244
h(5) 0.1169 0.1130 0.1063 0.1163 0.1266 0.0149 0.2823

2 µ 5.9539 5.7112 5.8872 5.9543 6.0206 0.0986 0.0493
θ 4.0444 3.9201 3.9916 4.0433 4.0952 0.0773 0.0486
σ 0.0006 0.0008 0.0006 0.0006 0.0007 0.0001 0.1136

R(5) 0.8775 0.8649 0.8671 0.8783 0.8884 0.0159 -0.2279
h(5) 0.1371 0.1469 0.1231 0.1359 0.1497 0.0200 0.3129

3 µ 7.0816 6.8777 7.0149 7.0822 7.1484 0.1001 0.0170
θ 4.2443 4.1072 4.1892 4.2449 4.2989 0.0797 0.0396
σ 0.0003 0.0003 0.0003 0.0003 0.0003 0.0000 0.1651

R(5) 0.9346 0.9396 0.9287 0.9351 0.9408 0.0089 -0.3104
h(5) 0.0767 0.0683 0.0685 0.0761 0.0841 0.0114 0.3698
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Figure 11. Reliability interval estimates plots from conductors data.

In actual situations, it is preferable to know the interval performance of the reliability parameter.
Thus, using all time points in Table 20, Figure 11 displays the interval estimation plots of R(t)
calculated via the ACI-NA, ACI-NL, BCI, and HPD procedures. It demonstrates that the length for
the interval for the reliability function created from ACI-NL (or ACI-NA) approach is very similar,
and the same results are consequently obtained under the case of HPD (or BCI) intervals.

To sum up, the analysis of the given real data sets reveals that the NEW lifetime model is an
accurate model for describing engineering-application phenomena. Given that the empirical functions
of both datasets exhibit an increasing trend, and since many competing models, such as the W and
EW distributions, are capable of capturing such behavior, the results demonstrate that the proposed
distribution achieves a superior fit for the two engineering applications. If the partitioner’s major
concern is the size of failed items, the NEW lifetime model under the suggested censoring is applicable
and extremely beneficial in stopping the experimental process. Using the suggested approach, one
may obtain adequate estimates of the reliability time parameters rather than utilizing the full sample,
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which incurs high costs. Lastly, the proposed point and interval estimates, as shown by data sets from
carbon fibers and conductors when performing an adaptive Type-II progressively strategy, revealed the
applicability of the proposed estimation approaches to real-world phenomena.

6. Concluding remarks

This study utilizes both frequentist and Bayesian approaches to estimate the unknown parameters
of the NEW distribution within the framework of adaptive Type-II progressive censoring.
Approximate confidence intervals for all parameters were constructed using the asymptotic normality
of the likelihood estimators and their log-transformed counterparts. Bayesian estimators were derived
under gamma priors, employing both squared-error and general-entropy losses. To approximate the
Bayes estimators and construct the corresponding credible intervals, we utilized Gibbs sampling via
adaptive rejection Metropolis sampling. Through extensive numerical comparisons, we assessed the
performance of the various estimators obtained. The simulation results demonstrated that the
Bayesian approach consistently provides more accurate estimates compared to the frequentist method.
To illustrate the practical applications of the proposed parameter estimation methods, we analyzed
two real-world datasets involving the lifetimes of carbon fibers and conductors. In these applications,
the NEW lifetime distribution was shown to offer a better fit than other alternatives including the
conventional Weibull distribution, where different goodness of fit measures were used to indicate the
results. Consequently, we recommend the use of the Bayesian estimation approach via Gibbs
sampling for parameter estimation of the NEW distribution where the sample is adaptive Type-II
progressively censored. We believe that the methodologies explored in this study will be valuable for
data analysts and reliability engineers. Although this study focuses on analyzing the NEW parameters
from such censoring, the inferential techniques presented here can be reimplemented for other
lifetime models or in-depth model evaluation in future research.
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Appendix 1

From (2.3), the Fisher elements li j, i, j = 1, 2, 3 with respect to µ, θ and σ are

l11 = −σξ∗∗µ −

k∑
i=1

(µ + θyi)−2,

l22 = −σξ∗∗θ −

k∑
i=1

yi(µ + θyi)−2,

l33 = −
k
σ2 ,

l12 = −σξ∗∗µθ −

k∑
i=1

yi(µ + θyi)−2,

l13 = −ξ∗µ,

l23 = −ξ∗θ ,

with

ξ∗∗µ =
∑k

i=1
yθ−2

i e−µy−1
i +

∑d

i=1
Riyθ−2

i e−µy−1
i + Rkyθ−2

k e−µy−1
k

ξ∗∗θ =
∑k

i=1
yθi log2(yi)e−µy−1

i +
∑d

i=1
Riyθi log2(yi)e−µy−1

i + Rkyθklog2(yk)e−µy−1
k

ξ∗∗µθ = −
∑k

i=1
yθ−1

i log(yi)e−µy−1
i −

∑d

i=1
Riyθ−1

i log(yi)e−µy−1
i − Rkyθ−1

k log(yk)e−µy−1
k .
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Appendix 2

To show that the conditional PDFs H∗µ (µ|y, θ, σ) and H∗θ (θ|y, µ, σ) of µ and θ, respectively, are
both log-concave, following Jiang et al. [52], the second derivatives of log(H∗µ (µ|y, θ, σ)) and of
log(H∗θ (θ|y, µ, σ)) with regard to µ and θ, respectively, are nonpositive. Consequently, from (3.10),
we have

∂ log(H∗µ (µ|y, θ, σ))

∂µ
= −σξ∗µ −

∑k

i=1
y−1

i +
∑k

i=1
(µ + θyi)−1, (.1)

∂2 log(H∗µ (µ|y, θ, σ))

∂µ2 = −σξ∗∗µ −
∑k

i=1
(µ + θyi)−2 < 0, (.2)

where ξ∗µ and ξ∗∗µ are available in Appendix 1.
Similarly, from (3.11), we have

∂ log(H∗θ (θ|y, µ, σ))
∂θ

= −σξ∗θ +
∑k

i=1
log(yi) +

∑k

i=1
yi(µ + θyi)−1, (.3)

∂2 log(H∗θ (θ|y, µ, σ))
∂θ2 = −σξ∗∗θ −

∑k

i=1
y2

i (µ + θyi)−2 < 0, (.4)

where ξ∗θ and ξ∗∗θ are available in Appendix 1.
It is clear, from (.1) and (.3), that the conditional PDFs of µ and θ, respectively, hold the log-

concavity property. Thus, to create random variates from H∗µ (µ|y, θ, σ) and H∗θ (θ|y, µ, σ) of µ, and θ,
we can use the highly efficient ARMS method.
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