The Ivancevic model offers more accurate option pricing by including more grounded assumptions about the behavior of the market. Distinct forms of exact solutions are produced through the use of the analytical Paul-Painlevé method for the $ (1+1) $-dimensional Ivancevic option pricing model. A five-dimensional Lie algebra is produced, with scaling and dilation as the remaining point symmetries in space and time. We employ symmetry reduction of Lie subalgebras to derive closed-form invariant solutions. In certain reduction cases, we convert the chosen model into a spectrum of non-linear ordinary differential equations (ODEs), which have the advantage of providing a large number of closed-form solitary wave solutions. Moreover, bifurcation theory is used to analyze planar dynamical systems at distinct equilibrium points, observing deviations under external perturbations and sensitivity under various initial conditions. Through these analyses, financial models can be made more robust by understanding how changes in model parameters or market conditions impact the dynamics and stability of option prices. These methods collectively enhance the understanding, robustness, and accuracy of option pricing models, providing valuable tools for both theoretical research and practical applications in nonlinear dynamics.
Citation: Ibtehal Alazman. Dynamics of Lie symmetry, Paul-Painlevé approach, bifurcation aalysis to the Ivancevic option pricing model via a optimal system of Lie subalgebra[J]. AIMS Mathematics, 2025, 10(4): 8965-8987. doi: 10.3934/math.2025411
The Ivancevic model offers more accurate option pricing by including more grounded assumptions about the behavior of the market. Distinct forms of exact solutions are produced through the use of the analytical Paul-Painlevé method for the $ (1+1) $-dimensional Ivancevic option pricing model. A five-dimensional Lie algebra is produced, with scaling and dilation as the remaining point symmetries in space and time. We employ symmetry reduction of Lie subalgebras to derive closed-form invariant solutions. In certain reduction cases, we convert the chosen model into a spectrum of non-linear ordinary differential equations (ODEs), which have the advantage of providing a large number of closed-form solitary wave solutions. Moreover, bifurcation theory is used to analyze planar dynamical systems at distinct equilibrium points, observing deviations under external perturbations and sensitivity under various initial conditions. Through these analyses, financial models can be made more robust by understanding how changes in model parameters or market conditions impact the dynamics and stability of option prices. These methods collectively enhance the understanding, robustness, and accuracy of option pricing models, providing valuable tools for both theoretical research and practical applications in nonlinear dynamics.
| [1] |
V. Kumar, R. Jiwari, A. R. Djurayevich, M. U. Khudoyberganov, Hyperbolic (3+ 1)‐dimensional nonlinear Schrödinger equation: Lie symmetry analysis and modulation instability, J. Math., 2022 (2022), 9050272. https://doi.org/10.1155/2022/9050272 doi: 10.1155/2022/9050272
|
| [2] | Q. He, P. Xia, C. Hu, B. Li, Public Information, actual intervention, and infaation expectations, Transform. Bus. Econom., 21 (2022), p644. |
| [3] |
S. Akram, J. Ahmad, Dynamical behaviors of analytical and localized solutions to the generalized Bogoyavlvensky-Konopelchenko equation arising in mathematical physics, Opt. Quant. Electron., 56 (2024), 380. https://doi.org/10.1007/s11082-023-05913-3 doi: 10.1007/s11082-023-05913-3
|
| [4] |
T. Han, H. Rezazadeh, M. U. Rahman, High-order solitary waves, fission, hybrid waves and interaction solutions in the nonlinear dissipative (2+ 1)-dimensional Zabolotskaya-Khokhlov model, Phys. Scr., 99 (2024), 115212. https://doi.org/10.1088/1402-4896/ad7f04 doi: 10.1088/1402-4896/ad7f04
|
| [5] |
P. Li, S. Shi, C. Xu, Bifurcations, chaotic behavior, sensitivity analysis and new optical solitons solutions of Sasa-Satsuma equation, Nonlinear Dyn., 112 (2024), 7405–7415. https://doi.org/10.1007/s11071-024-09438-6 doi: 10.1007/s11071-024-09438-6
|
| [6] |
L. Kaur, A. M. Wazwaz, Optical soliton solutions of variable coefficient Biswas–Milovic (BM) model comprising Kerr law and damping effect, Optik, 266 (2022), 169617. https://doi.org/10.1016/j.ijleo.2022.169617 doi: 10.1016/j.ijleo.2022.169617
|
| [7] |
R. Zhang, S. Bilige, T. Chaolu, Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method, J. Syst. Sci. Complex., 34 (2021), 122–139. https://doi.org/10.1007/s11424-020-9392-5 doi: 10.1007/s11424-020-9392-5
|
| [8] |
L. A. AL-Essa, M. ur Rahman, Analysis of Lie symmetry, bifurcations with phase portraits, sensitivity and diverse W-M-shape soliton solutions for the (2+1)-dimensional evolution equation, Phys. Letters A, 525 (2024), 129928. https://doi.org/10.1016/j.physleta.2024.129928 doi: 10.1016/j.physleta.2024.129928
|
| [9] |
G. Akram, M. Sadaf, M. Khan, H. Hosseinzadeh, Analytical solutions of the fractional complex ginzburg-landau model using generalized exponential rational function method with two different nonlinearities, Adv. Math. Phys., 2023 (2023), 9720612. https://doi.org/10.1155/2023/9720612 doi: 10.1155/2023/9720612
|
| [10] | M. Gaballah, R. M. El-Shiekh, L. Akinyemi, H. Rezazadeh, Novel periodic and optical soliton solutions for Davey-Stewartson system by generalized Jacobi elliptic expansion method, Int. J. Nonlinear Sci. Numer. Simul., 24 (2024), 2889–2897. |
| [11] |
T. Furuya, P. Z. Kow, J. N. Wang, Consistency of the Bayes method for the inverse scattering problem, Inverse Probl., 40 (2024), 055001. https://doi.org/10.1088/1361-6420/ad3089 doi: 10.1088/1361-6420/ad3089
|
| [12] |
T. Yin, Z. Xing, J. Pang, Modified Hirota bilinear method to (3+1)-D variable coefficients generalized shallow water wave equation, Nonlinear Dyn., 111 (2023), 9741–9752. https://doi.org/10.1007/s11071-023-08356-3 doi: 10.1007/s11071-023-08356-3
|
| [13] |
Y. Wang, X. Lü, Bäcklund transformation and interaction solutions of a generalized Kadomtsev–Petviashvili equation with variable coefficients, Chinese J. Phys., 89 (2024), 37–45. https://doi.org/10.1016/j.cjph.2023.10.046 doi: 10.1016/j.cjph.2023.10.046
|
| [14] |
M. A. El-Shorbagy, S. Akram, M. ur Rahman, Propagation of solitary wave solutions to (4+1)-dimensional Davey-Stewartson-Kadomtsev-Petviashvili equation arise in mathematical physics and stability analysis, PDE Appl. Math., 10 (2024), 100669. https://doi.org/10.1016/j.padiff.2024.100669 doi: 10.1016/j.padiff.2024.100669
|
| [15] |
S. Yadav, M. Singh, S. Singh, S. Heinrich, J. Kumar, Modified variational iteration method and its convergence analysis for solving nonlinear aggregation population balance equation, Comput. Fluids, 274 (2024), 106233. https://doi.org/10.1016/j.compfluid.2024.106233 doi: 10.1016/j.compfluid.2024.106233
|
| [16] |
A. R. Seadawy, M. Iqbal, D. Lu, Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg-de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma, Phys. A: Stat. Mech. Appl., 544 (2020), 123560. https://doi.org/10.1016/j.physa.2019.123560 doi: 10.1016/j.physa.2019.123560
|
| [17] |
Z. Eskandari, Z. Avazzadeh, R. Khoshsiar Ghaziani, B. Li, Dynamics and bifurcations of a discrete‐time Lotka-Volterra model using nonstandard finite difference discretization method, Math. Meth. Appl. Sci., 2022. https://doi.org/10.1002/mma.8859 doi: 10.1002/mma.8859
|
| [18] |
J. Pan, M. U. Rahman, Rafiullah, Breather-like, singular, periodic, interaction of singular and periodic solitons, and a-periodic solitons of third-order nonlinear Schrödinger equation with an efficient algorithm, Eur. Phys. J. Plus, 138 (2023), 912. https://doi.org/10.1140/epjp/s13360-023-04530-z doi: 10.1140/epjp/s13360-023-04530-z
|
| [19] |
X. Zhu, P. Xia, Q. He, Z. Ni, L. Ni, Ensemble classifier design based on perturbation binary salp swarm algorithm for classification, CMES-Comput. Model. Eng. Sci., 135 (2023), p653. https://doi.org/10.32604/cmes.2022.022985 doi: 10.32604/cmes.2022.022985
|
| [20] | F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Economy, 81 (1973), 637–654. |
| [21] |
B. E. Baaquie, A path integral approach to option pricing with stochastic volatility: some exact results, J. Phys. I, 7 (1997), 1733–1753. https://doi.org/10.1051/jp1:1997167 doi: 10.1051/jp1:1997167
|
| [22] |
E. Haven, An $h$-Brownian motion'and the existence of stochastic option prices, Phys. A: Stat. Mech. Appl., 344 (2004), 152–155. https://doi.org/10.1016/j.physa.2004.06.107 doi: 10.1016/j.physa.2004.06.107
|
| [23] |
Y. Q. Chen, Y. H. Tang, J. Manafian, H. Rezazadeh, M. S. Osman, Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model, Nonlinear Dyn., 105 (2021), 2539–2548. https://doi.org/10.1007/s11071-021-06642-6 doi: 10.1007/s11071-021-06642-6
|
| [24] |
R. M. Jena, S. Chakraverty, D. Baleanu, A novel analytical technique for the solution of time-fractional Ivancevic option pricing model, Phys. A: Stat. Mech. Appl., 550 (2020), 124380. https://doi.org/10.1016/j.physa.2020.124380 doi: 10.1016/j.physa.2020.124380
|
| [25] |
Z. Yan, Vector financial rogue waves, Phys. Letters A, 375 (2011), 4274–4279. https://doi.org/10.1016/j.physleta.2011.09.026 doi: 10.1016/j.physleta.2011.09.026
|
| [26] |
S. O. Edeki, O. O. Ugbebor, O. González-Gaxiola, Analytical solutions of the Ivancevic option pricing model with a nonzero adaptive market potential, Int. J. Pure Appl. Math., 115 (2017), 187–198. https://doi.org/10.12732/ijpam.v115i1.14 doi: 10.12732/ijpam.v115i1.14
|
| [27] |
V. G. Ivancevic, Adaptive-wave alternative for the Black-Scholes option pricing model, Cogn. Comput., 2 (2010), 17–30. https://doi.org/10.1007/s12559-009-9031-x doi: 10.1007/s12559-009-9031-x
|
| [28] |
Q. Chen, H. M. Baskonus, W. Gao, E. Ilhan, Soliton theory and modulation instability analysis: The Ivancevic option pricing model in economy, Alex. Eng. J., 61 (2022), 7843–7851. https://doi.org/10.1016/j.aej.2022.01.029 doi: 10.1016/j.aej.2022.01.029
|
| [29] |
B. Li, Y. Zhang, X. Li, Z. Eskandari, Q. He, Bifurcation analysis and complex dynamics of a Kopel triopoly model, J. Comput. Appl. Math., 426 (2023), 115089. https://doi.org/10.1016/j.cam.2023.115089 doi: 10.1016/j.cam.2023.115089
|
| [30] |
T. Mahmood, G. Alhawael, S. Akram, M. ur Rahman, Exploring the Lie symmetries, conservation laws, bifurcation analysis and dynamical waveform patterns of diverse exact solution to the Klein–Gordan equation, Opt. Quant. Electron., 56 (2024), 1978. https://doi.org/10.1007/s11082-024-07814-5 doi: 10.1007/s11082-024-07814-5
|
| [31] |
M. A. El-Shorbagy, S. Akram, M. ur Rahman, H. A. Nabwey, Analysis of bifurcation, chaotic structures, lump and $M-W$-shape soliton solutions to (2+1) complex modified Korteweg-de-Vries system, AIMS Math., 9 (2024), 16116–16145. http://dx.doi.org/10.3934/math.2024780 doi: 10.3934/math.2024780
|
| [32] |
A. M. Alqahtani, S. Akram, J. Ahmad, K. A. Aldwoah, M. ur Rahman, Stochastic wave solutions of fractional Radhakrishnan–Kundu–Lakshmanan equation arising in optical fibers with their sensitivity analysis, J. Opt., 2024. https://doi.org/10.1007/s12596-024-01850-w doi: 10.1007/s12596-024-01850-w
|