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1. Introduction

The Weibull distribution’s versatility makes it a part of a collection of the most renowned lifespan
models in reliability research.  Although widely used in reliability analysis, the classical
three-parameter Weibull distribution has inherent constraints when modeling complex failure
behaviors. Specifically, it cannot adequately capture failure rates that exhibit both increasing and
decreasing trends, particularly those that follow an upside-down bathtub shape. This limitation arises
because the hazard rate function of the three-parameter Weibull model is strictly monotonic (either
increasing, decreasing, or constant), making it unsuitable for systems where failure rates initially
decrease due to early-life improvements and later increase due to aging effects. To overcome this
limitation, several extensions of the Weibull distribution have been proposed in the literature, for
example, the modified Weibull distribution by [1], the beta exponentiated Weibull distribution by [2],
alpha power Weibull by [3] and [4], and recently the Q-Weibull distribution by [5].

Peng and Yan [6], introduced a new generalization of the Weibull distribution, which is referred to
as the three-parameter new extended Weibull (NEW) distribution. Assume Y to be a random variable
for the unit’s lifetime that has NEW(A) such that A = (u,6,0)" is the parameters vector. The
additional term ¢ makes the NEW distribution more flexible in modeling non-monotonic failure
rates, including the upside-down bathtub shape. The respective cumulative distribution function
(CDF) F(-), and probability density function (PDF) f(-) of the NEW distribution are given by

F(iA) = 1 =" 50, (1.1)
and
FOIA) = o+ y)y*2el e, (1.2)

where 6 > 0 and u > 0O control the shape of the NEW distribution while the parameter o~ > 0 controls
its scale. At a certain time ¢ > 0, the reliability function (RF, say R(-)) and the hazard rate function
(HRF, say A(-)), are

R(t; A) = exp(—at’e ™), t>0, (1.3)
and
h(t; A) = o(u + 062 (1.4)

respectively. From (1.1) several sub-models can be derived as special members, such as: (i) Weibull
(at u = 0), (i1) Rayleigh (at u = 0 and 6 = 2), and (iii) exponential (at u = 0 and 6 = 1) distributions.
Using o = 1 and some choices of u and 6, Figure 1 displays several shapes of (1.2) and (1.4) functions.
Figure 1 shows that the density of the NEW model can be symmetric with right (or left) skewness and
that its HRF has an increasing or upside-down bathtub curve.

Many studies in the literature have considered this model in different scenarios; for example, Jia
et al. [7] introduced the discrete NEW model; Azizi et al. [8] analyzed the bivariate NEW model
from complete and censored data; and Jovanovic et al. [9] discussed the reliability estimation problem
of stress-strength of the NEW model. Peng and Yan [6] discussed various estimations of the NEW
parameters. They also stated that the shape of NEW’s hazard rate is quite simple and depends only on
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a single parameter, whereas the shape of the hazard rate of the exponentiated Weibull and Marshall-
Olkin extended Weibull distributions, suggested by Mudholkar and Srivastava [10] and Marshall and
Olkin [11], respectively, has two parameters and produces a more complicated distribution.
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Figure 1. The PDF (left) and HRF (right) shapes of the NEW distribution.

Censoring mechanisms, from the point of view of cost, time, or both constraints, are beneficial
for use in the statistical reliability analysis of a produced subject, such as a system or device. Type-
I censoring has a predetermined time, while Type-II censoring has predetermined failure units. The
progressive censoring scheme has been studied by many researchers, see [12—15], which allows the
removal of units at different stages of an experiment. An extension version of the progressive censoring
scheme, presented by Ng et al. [16], is called the adaptive progressively Type II censoring (A-PT2-C).
This scheme ensures the ability to balance the total test time, test cost, and efficient sample size.
However, as noted by Ng et al. [16], this censoring effectively estimates the parameters when the entire
test time is unimportant. This mechanism ensures that the experimenter stops the experiment once the
necessary units to fail k£ are observed and the total time of the test does not exceed the specified time
(T'). As aresult, the A-PT2-C mechanism increases the accuracy of the acquired statistical inference,
ensures that the experimenter controls the life test when he desires to obtain the required number of
failures, and strikes a balance between the total test time, test cost, and effective sample size. This
makes A-PT2-C particularly useful in reliability studies where long test durations may be impractical
or costly. In addition, this mechanism dynamically adjusts the removal of surviving units based on
observed failure times, thereby improving the precision of parameter estimation.

Suppose T is the threshold time point, & is the effective sample size, and R = (R, R,, ..., R}) is the
progressive censoring. Let Y;.x.,, i = 1,..., k be the time of the ith failed item. At the time Y., occurs,
Ry of (n — 1) live units are selected randomly and dropped out of the test. Next, when Y;.., occurs,
n — Ry — 2 survival units are randomly removed, and so on. However, if Y., < T, the experiment
stops at Yj.k.,; otherwise, the experiment stops at 7. The adaptation suggested by Ng et al. [16], when
Yarn < T < Ygi1sn < Yiern, instructs the researcher to stop removing any living units by setting R; = 0
fori=d+1,d+?2,...,k— 1, and thus the number of staying items is given by R, = n — k — Zf’zl R;.
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Figure 2 illustrates the censoring framework under the A-PT2-C mechanism.
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Figure 2. Illustration of A-PT2-C.

For various lifetime models, several authors have investigated the proposed strategy; see, for
example, Lin et al. [17], Nassar and Abo-Kasem [18], Mohie El-Din et al. [19], Liu and Gui [20],
Elshahhat and Nassar [21], Chen and Gui [22], Elshahhat et al. [23], Mohammed et al. [24], Alotaibi
et al. [25], among others. Although the NEW distribution could be highly useful in reliability analysis
as its hazard curves are increasing or upside-down bath-tubed, no work has yet studied the frequentist
(or Bayes) estimation of u, 6, o, R(t), or h(f) in the presence of A-PT2-C data. As a result, the
motivation for this work emerged from: (i) the NEW distribution’s possibility to model a wide range
of data with varying failure rates; (ii) the A-PT2-C’s ability to increase the accuracy of the offered
estimators; and (iii) several authors are studying the estimation of all unknown subjects. Before
proceeding, and for distinction, Figure 3 shows a flowchart of all the estimation methodologies
proposed in this work.

So, to close this gap, the main point of this study is fourfold:

e Derive the maximum likelihood (ML) and Bayes estimators of u, 6, o, R(t), and h(?).

e Implement Markov Chain Monte Carlo (MCMC) techniques with the square error loss (SEL) and
the asymmetric general-entropy loss (GEL), to approximate the acquired Bayes estimators using
independent gamma priors.

e Construct asymptotic confidence intervals (ACIs) of all unknown quantities via two normality
approximations, namely: (i) the asymptotic distribution of ML estimators; and (ii) the asymptotic
distribution of log-ML estimators. Create Bayes credible intervals (BCIs) and highest posterior
density (HPD) intervals depending on the MCMC of y, 0, o, h(t), and R(?).

e Compare the proposed methodologies via extensive Monte Carlo simulations and report some
general recommendations. Offering the usefulness of the NEW model and the applicability of the
proposed methods by studying two different sets of real examples from the engineering field.
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Figure 3. Flowchart of the proposed estimation approaches.

The remaining parts are presented as follows: The ML and Bayesian estimators are studied in
Sections 2 and 3, respectively. In Section 4, simulation outputs are emphasized. Section 5 examines
data applications. Conclusions are observed in Section 6.

2. Classical inference

One of the most common frequentist methods of estimation, named ML, is considered to obtain
point and interval estimators of u, 6, o, R(t), and h(?).

2.1. ML estimator

Suppose {y’ R} = {(yl:k:n’ Rl)» R (yd:k:n’ Rd)’ T’ (yd+1:k:m O)’ cees (yk—l:k:n’ O)» (yk:k:n, Rk)} is an A-PT2-
C sample with a continuous distribution, hence, the joint likelihood function of this data type is

k d
LAly)=C l_[i:1 SO, A) nl_zl [1 - F(y;, D% [1 = F(y, A, (2.1)
where y; is used for simplicity and C = []X, [n -i+1- Z;Tf{i_l’d} RJ-].

Assume the lifetimes follow the new distribution with CDF and PDF as written by Eqgs (1.1) and
(1.2) respectively. Then, the likelihood function can be expressed after ignoring any constant term as

LAl) o exp (= oein 0+ Y 7 )T, 6+ 0w 2.2)

where £(y: 41,0) = Xiic, y?efuy;‘ + 3 Riyige*”y"il + Rkyze*"yll.
Equivalently, the log-likelihood function (I(-) = log L(-)) is expressed as

k k k
L(AlY) « klog (o) = o&(y; ;i) —p ) ¥ +60 > vi+ D log(u+6y). (2.3)

The ML estimators (MLEs) of u, 6 and o which are referred to as /i, 6 and &, respectively, are
derived by obtaining the following first (partial) derivatives:

al _ * k -1 k -1
i Do oy (2.4)
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81 * k -1
25 = "€+ D i+ oy, 2.5)
and
al
7 =0 k=& p.0),
(o8

respectively, where

& ==y e = N Ry e - Ry le

and

& = iy loglne ™ + NL, Ry log(y)e ™ + Ryy{ log(y)e ™ .

It is obvious, from Eqgs (2.4) and (2.5), that the system of nonlinear equations requires a numerical
iterative technique to solve it and evaluate the desired estimators. Numerically, with R( 4.2.2)
software language, and the ‘maxLik’ command is employed. For more details, one may refer to
Henningsen and Toomet [26] which implements the Newton-Raphson method in ml maximization.

Remark 1: Using (2.2), we’ve extended related works in the literature and they are obtained as special
cases, such as:

e Peng and Yan [6]’s results, in the case of NEW distribution from PT2-C data, by setting 7" — oo.

e Ng et al. [16]’s results, in the case of exponential distribution from A-PT2-C data, by setting
(u,0) = (0, 1).

e Lin et al. [17]’s results, in the case of Weibull distribution from A-PT2-C data, by setting u = 0.

e Wu [27]’s results, in the case of Weibull distribution from PT2-C data, by setting ¢ = 0 and

T — oo.

Once 1, 6, and & are evaluated, following the invariance property, the MLE for R(r) along with h(r)
are obtained from (1.3) and (1.4) so that

R@) = exp(=61%"y and () = 6(0 + BniP2e P
respectively, for # > 0.

2.2. Approximate interval estimator

In this subsection, the asymptotic normality property of the MLE and the log-transformed-MLE for
W, 8, o, R(t), and h(r) are employed to create the associated bounds of AClIs. First, we need to derive the
estimate of the variance of each MLE. It is known, from the general large sample theory, that the MLEs
a, 0, and ¢ are normally approximate (NA) distributed, A~N (A, T71(A)), with mean A and I"'(-) as the
variance-covariance matrix. Taking second-partially derivatives of (2.3), locally at A = A, the Fisher
components /;;, i andj = 1,2, 3 are listed in Appendix 1. So, the estimated asymptotic variances and
covariances of /1, 6, and & are given by

-1 N

=l =l -l b P2 Vi3
“1/RN ~ ~ ~
| (A)= —ly —l = Voo Va3 |. (2-6)
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A

Thus, the 100(1 — €)% ACIs based on the normal approximation (say ACI-NA) of the MLEs i, 6
and J can be constructed, respectively, as

(2Fzsvon), (0F 25 Vo), and (672

where z./,, with upper probability €/2, is the standard normal distribution’s percentile.

On the other side, in terms of obtaining ACIs for R(#) and h(¢), the delta method is used to estimate
the variances of their MLEs R(¢) and fz(t). However, the approximate variances for var(R(1)) and
var(h(t)) are expressed as

var(R(t) ~ [ZI7'(A)ZF] and  var(h() ~ [Z07'A)Z]],

respectively. To establish this goal, we need to obtain Xz and X, as

AR AR OR oh Oh Oh
R = _’ _’_ and Zh = _’ _’_ b
o 00 0o |54 O 00" 00 | ;44
such as
B = iR A), 5 = —ot'log()e ™ R(t; A), 2 = e R(1; A),
W= gt 2 (1= u+0n)) e, % = ot e (1+ (u+0nt " log(r), and 2 = o' h(t; A),

where R(t; A) and h(t; A) are available in (1.3) and (1.4), respectively.
Hence, the (1 — €)100% ACIs for R(t) and h(¢) are created, respectively, as

Ry % 25 \[FarR() , h(t) F 25 [var(h(o).

Practically, the main weakness of the conventional ACI-NA is that it sometimes produces a
negative lower bound for a parameter that supports positive values. To handle this drawback, instead
of replacing a negative value with zero, Meeker and Escobar [28] proposed the ACI based on the
normally log-transformation-based (NL) of the MLE (say ACI-NL) for unknown parameter(s) that
take positive values. Comparing the ACI-NA and ACI-NL methods, they also mentioned that the ACI
has a higher coverage probability based on the former than the latter. On the other hand, the log
transformation reduces the skewness often present in the sampling distribution of MLEs, making the
normal approximation more accurate for finite samples. Hence, the 100(1 — €)% ACI-NL of u, 6 and
o are given by

~ A~

exp (log(ﬁ) F 2¢ ;“ ), exp (log(@) F s gzz), and exp (log(é') F s ;33) ,

respectively. Similarly, the (1 — €)100% two-sided intervals for A(f) and R(?) are created as

5 - \var(R(@) o yrarh@)
exp 10g(R(t))+z§W and exp log(h(t))+z§T ,

respectively.
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3. Bayesian inference

The Bayesian estimations of u, 6, o, h(t), R(t) are provided in this section, concerning symmetric
and asymmetric loss functions. First, we suppose u, 6, and o are stochastically independent to each
other.

3.1. Prior and loss functions

Following Peng and Yan [6], the prior distributions of i and 6 are the uniform distributions, denoted
by n1(-) and n,(-), respectively, as

m; &) o« &', g >pu>0, (3.1

m2(0; &,) oc 851, & >0>0, (3.2)

and the natural PDF of o is the gamma, say G(o; a1, a,), density as

a—1 _—aro

G(o;a,ay) < o e , o> 0, 3.3)

where the hyperparameters €; and a; > 0 for i = 1,2 are selected to give prior information about y, 6,
and o. It is important to remember that (i) the gamma density has been utilized to adapt support for o
because it is straightforward, concise, and flexible; (ii) there is no information about u and 6, so less
information will be available regarding these parameters. It has also been chosen due to its conjugacy
properties, which simplify posterior computation and ensure analytical tractability. Since any
suggested values of €, and &, do not affect the Bayesian estimates, to avoid computational dilemmas,
Peng and Yan [6] used ¢; = 1 fori = 1, 2.
Consequently, the joint prior PDF ( I1(-)) for y, 6, and o is

II(A) oc 171 (u; €1) X m2(0; £2) X G(07; ay, az)

oc sfleglo'“'_le_“z‘r, u, 0,0 > 0. (3.4)

A major issue in Bayesian estimation is determining the loss function since it may explore

overestimation and underestimation of the study. One of the most commonly seen symmetric losses in

Bayesian theory is the SEL function, which posits the overestimation and underestimation to be

handled evenly because it is simple to implement and very simple for inferential concerns. However,

the SEL (say Ly) and its Bayes estimator (say ps(-) of p(-)), where p(:) denotes a parametric function
of u, 8 and o, are given by

Ls(p(©),5(0)) = (3(0) — p(©))*, (3.5)
and

ps@ = [ [ [ p@niay dodscu
uJo Jo
respectively, for more information, refer to Martz and Waller [29].
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Additionally, GEL is one of the most generally asymmetric loss functions. The main feature, if
one treats the GEL function, is that it has diverse importance for overestimation and underestimation.
However, the GEL (say L) and its Bayes estimator (say pg(-) of p(-)), respectively, are given by

o« [POY p(©)
0),p(0)) < | —| —vlog|—=|-1, 0. 3.6
L6(0(©).5(©)) (p(@)) v og(p@)) v (3.6)

and
—1/v

ﬁ(;(@):[ f f f (p(@))‘VH(A>L<A|y)dadedu] ,
uJo Jo

for further details, refer to Dey et al. [30]. Without loss of generality, we’ve utilized two well-known
functions, SEL and GEL. Additionally, one can easily incorporate other losses.

3.2. Posterior distribution

The joint posterior density, say €2(-), is given by

HALAlY)
[TI(A)L (Aly)dA

Q(Aly) = (3.7

Now, from (2.2) and (3.4), joint posterior PDF, (€(-)), for i, 6 and o is

QAlY) = Dt exp(- ot + ey +u Y, ) ol G®)

where

D= ffef ol exp (— [O'(az +E&(y;1,0)) + Z; y;l]) n; (u + 6y,)y?dodadu.
H o

The analytical solution for the Bayes estimations using SEL and GEL functions for y, 6, o, R(t), or
h(t) 1s not available. To solve this problem, we propose to consider the Gibbs sampler, which produces
a Markov chain, whose constant density is the objective posterior density, and to approximate Bayes
estimates, see Geman and Geman [31]. Thus, after a finite number of iterations, we’re guaranteed that
the sequential values for the Markov chain are converging to the desired posterior.

Now, to draw a sample from (3.8) via the Gibbs sampling procedure, the conditional PDF of each
unknown parameter given the data must first be obtained.

Remark 2: The conditional PDF of o, denoted by oy, , 6, has gamma density as

aly,u,0 ~ G(o k + ay, az + £(y; 1, 0)), (3.9)

where (k + a;) is the shape parameter and (a, + £(y; u, 0)) is the scale parameter.

Remark 3: The conditional PDF of u given the data y, say #;(-), is a log-concave function as

k

H; Gy, 0,) o exp (= [rev e 0+ Y 37| T e+ om0 (3.10)

i=1
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Similarly, the conditional density of € given the data y, say H,(-), is also a log-concave function as

k
H; Oy, 1, 0) o< exp (=0 £y 11, 0) | | (@ + Oy (3.11)
Proof. See Appendix 2.

As a result, to develop the Bayes estimates of o, we directly generate samples of o from (3.9)
via any gamma simulator. It is also noticeable, from (3.10) and (3.11), that the conditional PDFs
for 4 and 6 can’t be tended mathematically to which standard model. For this purpose, when the
posterior PDF is complex and its evaluation is computationally demanding, Gilks et al. [32] proposed
the adaptive rejection Metropolis sampling (ARMS) strategy. We thus employ the ARMS to adopt the
Bayes estimates of ¢ and 6. Other sampling techniques to draw MCMC samples from the log-concave
density, e.g., Devroye’s algorithm (by Devroye [33]) Metropolis-Hastings algorithm (by Metropolis
et al. [34]), or adaptive rejection algorithm (by Gilks and Wild [35]), can be easily incorporated; for
additional details see Gelman et al. [36].

3.3. Adaptive rejection Metropolis sampling

To collect samples from the posterior PDFs of y, 6 and o, we present the following procedure:
Step 1. Set starting values of (u, 6, ), say (u°,6°, o°).

Step 2. Let j = 1.
Step 3. Create o/ from G(o; k + ay, ar + E(y; /=", 6771)).

Step 4. Generate u/ by the ARMS algorithm from 74 (,uly, 61, o/ )

Step 5. Generate ¢/ by the ARMS algorithm from H; (Hly, w, ol )

Step 6. Replace i, 6 and o in (1.3) and (1.4) by their u/, 8/ and o/ to calculate R/(f) and h/(f) for ¢t > 0.
Step 7. Assume j = j + 1.

Step 8. Redo the steps from 3 to 7, 8 number of times, and get u/, ¢/, o/, R/(t), and h/(f) with j =
1,2,..., 8. After that, eliminate first 8° draws as a burn in.

Step 9. Find the Bayesian estimators for u, 8, o, R(t), or h(t), which is abbreviated in the following
formula by 9, relative to the SEL and GEL functions, so that

~ 1 M ,
- j
05 = B - B Zj:B°+15 ’

. 1 8 ey -1/v
5= [ 2|20

respectively.

Step 10. Create the BCI of ¢ by arranging the MCMC samples in an ascending way so that
O(8°+1), OB +2)s - - - » O(). Hence, the 100(1 — €)% BCI estimator for ¢ is

(0(8-8°)(e/2)» O(B-8°)(1(e/2))) -

AIMS Mathematics Volume 10, Issue 4, 10228-10262.
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Step 11. Construct the HPD interval for ¢ by arranging the MCMC samples in an ascending way as
O(8o+1), OB +2) - - - » O(8). Next, the (1 — €)100% interval estimation for 6 can be given as

(6(j)> O +(1-exB-8°)))>

such that

O(#+1(1—e(B-8) — O =  MIN  (O¢isr(1—exB-8)) — 0 1),
(-5 ~ 06 = | <E(B—B°)( (H(-exB-8)) — 0)

and [¢] stands for the greatest value equal or less than to ¢, for additional information, see Chen
and Shao [37].

4. Monte Carlo comparisons

For evaluating the behavior of the acquired point and interval estimators (from both classical and
Bayesian setups) of u, 6, o, R(t), and h(?), extensive Monte Carlo simulations are implemented. To
achieve this goal, depends on different options of 7', which represents the threshold time. Let n be the
number of the experimental units, k be the size of censored units, and R be the progressive pattern,
also suppose that large 1,000 A-PT2-C samples are collected from the NEW(0.4, 0.8, 0.2) distribution.
Taking + = 0.1, the plausible values of R(f) and h(¢) are selected to be 0.87453 and 0.16087,
respectively. All theoretical results are examined using various combinations of 7', n, k, and R so that
n = (40, 80), T = (2, 5), and k is specified as a percentage failure for every n as FP%=% x 100%,
namely: FP%=50 and 75%. To highlight the performance of the removal pattern, different fashions of
the progressive censoring (R, R, ..., R;) are also adopted, namely:

Scheme-1 : (n — k, 0F1);
Scheme-2 : (02!, n — k,0%);
and

Scheme-3 : (0", n — k),

where 0! (for example) means 0 repeated k — 1 times.
To get a A-PT2-C sample from the NEW distribution, after assigning values of 7', n, k, and R;, i =
1,2,...,k, do the next steps:

Step 1: Simulate a usual PT2-C sample as:

1. Obtain k independent observations called ¢, ¥, . . ., ;.

sk RY

1. Set qi = ,7[11( ke R]) ,i1=1,2,...,k.

iii. Suppose u; = 1 — (qrqi-1 - - Qk—i+1) Withi = 1,2, ... k. Thus, u;, i = 1,2,...,k is the PT2-C
sample with size k following U(0, 1) distribution.

iv. Set Y; = F ' (uj;u,0,0), i = 1,2,...,k, as the PT2-C sample with NEW(u, 6, o).
Step 2: Obtaind at T, where Y; < T < Yy, and discard the staying sample ¥;, i =d + 2,...,k.

Step 3: From [1 — F(yd+1)]_1f (y), obtain Yy,», ..., Y;.

AIMS Mathematics Volume 10, Issue 4, 10228-10262.
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To calculate the proposed Bayes objectives, with the Gibbs technique discussed in Section 3, the
first 2,000 variates out of a total of 12,000 MCMC samples are abandoned as burn in. So, from the
staying 10,000 MCMC samples, the Bayesian estimation for u, 6, o, R(¢) or h(¢) under the SEL and
GEL (for (v = =2, +2)) along with their 95% BCI/HPD intervals are rated. To see the effects of the
suggested priors on the Bayes’ computations, besides (a;,a,) = (1,5), we have taken g;, i = 1,2.
According to Kundu [38]’s idea, the specified values of a; and a, are set so that the prior expectation
equals the actual value of 0. Recall that the selected values €; and &, do not affect the Bayes results,
and the hyperparameters a;, i = 1,2 are set so that the prior average reflects the actual value of o
To assign the starting point values of y, 6, and o used in frequentist and Bayes MCMC calculations,
it should be noted here that the suggested plausible values of u, 6, and o are taken as initial guesses
to run ML optimizations while the fitted MLEs of y, 6, and o (in each iteration) are utilized as initial
guesses to run the proposed MCMC sampler.

However, the average for the point estimators (Av.Es) for u, 6, o, R(t) or h(t), denoted by m, is
written by

K
L1 S,
AVER) = o2 > 70 1=1,...,5,

such that K is the replications number, A0 is a point estimate of r at the ith simulated sample, 7, = p,
my, =6, 13 =0, 1, = R(t) and 75 = h(?).

The evaluation for point estimators of 7 is performed upon two standards, (i) root of mean squared
error (RMSE), and (ii) mean relative absolute bias (MRAB), fort = 1,...,5, as

A 1S a2 RS
RMSE(#,) = (]—(Z(m ~7) and MRAB(JTL):(]—(Z;
i=1 't

7;%5[.) - 7TL|7
i=1
respectively.
Comparing interval estimates of r is also performed depending on two criteria, namely: (i) average
confidence length (ACL), and (ii) coverage percentage (CP), fort =1,...,5, as

1 & 1 &
ACL(1_ga(m,) = X ZI: ((u;rf“ - Lﬁf”) , CPu_ge(m) = % Z; J(%giﬁ(”;ji)) (m,),

respectively, where J(-) is the indicator operator and (L(-), U(-)) denotes the interval bounds of 100(1 —
€)% an interval estimate of x,.

Using ‘maxLik’ with ‘armspp’ libraries suggested by Henningsen and Toomet [26] and Bertolacci
[39], respectively, the point and interval estimates along with their RMSEs, MRABs, ACLs, and CPs
for the parameters y, 8, o, and the functions R(#) and h(¢) are obtained. These libraries were installed
in the R programming software (version 4.2.2) and their investigations were performed on a laptop
with a Core(TM) 15-5200M processor and 8.00 GB of RAM. Furthermore, we recommend performing
a sensitivity analysis to measure the validity of the proposed censoring experimental tests.

To distinguish, in Tables 1-5, the Av.Es, RMSEs, and MRABs are listed in the first, second, and
third columns, respectively. Further, in Tables 6-10, the ACLs and CPs are listed in the first and
second, respectively.

From Tables 1-10, based on the smallest value for RMSE, MRAB, and ACL, and the biggest values
of CP, one can adopt the below remarks:
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e Overall, the acquired point and interval estimation for the NEW distribution parameters y, 6 and
o, or its reliability and hazard functions R(¢) and h(¢), perform well.

e As n (or FP%) increases, the accuracy of the estimation results becomes better. The same fact is
also noted as ¥ | R; decreases.

e As T increases, it is noted that

— The RMSEs and MRABSs of u, o and R(#) increase, while those of 8 and h(¢) decrease.
— The ACLs of i and 6 increase, while those of o, R(¢) and h(¢) decrease. The opposite behavior
of the same parameters, in the case of their simulated CP values, is reached.

e Comparing the suggested estimation methods, as the MCMC method has further prior
information, the performance of the Bayes results for all parameters is strongly higher when
comparing them to those produced by the likelihood methods.

e Comparing the proposed loss functions in Bayesian analysis, it is clear that the GEL emerges as
the better loss compared to its competitive symmetric loss.

e Comparing the proposed interval inferential methods, due to the fact that the Bayesian intervals
have additional prior information, both BCI and HPD interval estimates of u, 6, o, R(t) and h(z)
implement more satisfactorily than those created from the ACI-NA (or ACI-NL) method. It is
also noted that the calculated interval limits of R(¢) lie in its theoretical range (0,1).

e On the other hand, in most cases, the best interval bounds for u, 8 and o are developed by the
ACI-NA method, while those for R(¢) and A(¢) are developed with the ACI-NL technique.

e In particular, in terms of the smallest ACL and highest CP values, the HPD intervals of yu, 6, o,
R(?) or h(t) behave more satisfactorily than others.

e Comparing the proposed censoring schemes, it is noticed that the suggested estimates of y, 6, o,
R(t) and h(¢) developed under Scheme-1 ‘left censoring’ perform superior to others. This holds
for the fact that the overall duration testing by Scheme-1 is high compared to any other, and the
collected data develop more knowledge about u, 8, o, R() and h(¢) rather than others.

e To sum up, the Bayes’ estimation methodology via the Gibbs sampling (to obtain MCMC variates
of o) and the ARMS (to adopt MCMC variates of u and 6) is recommended for evaluating the
NEW lifetime model from the suggested mechanism.
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Table 1. The point evaluations of p.

T  n[FP%]  Scheme MLE SEL GEL
v — -2 +2
2 40[50%] 1 02984 02358 07351 02057 0.0914 03737 02066 00892 03641 02027 00893 03661
2 03229 02659 08154 02835 0.1245 05054 02839 0.1239 05019 02822 0.1232  0.4985
3 0.5615 04723 12170 02966 0.1353 05724 02970 0.1348 05702 02955 0.1342 05671
40[75%] 1 02957 02261 07330 0.1919 0.0871 03618 0.1926 0.0855 03554 0.1897 0.0859  0.3585
2 02964 02478 07665 02677 0.1160 04734 02684 0.1149 04688 02656 0.1138  0.4642
3 0.5229 04555 11154 02956 0.1248 05224 02961 0.1241 05201 02943 0.1230  0.5143
80[50%] 1 02634 0.1345 04682 0.1686 0.0704 02987 0.1694 00682 02904 0.1663 0.0696  0.2980
2 02784 0.1668 05379 02804 0.1092 0.4400 02810 0.1082 04374 02788 0.1068  0.4294
3 0.5634 04178 1.0270 02749 0.1218 05075 02756 0.1207 05027 02729 0.1197  0.4984
80[75%] 1 02610 0.1322 04583 0.1953 0.0702 02804 0.1963 00671 02672 0.1921 00674 02710
2 02582  0.1341 04657 02645 0.1008 03997 02653 0.0991 03941 02620 0.0973  0.3848
3 0.5381 04101 10037 02783 0.1133 04646 02790 0.1119 04598 02759 0.1103 04517
5 40[50%] 1 03142 02303 07380 02561 0.1135 04611 02567 0.1126 04580 02546 0.1121  0.4562
2 03043 02351 07533 02649 0.1158 04619 02654 0.1149 04563 02633 0.1142  0.4535
3 04187 03486 12133 02713 0.1212 04986 02717 0.1205 04951 02699 0.1199  0.4923
40[75%] 1 03042 02199 07148 02336 0.1008 04050 02344 00991 03973 02310 0.0985 0.3953
2 03024 02279 07369 02571 0.1112 04512 02579 0.1098 0.4454 02547 0.1088 0.4411
3 03534 03207 10396 02621 0.1150 04731 02628 0.1138  0.4683 02599 0.1128  0.4642
80[50%] 1 02679 0.1347 04656 02453 0.0908 03531 02459 0.0894 03479 02435 0.0884  0.3440
2 02698 0.1382 04860 02618 0.0978 03814 02625 00964 03763 02598 0.0949  0.3689
3 03959 02802 09913 02629 0.1019 0.4044 02634 0.1009 04000 02612 0.0998  0.3948
80[75%] 1 02652 0.1329 04641 02263 00818 03166 02272 00795 03059 02234 00786  0.3030
2 02676 0.1362 0.4783 02544 0.0954 03751 02553 0.0934 03677 02516 00916 03591
3 02999 0.1788  0.6242 02580 0.0993 03943 02588 0.0976 03880 02554 0.0960  0.3805
Table 2. The point evaluations of 6.
T  n[FP%]  Scheme MLE SEL GEL
v — -2 +2
2 40[50%] 1 0.8106 02245 02218 08101 0.0956 0.0932 08102 00947 0.0923 0.8098 0.0946  0.0922
2 0.8034 04313 05124 07233 03473 03258 07237 03465 03252 07224 03457 03240
3 02556  0.6307 07199  0.5447 04658 0.4041 0.5448 04656 0.4034 0.5444 04656  0.4034
40[75%] 1 07966 0.1724  0.1724  0.8048 0.0752 0.0761 0.8049 00741 0.0750 0.8045 0.0740  0.0750
2 07514 0.1885 0.1867 07967 0.0887 0.0877 0.7968 0.0875 0.0863 07963 0.0875  0.0863
3 03662 05756 0.6466 09901 02973 02713 09908 0.1202 02705 09893 02958  0.2695
80[50%] 1 0.8045 0.1465 0.1443  0.8060 0.0669 0.0670 0.8061 0.0656 0.0658 0.8057 0.0655  0.0658
2 0.8007 0.1492  0.1463 0.8028 0.0860 0.0824 0.8030 0.0845 0.0807 0.8023 0.0844  0.0807
3 02874 05213  0.6408 0.8446 0.1210 0.1112 09904 02966 0.1103 0.8443 0.1199  0.1101
80[75%] 1 07998  0.1209 0.1184 0.8046 0.0557 0.0550 0.8047 0.0541 00534 0.8042 0.0541 0.0534
2 07727 0.1464 0.1339 07915 00616 00616 07917 00598 00597 07911 0.0599  0.0598
3 03292 04936 05905 0.8077 0.0779 0.0766 0.8078 0.0767 00754 08073 0.0766 0.0753
5 40[50%] 1 07742 02101 02090 0.8032 0.1052 0.0993 0.8033 0.1043 0.0986 0.8029 0.1043  0.0986
2 07900 02300 02270 0.8014 0.1319 0.1228 0.8015 0.1309 0.1218 0.8009 0.1308  0.1219
3 0.6821 03572 03572 0.8432 0.1925 0.1816 0.8436 0.1908 0.1801  0.8419 0.1901  0.1796
40[75%] 1 07750  0.1820 0.1769  0.7992 0.0866 0.0806 0.7993 0.0856 0.0793 0.7988  0.0855  0.0794
2 07830  0.1947 0.1870 07916 0.0956 0.0913 07917 0.0945 0.0902 07912 0.0945  0.0903
3 0.5860 03305 03435 09331 0.1903 0.1797 09333 0.1895 0.1788 09325 0.1889  0.1782
80[50%] 1 07773 0.1440 0.1422 07977 0.0690 0.0674 07978 00677 0.0661 07974 00677  0.0661
2 07877 0.1543  0.1521 07930 0.0846 0.0829 07932 0.0831 0.0815 07926 0.0831  0.0815
3 06712 02566 02608 0.8093 0.1790 0.1644 0.8097 0.1782 0.1632 0.8081 0.1777  0.1626
80[75%] 1 07900  0.1254 0.1240  0.8022 0.0607 0.0598 0.8023 0.0592 0.0584 0.8019 0.0592  0.0584
2 07935 0.1312  0.1295 07966 0.0671 00662 07967 0.0655 00647 07962 0.0655 0.0647
3 0.5692 03126 02089 09189 0.1381 0.1348 09191 0.1358 0.1326 09183  0.1354  0.1324
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Table 3. The point evaluations of o

T n[FP%] Scheme MLE SEL GEL
v — -2 +2
2 40[50%] 1 0.4428 0.1940 0.3260  0.3545 0.1559 0.2624 0.3573 0.1460  0.2457 0.3516 0.1450 0.2441
2 04516  0.1845 03567 03476 0.1639 02871 03504 0.1534 02687 03448 01524 02670
3 0.4687 0.2231 0.4186  0.3679 0.1885 0.3370 0.3708 0.1802  0.3222 0.3657 0.1791 0.3202
40[75%] 1 04372 0.1543 02719 03432 0.1304 02188 03459 01220 02048 03404 01212 02035
2 0.4558 0.1587 0.2828 0.3578 0.1341 0.2277 0.3607 0.1255 0.2131 0.3549 0.1247 0.2117
3 04566  0.1872 03397 0358 0.1582 02735 03613 01512 02698 03563 01503 02615
80[50%] 1 0.4276 0.1108 0.2091 0.3357 0.0937 0.1683 0.3383 0.0877 0.1575 0.3330 0.0871 0.1565
2 04196 0.1145 02199 03294 00968 0.1770 03320 00906 0.657 03267 00900 0.1646
3 03109 0.1653 03348 02440 0.1397 02695 02460 0.1335 02577 02426 0.1327  0.2560
80[75%] 1 04171 00924 0.1745 03275 00781 0.405 03301 00731 01315 03248 00726 0.1307
2 04301 00945 01778 03376 00799 01431 03403 00748 01339 03349 00743 0.1331
3 02848 0.1382 03080 02235 0.1168 02480 02253 01117 02371 02222 01110 02356
5 40[50%] 1 0.4735 0.1994 0.3615 0.3717 0.1685 0.2910 0.3747 0.1611 0.2782 0.3695 0.1600 0.2765
2 04791 02219 03959 03761 0.1875 03187 03791 01793 03047 03738 01782  0.3028
3 0.6447 0.3320 0.6380  0.5061 0.2806 0.5136 0.5101 0.2626  0.4807 0.5020  0.2609 0.4776
40[75%] 1 04561  0.1753 03116 03580 0.1481 02509 03609 0.1416 02398 03559 01407 02383
2 04679  0.1845 03370 03673 0.1559 02713 03702 0.1491 02594 03651 0.1481  0.2577
3 06530 02933 05347 05126 02478 04541 05150 02320 04182 05118 02305 04152
80[50%] 1 04387  0.1248 02356 03444 0.1055 01896 03471 01008 01813 03423  0.1002  0.1801
2 0.4359 0.1413 0.2754 03422  0.1194 0.2217 0.3449  0.1142  0.2119 0.3401 0.1135 0.2106
3 05576 02844 05083 04377 02265 03918 04412 02197 03830 04342 02188  0.3805
80[75%] 1 04273 0.1068 020390 03355 00903 0.1641 03381 00863 01569 03334 00857 0.1559
2 04270  0.1170 02228 03352 00989 01794 03378 00945 01715 03332 00939  0.1704
3 0.5125 0.2444 0.4428 0.4023 0.2065 0.3565 0.4055 0.1933 0.3337 0.3991 0.1920 0.3315
Table 4. The point evaluations of R(?).
T n[FP%] Scheme MLE SEL GEL
v — -2 +2

2 40[50%] 1 08688 00781 00767 08788 0.0470 00450 08814 00337 00329 08708 00309  0.0307
2 0.8749 0.0791 0.0778 0.8607 0.0506 0.0482 0.8666  0.0358 0.0337 0.8448 0.0348 0.0319
3 0.8567 0.0930 00879 08712 00564 00543 08778 00426 00413 08662 00419  0.0402
40[75%]) 1 0.8687 0.0756 0.0739  0.8751 0.0433 0.0407 0.8779  0.0272  0.0281 0.8666 0.0287 0.0269
2 08663 00764 00746 08759 00468 00445 08787 00308 00313 08675 00295  0.0287
3 0.8448 00826 00812 08636 00523 00489 08669 00332 00334 08534 00301 00324
80[50%] 1 08671 00741 00731 08751 00335 00313 08814 00262 00247 08710 00247 00238
2 0.8640 00744 00739 08770 00372 00350 08841 00298 00296 08740 00285 0.0273
3 08562 00805 00794 08580 00416 00384 08700 00320 00317 08572 00290 0.0297
80[75%] 1 08673 00733 00715 08788 00327 00307 08779 00192 00177 08668 00233  0.0226
2 08650 00736 00718 08797 00311 00313 08816 00274 00266 0.8689 00240 0.0231
3 0.8668 00791 00780 08482 00386 00373 08624 00296 00292 08399 00256 0.0254
5 40[50%] 1 08621 00770 00755 08739 00524 00498 08768 00313 0029 08653 00301 00299
2 0.8625 00787 00770 08724 00612 00585 08778 00332 00325 08664 00324 00324
3 09091 00794 00792 08746 00619 00634 08775 00362 00351 08660 00355 0.0346
40[75%) 1 0.8644 00762 00748 08770 00473 00447 08750 00297 00286 08631 00290  0.0288
2 08724 00774 00757 08720 00490 00466 08754 00306 00295 0.8636 0.0301  0.0301
3 0.8647 00785 00769 08749 00510 00484 08798 00329 00312 08688 00325  0.0296
80[50%] 1 08614 00754 00743 08725 00346 00324 08754 00272 00250 08654 00231 00222
2 0.8637 00766 00744 08728 00411 00387 08757 00285 00260 08649 00250  0.0242
3 0.9068 0.0776 0.0756  0.8707 0.0544  0.0582 0.8780  0.0298 0.0271 0.8618 0.0264 0.0263
80[75%] 1 0.8644 00747 00736 08739 00339 00318 08738 00260 00245 08638 00233 00224
2 0.8655 0.0748 0.0737 0.8735 0.0367 0.0345 0.8767 0.0267 0.0255 0.8641 0.0244 0.0236
3 0.8696 00755 00742 08752 00382 00364 08764 00277 00266 08668 00252  0.0245
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Table 5. The point evaluations of A(?).

T n[FP%] Scheme MLE SEL GEL
V- +2
2 40[50%] 1 0.3754  0.2054 0.4801 0.3514 0.0932 0.2080 0.4056  0.0420 0.1045 0.4012 0.0419  0.1040
2 03689 02070 04840 03164 0.1182 02437 03653 00599 0.1285 03613 00597  0.1497
3 04012 02164 05062 0.3671  0.1333  0.2965 0.4239 0.0641 0.1675 0.4192 0.0638  0.1668
40[75% 1 03774 02051 04792 03544 00927 0.1945 04093 00417 01012 04048 00415 0.1008
2 0.3706  0.2056  0.4817 0.3524  0.1034  0.2190 0.4069 0.0453 0.1145 0.4025 0.0452 0.1280
3 03704 02133 04983 03644 01315 02767 04208 00611 01503 04162 00608  0.1449
80[50%] 1 0.3774  0.2039 04762 0.3541 0.0773  0.1618 0.4089 0.0411 0.0978 0.4044  0.0409  0.0975
2 03699 02061 04807 03503 00845 0.1798 04045 00439 0.075 04000 00437  0.1070
3 04708 02121 04965 03736 0.1263 02656 04314 00554 0.1455 04266 00552  0.1382
80[75% 1 03589 0.1997 04619 03567 0.0620 0.1293 04119 00388 0.0945 04074 00387 0.0941
2 03779 02045 04775 03535 00692 0.1460 04082 0.0424 0.1063 04037 00422  0.1058
3 04473 02113 04943 03667 01000 02356 04234 00544 01388 04187 00541  0.1140
5 40[50%] 1 0.3947  0.2070 0.4842 0.3541 0.1323  0.2744 0.4088 0.0455 0.1150 0.4068 0.0453  0.1148
2 02463 02076 04857 03518 0.1420 03446 04062 00466 0.1185 04041 00464 0.1183
3 0.3912  0.2116  0.4948 0.3547  0.1560  0.3293  0.4095 0.0552 0.1405 0.4075 0.0551 0.1402
40[75% 1 03831 02065 04820 03554 01101 02370 04105 00443 0.1118 04084 00442 0.1116
2 03642 02070 04842 03539 0.1123 02407 04087 00453 0.1151 04067 00451 0.1149
3 03830 02105 04918 03620 0.1233 02607 04180 00538 01322 04159 00536 0.1319
80[50%] 1 03847 02058 04810 03569 0.0878 0.1849 04122 00431 01059 04101 00429  0.1057
2 03818 02066 04820 03559 0.1041 02235 04109 00448 0.1106 04089 00446 0.1104
3 02429 02081 04866 03588 0.1357 03442 04143 00478 0.1210 04122 00476  0.1207
80[75% 1 03765 02047 04780 03580 0.0777 0.1648 04134 00415 00995 04113 00414  0.0993
2 03756 02058 04808 03569 00863 0.1833 04121 00439 0.1064 04100 00437  0.1062
3 0.3708  0.2064 0.4819  0.3649 0.0966 0.2142 0.4214 0.0458 0.1098 0.4193  0.0456  0.1095
Table 6. The 95% interval evaluations of u.
n[FP%] Scheme ACI-NA BCI ACI-NA BCI
ACI-NL HPD ACI-NL HPD
T — 2
40[50%] 1 0859 0938 0395 0963 0.885 0929 0385 0953
0.962  0.931 0371  0.965 0994 0924 0375 0.955
2 0879 0936 0406 0.961 0872 0927 0388 0951
0.987 0930 0.391 0.963 1.032 0922 0381 0951
3 0986 0929 0480 0956 1073 0918 0405  0.947
1025 0926 0436 0959 1113 0916 0395 0949
40[75%] 1 0.800 0946 0357  0.968 0.804 0934 0342 0959
0891 0938 0332 0970 0912 0929 0331 0.960
2 0810 0945 0372 0.967 0814 0931 0353 0958
0915 0936 0342 0969 0919 0927 0342 0959
3 0834 0943 0391  0.965 0907 0925 0360 0955
0949 0933 0369 0.967 0977 0922 0350 0957
80[50%] 1 0551 0957 0290 0.973 0.554 0947 0311 0963
0711 0951 0282 0974 0799 0941 0303 0964
2 0592 0955 0320 0970 0595 0943 0319 0961
0769 0948 0312 0971 0913 0937 0312 0961
3 0613 0954 0370  0.968 0.674 0938 0348 0958
0905 0937 0355 0.969 0960 0931 0340 0.960
80[75%] 1 0533 0961 0257 0976 0530 0951 0265 0.966
0.604 0955 0236 0977 0.658 0945 0257 0968
2 0.550 0958 0301 0974 0.552 0948 0.279  0.964
0650 0952 0287 0975 0.705 0941 0271 0965
3 0.575 0957 0344 0971 0.611 0944 0.284 0.961
0727 0948 0318 0973 0.814 0939 0275 0963
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Table 7. The 95% interval evaluations of 6.

n[FP%] Scheme ACI-NA BCI ACI-NA BCI
ACI-NL HPD ACI-NL HPD
T —
40[50%] 1 0.797 0.942 0.284 0.967 0.811 0.936 0.291 0.961
0839 0937 0275 0969 0852 0931 0286 0.963
2 0.818 0.940 0.313 0.964 0.831 0.934 0.307 0.958
0.860 0935 0309  0.965 0872 0928 0303 0.959
3 1.023 0.932 0.465 0.953 1.262 0.924 0.514 0.947
1137 0930 0458 0954 1498 0919 0507  0.949
40[75%] 1 0.538 0.951 0.257 0.970 0.657 0.945 0.256 0.964
0549 0950 0254 0971 0.680 0943 0253  0.965
2 0652 0947 0284 0967 0.664 0941 0304 0961
0.685 0945 0280 0.967 0.68 0939 0301 0961
3 0670 0946 0440 0956 0964 0940 0499  0.950
0691 0944 0434 0958 0978 0938 0493 0951
80[50%] 1 0.490 0.956 0.237 0.974 0.549 0.950 0.246 0.968
0506 0955 0234 0975 0560 0948 0243  0.969
2 0566 0952 0275  0.969 0558 0946 0281  0.963
0574 0950 0272 0970 0570 0944 0278  0.965
3 0569 0952 0311 0963 0788 0946 0363 0957
0578 0951 0302 0.965 0796 0945 0358  0.960
80[75%] 1 0320 0967 0211 0977 0456 0961 0226 0971
0344 0965 0208 0978 0463 0960 0213 0973
2 0453 0960 0259 0972 0461 0954 0279  0.966
0460 0959 0256 0.973 0467 0954 0276  0.967
3 0463 0959 0285 0968 0534 0953 0358 0962
0.469 0.957 0.281 0.970 0.566 0.951 0.353 0.964
Table 8. The 95% interval evaluations of .
n[FP%] Scheme ACI-NA BCI ACI-NA BCI
ACI-NL HPD ACI-NL HPD
T — 5
40[50%] 1 0712 0946 0620 0.965 0.626 0949 0535 0974
0.797 0.939 0.616 0.966 0.680 0.947 0.529 0.976
2 0795 0940  0.648 0959 0742 0945 05854 0968
0915 0.932 0.641 0.960 0.830 0.938 0.5796 0.970
3 0841 0936 0673 0955 0.827 0942 0607 0.965
0949 0928 0662 0956 0926 0930 0598  0.966
40[75%] 1 0.630 0954 0593 0973 0553 0959 0467  0.983
0685 0950 0588 0974 0673 0951 0457 0985
2 0.672 09490 0.615 0.968 0.649 0952 0518 0978
0739 09430 0.608 0970 0714 0946 0504  0.980
3 0.800 0941  0.624 0.963 0701 0947 0562 0973
0905 0933 0618 0964 0776 0942 0558 0975
80[50%] 1 0453 0960 0411 0978 0404 0965 0341 0988
0475 0958 0392 0979 0419 0964 0339  0.989
2 0523 0957 0463 0975 0463 0962 0391  0.985
0559 0954 0453 0976 0485 0960 0384  0.986
3 0592 0952 0520 0971 0539 0957 0455  0.980
0613 0950 0512 0972 0575 0954 0448 0982
80[75%] 1 0408 0964 0353 0.983 0328 0971 0277 0991
0425 0962 0347 0984 0349 0969 0272 0991
2 0.439 0.9590 0.377 0.978 0.431 0.961 0.364 0.988
0459 09560 0370  0.979 0451 0958 0361  0.989
3 0.548 0.954 0.474 0.971 0.471 0.959 0.332 0.981
0573 0951 0466 0973 0493 0957 0326 0982
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Table 9. The 95% interval evaluations of R(?).

n[FP%] Scheme ACI-NA BCI ACI-NA BCI
ACI-NL HPD ACI-NL HPD
T — 5
40[50%] 1 0.242 0.943 0.167 0.965 0.232 0.948 0.159 0.969
0240 0945 0165 0967 0231 0948 0157 0.968
2 0.248 0.941 0.179 0.9610 0.235 0.945 0.175 0.965
0246 0943 0177  0.9630 0233 0946 0172 0966
3 0.261 0.937 0.207 0.957 0.238 0.943 0.210  0.961
0259 0938 0206 0958 0235 0944 0200 0.963
40[75%] 1 0.226 0.952 0.164 0.968 0.228 0.950 0.125 0.972
0225 0953 0162 0970 0227 0951 0123 0971
2 0228 0951 0173 0964 0230 0949 0166 0971
0226 0953 0172  0.966 0229 0949 0164 0970
3 0256 0945 0183 0961 0233 0945 0182 0968
0254 0946 0181 0963 0232 0946 0180 0967
80[50%] 1 0.221 0.953 0.124 0.976 0.226 0.952 0.115 0.975
0219 0955 0122 0978 0224 0951 0113 0974
2 0225 0952 0133 0972 0227 0951 0124 0973
0223 0954 0131 0975 0226 0950 0122 0974
3 0237 0948 0152 0968 0230 0948 0153 0972
0233 0950 0151 0970 0228 0947 0151 0973
80[75%] 1 0216 0957 0119 0983 0221 0955 0092 0987
0215 0958 0118 0984 0220 0954 0091 0988
2 0221 0954 0125 0980 0223 0953 0118 0985
0220 0955 0123 0982 0222 0954 0116 0986
3 0228 0951 0129 0978 0225 0952 0130 0981
0.226 0.953 0.127 0.980 0.223 0.953 0.128 0.980
Table 10. The 95% interval evaluations of A(f).
n[FP%] Scheme ACI-NA BCI ACI-NA BCI
ACI-NL HPD ACI-NL HPD
T —

40[50%] 1 0673 0950 0445 0967 0671 0952 0428 0974
0671 0952 0419 0970 0667 0953 0406 0976
2 0679 0948 0512 0959 0677 0949 0496 0962
0676 0949 0482  0.963 0673 0951 0466 0965
3 0709 0944 0604 0956 0693 0946 0591 0958
0704 0945 0570 0959 0688 0949 0550 0961
40[75%] 1 0.671 0.953 0.439 0.970 0.669 0.955 0.317 0.976
0668 0954 0417 0973 0664 0957 0297  0.980
2 0.679  0.950 0.480 0.965 0.673 0.951 0.441 0.968
0673 0952 0451 0967 0.668 0953 0419 0971
3 0.703 0.947 0.504 0.962 0.687 0.948 0.490 0.963
0701 0948 0480 0964 0683 0950 0461 0967
80[50%] 1 0.665 0958 0328 0977 0659 0960 0300 0.980
0660 0960 0319 0978 0655 0961 0292 0981
2 0.670  0.952 0.340 0.975 0.671 0.953 0.335 0.977
0667 0953 0330 0976 0665 0955 0324 0978
3 0.691 0.949 0.417 0.973 0.680 0950 0410 0974
0682 0951 0399 0971 0677 0952 0391 0972
80[75%] 1 0.658 0.960 0.299 0.980 0.601 0.964 0.216 0.986
0656 0961 0291 0981 0596 0965 0209 0987
2 0.667 0.957 0.328 0.979 0.661 0.958 0.299 0.983
0662 0958 0318 0980 0658 0959 0291 0984
3 0.673 0.953 0.358 0.977 0.667 0.957 0.332 0.979
0671 0954 0350 0978 0662 0956 0322 098I
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5. Real-world applications

To examine the efficacy and fitness of the suggested estimation methods, two real-world scenarios
illustrate the potentiality of this model, which is to perform analyses for those real data sets that are
gathered from the engineering experiment.

5.1. Carbon fibers data

Carbon fiber was widely used in the industry due to its great tensile strength, low density, strong
thermal properties, electrical conductivities, chemical stability, and high thermal. So, fibers are used
today to produce several components that are needed with light weight and high strength. This
application examines the strength of single carbon fibers measured in gigapascal pascal (GPa) at
gauge lengths of 20 mm under stress, and impregnated thousand-carbon fibers; refer to Table 11. The
dataset was provided by Badar and Priest [40] and discussed by Kundu and Raqgab [41].

Table 11. Strength data in GPa for 74 carbon fibers.

1312 1314 1479 1552 1.700 1.803 1.861 1.865 1.944 1958
1966 1997 2006 2.021 2027 2055 2063 2098 2140 2.179
2224 2240 2253 2270 2272 2274 2301 2301 2359 2382
2382 2426 2434 2435 2478 2490 2511 2514 2535 2554
2566 2570 2586  2.629 2.633 2.642 2.648 2.684 2.697 2.726
2770 2773 2800 2809 2809 2818 2818 2821 2821 2.848
2.848 2880 2.880 2954 3.012 3.067 3.084 3.090 3.096 3.128
3233 3433 3.585  3.585

Now, based on six different criteria, which are: the negative log likelihood (NL), consistent Akaike
(CAI), Akaike (A), Bayesian (B), Hannan-Quinn (HQ), and the Kolmogorov-Smirnov (KS) test with
the corresponding P-value methods, the NEW lifetime distribution is compared to other common
distributions in the literature as competitors, namely: Harris extended-exponential (HEE(u, 6, 0)),
Marshall-Olkin extended-exponential (MOEE(y, 6, 07)), Marshall-Olkin Gompertz (MOG(u, 6, 0)),
exponentiated Weibull (EW(u, 6, o)), Weibull-exponential (WE(u, 6, o)), inverse Weibull (IW(6, o)),
Weibull (W(6, o)), gamma (G(6, o)), and generalized exponential (GE(6, o)) distributions. The CDFs,
for y > 0 and u, 6, 0 > 0, for the competing models of the NEW distribution, are reported in Table 12.
For each model, through the method of ML, each parameter with its standard error (St.Er) in addition
to the goodness-of-fit-criteria are evaluated, see Table 13. The best model of fit must give the lowest
value of all the given criteria, and give the highest value of P. It is evident, from Table 13, that the
NEW model fits the carbon fibers data superior to the other competing models. Also, in Figure 4,
different plots are treated to reinforce the numerical findings indexed in Table 13, namely: (i)
estimated densities with data histograms, (ii) estimated reliability functions, and (iii) total time on a
test (TTT) plots of all competitive life models. It indicates, however, that the NEW model fits the
carbon fibers data set satisfactorily and validates the numerical findings. It also reveals that the failure
rate shape for the carbon fibers data increases, since the NEW distribution can present an increasing
failure rate, which means that it can be adequately used to fit the carbon fibers data. For more
information on the data representations and visual aids proposed here, we recommend following the
workshop presented by Elshahhat [42].
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Table 12. Competing lifetime distributions for the NEW distribution.

Model CDF Author(s)
HEE 1 = (o exp(—uty)(1 - (1 - o) eXp(—/le)))*% Pinho et al. [43]
MOEE (1 —exp(l — (1 +uy)"))(1 - (1 =0o)exp(l — (1 +uy)?))™"  Lemonte et al. [44]
MOG (1 —exp(-5e® — 1)1 - (1 - )exp(4(1 — )™ Eghwerido et al. [45]
EwW (1 — exp(=(oyy))? Mudholkar and Srivastava [10]
WE 1 — exp(—o(exp(uy) — 1)?) Oguntunde et al. [46]
W e’ Ramos et al. [47]
w 1 — exp(—-oy?) Weibull [48]
G ﬁy (0, 1y) Johnson et al. [49]
GE (1 — exp(—ay))? Gupta and Kundu [50]

Table 13. Fit results for the NEW and other models for carbon fibers data.

Model MLE(St.Er) NL A CA B HQ KS

u 6 o Statistic ~ P-value
NEW 5.9388(7.0814)  3.4070(2.7981)  0.3355(1.8194)  51.137  108.27 108.62 113.22  110.45 0.0598 0.9537
HEE 0.5800(0.2313)  3.2119(1.0139)  155.28(46.555)  63.738 13348  133.82 14039 136.23 0.1963 0.0665

MOEE  24.849(28.315)  67.816(26.836)  0.0275(0.0329)  53.091  112.18 11252  119.09 114.94 0.0637 0.9419
MOG 0.2511(0.2791)  15.491(18.903)  0.9886(0.3980)  54.782  115.56 11591 12248  118.32 0.0738 0.8152

EW 0.4068(0.0446)  1.6369(0.9195)  4.4322(1.2970)  51.152  108.30  108.65 11522  111.06 0.0600 0.9525
WE 0.2664(0.0709)  4.1130(0.4931)  0.8277(1.2611) 52236 11047  110.81 117.38  113.23 0.0766 0.7785
Iw - 4.1092(0.3231)  24.111(5.7406)  69.099  142.02  142.19 146.63 143.86 0.1453 0.0878
w - 5.1255(0.3318)  0.0067(0.0023)  52.308  108.62  108.78  115.19  111.03 0.0743 0.8088
G - 24.227(3.9558)  9.7796(1.6134)  53.165 110.33  110.50 11494  112.17 0.0681 0.8821
GE - 85.764(30.812)  1.9993(0.1695)  58.810  121.62  121.79 12623  123.46 0.0982 0.4740
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Figure 4. The fitted PDFs (a), fitted RFs (b), and TTT (c) plots of the NEW and its competing
models from carbon fibers data.

From the carbon fibers dataset, and using k = 34 with various options of 7 and R, the artificial A-
PT2-C sampling schemes are created and recorded in Table 14. Using the Gibbs steps investigated in
Section 3, we ignored the first 10,000 samples out of 50,000 MCMC samples. The calculated MLEs of
U, 6, and o are chosen as initial guesses for employing the MCMC algorithms. Since prior information
on u and 6 is not possible, the Bayesian estimators for u, 6, o, R(¢), and h(f) (at t = 1.5), from a
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non-informative prior, are acquired against both SEL and GEL (for v = (-5, —0.05, +5)) functions. For
the calculation logic, the hyperparameter values are specified to be 0.001. Table 15 displays the point
estimation (with their St.Ers) of u, 8, o, R(t), and h(¢). In Table 15, the point estimate (along with its
St.Er) is displayed in the first and second columns, respectively. Additionally, the two interval bounds
(with their interval lengths (ILs)), developed by 95% asymptotic (NA/NL) and Bayesian (BCI/HPD)
intervals, of the same unknown quantities, are computed and presented in Table 16. To perform the
MCMC method, the classical estimators’ for u, 8, and o are taken as the starting guesses. Tables 15
and 16 stated, in charge of the lowest St.Er and IL values, that the given interval and point estimates
calculated from the proposed Bayes MCMC technique act better than those calculated from the ML
method.

(a) Sample 1

(b) Sample 2

(c) Sample 3

Figure 5. Profile log-likelihood functions for y, 6, and o from carbon fibers data.

To show that the attained MLEs exist and are unique, for all generated samples in Table 14, the
profile log-likelihood of yu, 6 and o are shown in Figure 5. As we anticipated, Figure 5 supported the
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numerical values reported in Table 15. One of the biggest issues when adopting the Gibbs process is
proving Markovian convergence. For this objective, from each created sample, Figure 6 depicts both
the trace plot and the density plot of all unknown parameters. In each subplot in Figure 6, the sample
mean as well as the two bounds of 95% Bayes credible intervals are represented as blue solid (—)
and dashed (- - -) horizontal lines, respectively. Figure 6 shows that the suggested Gibbs sampling is
convergent adequately and indicates that the densities of y, 8 and o are almost symmetric, while those
of R(t) and h(t) are negatively and positively-skewed, respectively.

Again, based on 40,000 MCMC variates collected from all created samples, useful statistics,
namely, mean, mode, three quartiles (Q;, i = 1,2, 3), standard deviation (St.D.), and skewness (Sk.) of
u, 0, o, R(t), and h(t) are obtained; see Table 17. It supports the same numerical findings shown in
Table 15 and confirms the same graphical facts shown in Figure 6.

Table 14. Three A-PT2-C samples from carbon fibers.

Sample Scheme T(d) Ry Censored Sample

1 (10%,0%30) 1.4(2) 20 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179,
2.224,2.240, 2.253,2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382,
2.426,2.434,2.490,2.511

2 (0%15,10%,0%15) 2.2(18) 10 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.179, 2.224, 2.272,
2.274,2.301, 2.382, 2.426, 2.434, 2.435, 2.490, 2.535, 2.554, 2.633,
2.642,2.648, 2.684, 2.697

3 (0*30, 10%) 2.43(32) 20 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179,
2.224,2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382,
2.382,2.426,2.434,2.511

Table 15. Point estimates of u, 6, o, R(¢) and h(t) from carbon fibers data.

Sample Par. MLE SEL GEL
v— -5 -0.05 +5
1 H 10.105 1.0987 10.038  0.1009  10.040  0.0657 10.038  0.0671  10.037  0.0685

0 1.3527 0.5751 1.2891  0.0976 12976  0.0551  1.2871  0.0656  1.2763  0.0764
o 15.974 7.9715 15909  0.1038 15910  0.0641 15909  0.0651 15.908  0.0661
R(1.5)  0.9677 0.0154 0.9672  0.0019  0.9672  0.0005  0.9672  0.0005 0.9672  0.0005
h(1.5)  0.1769 0.0636 0.1774  0.0101  0.1785 0.0016 ~ 0.1771  0.0002  0.1757  0.0012

2 H 47867  14.5981  4.7198  0.1026  4.7223  0.0644  4.7192  0.0676  4.7159  0.0708
0 3.6552 6.6844 35952 0.0955 3.5983  0.0569 3.5945  0.0607 3.5906  0.0646

o 0.1327 1.5899 0.1320  0.0093  0.1332  0.0005 0.1316  0.0011  0.1300  0.0028

R(1.5) 0.9763 0.0154 09759  0.0021 09759 0.0004 0.9759  0.0004 0.9759  0.0004

h(1.5)  0.1097 0.0381 0.1097  0.0094  0.1113  0.0016  0.1093  0.0004 0.1073  0.0024

3 H 7.5759 5.2159 7.5087  0.1031  7.5104 0.0655 7.5083  0.0675 7.5063  0.0696
0 2.3540 2.4615 22917  0.0969 22965 0.0575 22906 0.0634  2.2845  0.0695

o 1.6019 6.8020 1.6019  0.0010  1.6019  0.0000 1.6019  0.0000  1.6019  0.0000

R(1.5) 09737 0.0137 09731  0.0016 ~ 0.9732  0.0005 0.9731 0.0006 0.9731  0.0006

h(1.5)  0.1316 0.0479 0.1324  0.0077  0.1333  0.0018  0.1322  0.0006  0.1311  0.0005
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Table 16. Interval estimation for u, 6, o, R(t) and h(¢) with carbon fibers data.

Sample Par. ACI-NA ACI-NL BCI HPD
Lower Upper IL Lower Upper IL Lower  Upper IL Lower Upper IL

1 H 79517 12259 43069  8.1657 12,505 < 4.3396  9.8948  10.191  0.2959  9.8932  10.187  0.2936
4 02256 24798 22542 0.5879  3.1122 25243  1.1472 14341 02869 1.1371 14216  0.2845

o 03505 31.598 31.248 6.0070 42480 36473 15748 16.068 03195 15771 16.085 0.3148

R(1.5) 09376  0.9979 0.0602  0.9381 0.9983  0.0603 0.9635 09706 0.0071 09635 0.9706  0.0071

n(1.5) 0.0523 03015 02492 0.0875 0.3578 0.2703  0.1591  0.1983  0.0391 0.1587  0.1977  0.0390

2 u 0.0000 33398 33398 0.0121  38.877 38.865 4.5703 4.8723 0.3020 4.5686 4.8694  0.3008
0 0.0000 16.756  16.756 ~ 0.1015  31.690  31.589  3.4519 3.7425 02906 3.4395 3.7285 0.2890

o 0.0000  3.2488  3.2488 0.0014 6.5148 6.1534  0.1138  0.1509 0.0371  0.1135 0.1503  0.0368

R(1.5) 09461 1.0064 0.0603 0.9466 1.0069 0.0603 09716 09797 0.0081 09718 0.9799  0.0080

h(1.5) 0.0350 0.1844  0.1494  0.0555 0.2167 0.1612  0.0925 0.1293  0.0368  0.0922  0.1287  0.0365

3 H 0.0000 17.799  17.799  1.9651  29.207 27.241 7.3578 7.6621 0.3042 73588  7.6624  0.3036
4 0.0000  7.1784  7.1784  0.3032  18.276  17.973  2.1468 24372 0.2903  2.1384  2.4253  0.2869

o 0.0000 14.934 14934  0.0004  2.1394 2.1390 1.5999 1.6039  0.0040  1.6000  1.6039  0.0039

R(1.5) 09469 1.0005 0.0537 0.9472  1.0009 0.0537 09700 0.9760  0.0060 0.9700 0.9759  0.0060

n(1.5) 0.0378 02254 0.1876 0.0645 0.2684 0.2039  0.1182  0.1481  0.0299  0.1177  0.1475  0.0298
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Table 17. Statistics for 40,000 Markovian variates of u, 6, o, R(t) and h(¢) from carbon fibers

data.

Sample Par. Mean Mode Q @, @Q; St.D. Sk.

1 u 10.038 9.9055 9.9872 10.038 10.088 0.0756 0.1108
[’ 1.2891 1.2359 1.2375 1.2887 1.3392  0.0740 0.0705

o 15.909 15.716 15.856 15.909 15964  0.0810 -0.0643

R(1.5) 09672 09655 09660 0.9673 09685 0.0018 -0.1809

h(1.5) 0.1774  0.1838 0.1703 0.1770 0.1839  0.0101 0.2297

2 u 47198 4.5846  4.6677  4.7201 47717  0.0777 0.0183
0 3.5952 3.4400 3.5450 3.5943 3.6453 0.0744 0.0597

o 0.1320  0.1338  0.1257 0.1318 0.1382  0.0093 0.0492

R(1.5) 0.9759  0.9749 0.9746 0.9760 0.9773 0.0021 -0.2492

h(1.5) 0.1097  0.1100  0.1032  0.1093  0.1159  0.0094 0.2190

3 u 7.5087 7.3737 7.4557 7.5095 7.5614  0.0783 0.0157
[’ 22917  2.1389  2.2415 22905 23417 0.0742 0.0380

o 1.6019 1.6020 1.6012 1.6018 1.6025 0.0010 0.0087

R(1.5) 09731 0.9724 09721 0.9732 09742 0.0015 -0.1839

h(1.5) 0.1324  0.1315 0.1271 0.1320 0.1375 0.0077 0.2054

One of the basic affairs in reliability analysis is how to distinguish the real action of the reliability
parameter R(7) at every data point. Thus, to highlight the effectiveness of the reliability parameter,
Figure 7 shows the estimates provided by the asymptotic methods (ACI-NA-ACI-NL techniques) and
Bayes’ approaches (BCI-HPD interval techniques) using the three proposed samples. It is evidence
that interval estimation of R(7) created by the ACI-NA behave well compared to the ACI-NL, while the

results created from the BCI and HPD interval techniques almost approach each other.
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Figure 7. Plots for reliability interval estimates from carbon fibers data.

5.2. Electromigration data
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In actuality, failures in microcircuits can occur due to the movement of atoms in the circuit’s
conductors, a phenomenon known as electromigration. This application displays the lifetime analysis
of 59 conductors recorded by an accelerated life test; see Table 18. This dataset does not include
censored observations and was taken from Lawless [51].
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Table 18. Failure times from an accelerated life test of 59 conductors.

2.997
5.589
6.476
6.948
7.496
8.687

4.137
5.640
6.492
6.956
7.543
8.799

4.288
5.807
6.515
6.958
7.683
9.218

4531 4700
5923  6.033
6.522  6.538
7.024  7.224
7.937 7.945
9.254  9.289

4.706
6.071
6.545
7.365
7974
9.663

5.009
6.087
6.573
7.398
8.120
10.092

5.381
6.129
6.725
7.459
8.336
10.491

5.434
6.352
6.869
7.489
8.532
11.038

5.459
6.369
6.923
7.495
8.591

Just like our calculations in Subsection 5.1, we shall compare the NEW distribution against the
same competitors shown in Table 12. The MLEs with their St.Ers are listed in 19, in addition, the
fitness measures: NL, A, CA, B, HQ, and KS distance with the P-value are provided in Table 19.
The results in 19 indicate that the NEW distribution has a better fit to the conductors’ data than other
distributions. Figure 8 shows graphically the relative histograms of the conductors data set and the
fitted PDFs, fitted/empirical RFs, and TTT plots. The same numerical findings are also supported by
Figure 8. Figure 8(c) indicates that the TTT plot for the conductors data displays an increasing failure
rate, so the proposed model can be adapted to fit this data type because it can present an increasing

failure rate.

Table 19. Fit results of the NEW with competing models from conductors’ data.

Model MLE(St.Er) NL A CA B HQ KS

o [4 o Statistic ~ P-value
NEW 22.832(10.988)  1.5700(1.4875)  0.8922(3.9683) 111.31 227.66  227.88  231.82  229.28 0.0682 0.9291
HEE 0.7360(0.2791)  0.9650(0.2776)  174.79(67.749) 116.33 238.67  239.11 24490 241.10  0.1474 0.1391
MOEE  3.9335(2.6170)  57.257(34.093)  0.0733(0.0647)  113.657 23331 23375 239.55 235.75 0.0766 0.8533
MOG 0.1059(0.0905)  9.3193(8.4746)  0.2855(0.1058)  116.797  239.59  240.03 24583  242.03 0.1167 0.3694
EW 0.1610(0.0350)  2.4940(2.0190)  3.0657(1.1400) 111.34 228.62  229.06 234.85 231.05 0.0704 0.9122
WE 0.1335(0.0211)  2.9312(0.3529)  0.1754(0.1117) 114.10 23420  234.64 24044  236.64  0.1245 0.2948
w - 2.9749(0.2178)  206.25(76.331) 126.09 256.19 25640 260.34  256.81 0.1706 0.0573
w - 3.1119(0.0728)  0.0020(0.0002) 119.70 24340  243.61 24755 24502  0.1996 0.0155
G - 18.104(3.3030)  2.5933(0.4797) 111.83 228.87 22931 235.11 23131 0.0707 0.9091
GE - 52.026(19.122)  0.6412(0.0622) 114.95 23389 23411 238.05 23552  0.1042 0.5103

020 025 030 035
L L L L L |

Estimated Density Function

005 0.10 0.15

Estimated Reliability Function

0.00
L

(a)
Figure 8. The fitted PDFs (a), fitted RFs (b), and TTT (c) curves for the NEW and its
alternative models from conductors example.
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Now, by taking k¥ = 29 and with different selections for 7 and R, we create three A-PT2-C
sampling schemes considering the complete conductors’ data and reporting them in Table 20. For
each generated A-PT2-C data, the maximum likelihood with 95% ACI-NA/ACI-NL intervals
estimates as well as the Bayes based on 95% BCI/HPD intervals estimates of u, 8, o, R(t), and h(¢) (at
t = 5) are calculated. Following the Gibbs algorithm proposed in Section 3, to evaluate the Bayes’
estimations, 50,000 variates, with the first 10,000 abandoned, are created. Then, the Bayes estimates
against the SEL and GEL (for v = (-5, —-0.05, +5)) are derived. Tables 21 and 22 report the point and
interval results with the corresponding St.Ers and ILs for u, 6, o, R(¢), and h(t). To collect the desired
MCMC variates of u, 6, and o, the MLEs of u, 6, and o are selected as starting points. The profile
log-likelihood curves are plotted and shown in Figure 9. It is noted, from Table 21, that the Bayes’
estimates of u, 6, o, R(t), and h(t) perform better compared to the frequentist estimates. The interval
limits of u, 0, o, R(t), and h(t) developed by the asymptotic procedure (ACI-NA/ACI-NL) and Bayes
procedure (BCI/HPD) are very similar.

(a) Sample 1

(b) Sample 2

nnnnn

(c) Sample 3

Figure 9. The profile log-likelihood functions of y, € and o from conductors data.

To assess whether the simulated MCMC samples achieve proper convergence, Figure 10 illustrates
the density and trace plots for u, 6, o, R(t), and h(t), based on the generated samples in Table 20. The
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figure confirms that the proposed Gibbs sampling method converges effectively and that the chosen
burn-in size is sufficient to eliminate the influence of initial values. Additionally, these plots indicate
that the estimates for u, 6, and o are approximately symmetrical, whereas the estimates for R(¢) and
h(t) exhibit negative and positive skewness, respectively.

Table 20. Three A-PT2-C samples from conductors data.

Sample Scheme T(d) R;,  Censored sample

1 (5°,0723) 4.8(4) 10 2.997,4.137,4.288, 4.706, 5.009, 5.381, 5.434, 5.459, 5.589, 5.640,
5.807,5.923, 6.087, 6.129, 6.352, 6.369, 6.476, 6.515, 6.522, 6.538,
6.545, 6.573, 6.725, 6.869, 6.923, 6.958, 7.024, 7.224, 7.459

2 (0°12,5%,0°11)  6.2(15) 15  2.997,4.137,4.288, 4.531, 4.700, 4.706, 5.009, 5.381, 5.434, 5.459,
5.589, 5.640, 5.807, 5.923, 6.033, 6.492, 6.538, 6.545, 6.573, 6.725,
6.923, 6.948, 6.956, 6.958, 7.024, 7.224, 7.365, 7.398, 7.459

3 (0723,5% 6.6(25) 20 2.997,4.137,4.288,4.531, 4.700, 4.706, 5.009, 5.381, 5.434, 5.459,
5.589, 5.640, 5.807, 5.923, 6.033, 6.071, 6.087, 6.129, 6.352, 6.369,
6.476, 6.492, 6.515, 6.522, 6.538, 6.725, 6.923, 6.948, 6.956

Table 21. Point estimates of u, 6, o, R(¢) and h(t) from conductors data.

Sample Par. MLE SEL GEL
v — -5 -0.05 +5
1 7 11.745  9.6431  11.6424  0.1421 11.644 0.1006 11.642 0.1026  11.640  0.1047
(4 3.7628  2.0566 3.7080 0.0897  3.7108  0.0520 3.7074  0.0554  3.7039  0.0589

o 0.0025  0.0133 0.0025 0.0001  0.0025  0.0000 0.0025  0.0000  0.0025  0.0000
R(5)  0.9025  0.0345 0.9079 0.0116  0.9081  0.0056  0.9078  0.0053  0.9075  0.0050
h(5)  0.1254  0.0331 0.1169 0.0171  0.1207  0.0047  0.1160 0.0093 0.1112  0.0141

2 H 6.0586  6.8345 5.9539 0.1438 59572 0.1014 59531 0.1054 59490  0.1095
0 4.1053  1.3812 4.0444 0.0985 4.0473  0.0580 4.0437 0.0617 4.0399 0.0654

o 0.0006  0.0022 0.0006 0.0001  0.0007  0.0000  0.0006  0.0000 0.0006  0.0000

R(5) 0.8725 0.0410 0.8775 0.0166  0.8781  0.0056  0.8774 0.0049  0.8767  0.0041

h(S)  0.1450  0.0335 0.1371 0.0215  0.1429  0.0021  0.1357  0.0093  0.1283  0.0167

3 H 7.1852  11.749 7.0816 0.1441  7.0844  0.1008  7.0809  0.1043  7.0773  0.1078
(4 4.3088  2.1736 4.2443 0.1025  4.2473  0.0615 42436  0.0652 4.2398  0.0690

o 0.0003  0.0017 0.0003 0.0000  0.0003  0.0000  0.0003  0.0000  0.0003  0.0000

R(5) 09316  0.0229 0.9346 0.0094 0.9348 0.0032  0.9346 0.0030 0.9343  0.0028

h(5) 0.0815 0.0186 0.0767 0.0123  0.0801  0.0014  0.0759  0.0056  0.0717  0.0098
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Table 22. Interval estimation for u, 6, o, R(#) and h(¢) of conductors data.

Sample  Par. ACI-NA ACI-NL BCI HPD
Lower Upper IL Lower  Upper IL Lower Upper 1L Lower Upper IL

1 H 0.0000  30.645 30.645 23494 58.712 56.363 11.453 11.837 03838 11.460 11.842 0.3814
4 0.0000  7.7936  7.7936  1.2891  10.983  9.6943  3.5638 3.8449 02811  3.5669  3.8465  0.2797

o 0.0000  0.0286 0.0286  0.0000  79.552  79.552  0.0023  0.0027 0.0004 0.0023  0.0027  0.0004

R(5) 0.8349 09701 0.1352 0.8374 09727 0.1353 0.8866  0.9265 0.0399 0.8884  0.9283  0.0398

n(5) 0.0604 0.1903  0.1299 0.0747 0.2104  0.1357 0.0901 0.1483  0.0582  0.0882  0.1460  0.0579

2 u 0.0000 19.454 19454 0.6640 55.283  54.619 57651 6.1467 03816 57542  6.1328  0.3786
0 1.3983  6.8124 54141  2.1231 79382 5.8150 3.8981 4.1968 02987 3.8981 4.1965 0.2984

o 0.0000  0.0049  0.0049  0.0000 0.6235  0.6235  0.0005  0.0008  0.0003  0.0005 0.0008  0.0003

R(5) 0.7921 0.9530 0.1608 0.7957 09568 0.1611 0.8442 0.9067 0.0625 0.8453  0.9075  0.0622

nGS) 0.0793  0.2107  0.1314  0.0922  0.2281 0.1360  0.1012  0.1796  0.0784  0.1017  0.1800  0.0783

3 H 0.0000 30.213  30.213  0.2915 77.126  76.835 6.8784 72771 03987  6.8777  7.2667  0.3890
4 0.0487 85689  8.5202 1.6032  11.581 99777 4.0923 44012 03089 4.0912 4.3993  0.3081

o 0.0000  0.0036  0.0036  0.0000 23.643 23.643 0.0002 0.0004 0.0002 0.0002 0.0004 0.0002

R(5) 0.8867 0.9764 0.0897 0.8878 0.9775 0.0898 09159 0.9506 0.0348 0.9175 0.9521  0.0345

nS) 0.0449 0.1180 0.0731  0.0520 0.1276  0.0756  0.0566  0.1011  0.0446  0.0556  0.0995  0.0440
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Table 23. Statistics for 40,000 Markovian variates of u, 8, o, R(¢) and h(¢) from conductors
data.

Sample  Par. Mean Mode Q @, @Q; St.D. Sk.

1 H 11.642 11413 11576  11.642 11.709  0.0987 0.0290
[4 3.7080  3.6597 3.6614 3.7090 3.7566 ~ 0.0711  -0.0943

o 0.0025  0.0026  0.0025 0.0025 0.0026  0.0001  -0.0005

R(5) 09079 09093 09012 09082 09151 0.0103 -0.2244

h(5) 01169  0.1130  0.1063  0.1163  0.1266  0.0149 0.2823

2 " 59539 57112  5.8872 5.9543  6.0206  0.0986 0.0493
0 4.0444 39201 3.9916 4.0433  4.0952  0.0773 0.0486

o 0.0006  0.0008  0.0006  0.0006 0.0007  0.0001 0.1136

R(5) 0.8775 0.8649 0.8671 0.8783  0.8884 0.0159  -0.2279

h(5) 0.1371  0.1469  0.1231  0.1359  0.1497  0.0200 0.3129

3 H 7.0816 6.8777 7.0149 7.0822  7.1484  0.1001 0.0170
[4 42443 41072 41892  4.2449  4.2989  0.0797 0.0396

o 0.0003  0.0003  0.0003  0.0003  0.0003  0.0000 0.1651

R(5) 09346 0939 09287 09351 09408 0.0089 -0.3104

h(5) 0.0767 0.0683 0.0685 0.0761 0.0841 0.0114 0.3698
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Figure 11. Reliability interval estimates plots from conductors data.

In actual situations, it is preferable to know the interval performance of the reliability parameter.
Thus, using all time points in Table 20, Figure 11 displays the interval estimation plots of R(f)
calculated via the ACI-NA, ACI-NL, BCI, and HPD procedures. It demonstrates that the length for
the interval for the reliability function created from ACI-NL (or ACI-NA) approach is very similar,
and the same results are consequently obtained under the case of HPD (or BCI) intervals.

To sum up, the analysis of the given real data sets reveals that the NEW lifetime model is an
accurate model for describing engineering-application phenomena. Given that the empirical functions
of both datasets exhibit an increasing trend, and since many competing models, such as the W and
EW distributions, are capable of capturing such behavior, the results demonstrate that the proposed
distribution achieves a superior fit for the two engineering applications. If the partitioner’s major
concern is the size of failed items, the NEW lifetime model under the suggested censoring is applicable
and extremely beneficial in stopping the experimental process. Using the suggested approach, one
may obtain adequate estimates of the reliability time parameters rather than utilizing the full sample,
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which incurs high costs. Lastly, the proposed point and interval estimates, as shown by data sets from
carbon fibers and conductors when performing an adaptive Type-II progressively strategy, revealed the
applicability of the proposed estimation approaches to real-world phenomena.

6. Concluding remarks

This study utilizes both frequentist and Bayesian approaches to estimate the unknown parameters
of the NEW distribution within the framework of adaptive Type-II progressive censoring.
Approximate confidence intervals for all parameters were constructed using the asymptotic normality
of the likelihood estimators and their log-transformed counterparts. Bayesian estimators were derived
under gamma priors, employing both squared-error and general-entropy losses. To approximate the
Bayes estimators and construct the corresponding credible intervals, we utilized Gibbs sampling via
adaptive rejection Metropolis sampling. Through extensive numerical comparisons, we assessed the
performance of the various estimators obtained. The simulation results demonstrated that the
Bayesian approach consistently provides more accurate estimates compared to the frequentist method.
To illustrate the practical applications of the proposed parameter estimation methods, we analyzed
two real-world datasets involving the lifetimes of carbon fibers and conductors. In these applications,
the NEW lifetime distribution was shown to offer a better fit than other alternatives including the
conventional Weibull distribution, where different goodness of fit measures were used to indicate the
results. Consequently, we recommend the use of the Bayesian estimation approach via Gibbs
sampling for parameter estimation of the NEW distribution where the sample is adaptive Type-II
progressively censored. We believe that the methodologies explored in this study will be valuable for
data analysts and reliability engineers. Although this study focuses on analyzing the NEW parameters
from such censoring, the inferential techniques presented here can be reimplemented for other
lifetime models or in-depth model evaluation in future research.
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Appendix 1

From (2.3), the Fisher elements /;;, i, j = 1,2, 3 with respect to y, 6 and o are

k
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Appendix 2

To show that the conditional PDFs H; (uly, 6, 07) and H; (6ly,u, o) of u and 6, respectively, are
both log-concave, following Jiang et al. [52], the second derivatives of log(H; (uly,6,0)) and of
log(H,, (6ly, u, o)) with regard to u and 6, respectively, are nonpositive. Consequently, from (3.10),
we have

dlog(H;; (uly, 6, 0)) i koo k -1

WD) gy 5 S s g
O log(H:: (uly, 0, 0)) . k _

LU0 e S v <o @

where &, and &;" are available in Appendix 1.
Similarly, from (3.11), we have

0log(H; (Oly, u, 0)) i k k ~

= = —ogy+ Y log)+ ) -+, (3)
8% log(H;; (Oly, . 0)) . k .

292 =-0& - Zizl i+ 6y <0, (.4)

where &, and £;* are available in Appendix 1.

It is clear, from (.1) and (.3), that the conditional PDFs of u and 6, respectively, hold the log-
concavity property. Thus, to create random variates from H;; (uly, 6, o) and H; (6ly, 4, o) of u, and 6,
we can use the highly efficient ARMS method.
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