Research article

Multiple periodic solutions of parameterized systems coupling asymmetric components and linear components

  • Received: 28 December 2024 Revised: 04 April 2025 Accepted: 15 April 2025 Published: 18 April 2025
  • MSC : 34B15, 34C25

  • We investigated the multiplicity of periodic solutions for parameterized systems coupling asymmetric components and linear components, where the nonlinearity is allowed to be sign-changing. Our approach was based on an extended version of the Poincaré-Birkhoff theorem, a rotation number approach, and a new existence result.

    Citation: Haihua Lu, Tianjue Shi. Multiple periodic solutions of parameterized systems coupling asymmetric components and linear components[J]. AIMS Mathematics, 2025, 10(4): 8988-9010. doi: 10.3934/math.2025412

    Related Papers:

  • We investigated the multiplicity of periodic solutions for parameterized systems coupling asymmetric components and linear components, where the nonlinearity is allowed to be sign-changing. Our approach was based on an extended version of the Poincaré-Birkhoff theorem, a rotation number approach, and a new existence result.



    加载中


    [1] A. Ambrosetti, G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pur. Appl., 93 (1972), 231–246. https://doi.org/10.1007/BF02412022 doi: 10.1007/BF02412022
    [2] M. Berger, E. Podolak, J. Moser, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., 24 (1975), 837–846.
    [3] C. Fabry, J. Mawhin, M. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. Lond. Math. Soc., 18 (1986), 173–180. https://doi.org/10.1112/blms/18.2.173 doi: 10.1112/blms/18.2.173
    [4] R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type, Differ. Integral Equ., 3 (1990), 275–284. https://doi.org/10.57262/die/1371586143 doi: 10.57262/die/1371586143
    [5] M. A. Del Pino, R. F. Manásevich, A. Murua, On the number of $2\pi$-periodic solutions for $u''+g(u) = s(1+h(t))$ using the Poincaré-Birkhoff theorem, J. Differ. Equations, 95 (1992), 240–258. https://doi.org/10.1016/0022-0396(92)90031-H doi: 10.1016/0022-0396(92)90031-H
    [6] C. Rebelo, F. Zanolin, Multiplicity results for periodic solutions of second order odes with asymmetric nonlinearities, Trans. Amer. Math. Soc., 348 (1996), 2349–2389. https://doi.org/10.1090/S0002-9947-96-01580-2 doi: 10.1090/S0002-9947-96-01580-2
    [7] C. Rebelo, F. Zanolin, Multiple periodic solutions for a second order equation with one-sided superlinear growth, Dyn. Contin. Discrete Impuls. Syst. A, 2 (1996), 1–27.
    [8] C. Zanini, F. Zanolin, A multiplicity result of periodic solutions for parameter dependent asymmetric non-autonomous equations, Dyn. Contin. Discrete Impuls. Syst. A, 12 (2005), 1–12.
    [9] A. Fonda, L. Ghirardelli, Multiple periodic solutions of scalar second order differential equations, Nonlinear Anal.-Theor., 72 (2010), 4005–4015. https://doi.org/10.1016/j.na.2010.01.032 doi: 10.1016/j.na.2010.01.032
    [10] A. Calamai, A. Sfecci, Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations, Nonlinear Differ. Equ. Appl., 24 (2017), 4. https://doi.org/10.1007/s00030-016-0427-5 doi: 10.1007/s00030-016-0427-5
    [11] A. Lazer, P. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. I. H. Poincaré C, 4 (1987), 243–274. https://doi.org/10.1016/S0294-1449(16)30368-7 doi: 10.1016/S0294-1449(16)30368-7
    [12] E. Sovrano, Nonlinear differential equations having non-sign-definite weights, Ph. D Thesis, University of Udine, 2018.
    [13] A. Fonda, P. Gidoni, Coupling linearity and twist: an extension of the Poincaré-Birkhoff theorem for Hamiltonian systems, Nonlinear Differ. Equ. Appl., 27 (2020), 55. https://doi.org/10.1007/s00030-020-00653-9 doi: 10.1007/s00030-020-00653-9
    [14] D. Qian, P. Torres, P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differ. Equations, 266 (2019), 4746–4768. https://doi.org/10.1016/j.jde.2018.10.010 doi: 10.1016/j.jde.2018.10.010
    [15] S. Gan, M. Zhang, Resonance pockets of Hill's equations with two-step potentials, SIAM J. Math. Anal., 32 (2000), 651–664. https://doi.org/10.1137/S0036141099356842 doi: 10.1137/S0036141099356842
    [16] C. Liu, D. Qian, P. Torres, Non-resonance and double resonance for a planar system via rotation numbers, Results Math., 76 (2021), 91. https://doi.org/10.1007/s00025-021-01401-w doi: 10.1007/s00025-021-01401-w
    [17] C. Liu, Non-resonance with one-sided superlinear growth for indefinite planar systems via rotation numbers, AIMS Mathematics, 7 (2022), 14163–14186. https://doi.org/10.3934/math.2022781 doi: 10.3934/math.2022781
    [18] C. Liu, D. Qian, A new fixed point theorem and periodic solutions of nonconservative weakly coupled systems, Nonlinear Anal., 192 (2020), 111668. https://doi.org/10.1016/j.na.2019.111668 doi: 10.1016/j.na.2019.111668
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(812) PDF downloads(70) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog