Research article

Bäcklund transformation and soliton solutions for a generalized Wadati-Konno-Ichikawa equation

  • Published: 03 April 2025
  • MSC : 37K10, 35C08, 37K40

  • By employing a reciprocal transformation, we relate the generalized Wadati–Konno–Ichikawa (gWKI) equation to an associated gWKI (agWKI) equation. Utilizing the Darboux transformation of the agWKI equation and Bianchi's theorem of permutability, we derive the $ N $-Bäcklund transformation for the gWKI equation. As an application, we obtain some soliton solutions for the gWKI equation, including smooth solitons, bursting solitons, and loop-type solitons. Furthermore, we explore the interactions between two solitons.

    Citation: Chenglu Zhu, Lihua Wu. Bäcklund transformation and soliton solutions for a generalized Wadati-Konno-Ichikawa equation[J]. AIMS Mathematics, 2025, 10(4): 7828-7846. doi: 10.3934/math.2025359

    Related Papers:

  • By employing a reciprocal transformation, we relate the generalized Wadati–Konno–Ichikawa (gWKI) equation to an associated gWKI (agWKI) equation. Utilizing the Darboux transformation of the agWKI equation and Bianchi's theorem of permutability, we derive the $ N $-Bäcklund transformation for the gWKI equation. As an application, we obtain some soliton solutions for the gWKI equation, including smooth solitons, bursting solitons, and loop-type solitons. Furthermore, we explore the interactions between two solitons.



    加载中


    [1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for Solving the Korteweg-deVries Equation, Phys. Rev. Lett., 19 (1967), 1095–1097. https://doi.org/10.1103/PhysRevLett.19.1095 doi: 10.1103/PhysRevLett.19.1095
    [2] M. Wadati, K. Konno, Y. H. Ichikawa, New integrable nonlinear evolution equations, J. Phys. Soc. Jpn., 47 (1979), 1698–1700. https://doi.org/10.1143/JPSJ.47.1698 doi: 10.1143/JPSJ.47.1698
    [3] Y. Ichikawa, K. Konno, M. Wadati, Nonlinear transverse oscillation of elastic beams under tension, J. Phys. Soc. Jpn., 50 (1981), 1799–1802. https://doi.org/10.1143/JPSJ.47.1698 doi: 10.1143/JPSJ.47.1698
    [4] K. Konno, Y. Ichikawa, M. Wadati, A loop soliton propagation along a stretched rope, J. Phys. Soc. Jpn., 50 (1981), 1025–1026. https://doi.org/10.1143/JPSJ.50.1025 doi: 10.1143/JPSJ.50.1025
    [5] C. Qu, D. Zhang, The WKI model of type Ⅱ arises from motion of curves in $E^3$, J. Phys. Soc. Jpn., 74 (2005), 2941–2944. https://doi.org/10.1143/JPSJ.74.2941 doi: 10.1143/JPSJ.74.2941
    [6] T. Shimizu, M. Wadati, A new integrable nonlinear evolution equation, Prog. Theor. Phys., 63 (1980), 808–820. https://doi.org/10.1143/PTP.63.808 doi: 10.1143/PTP.63.808
    [7] J. Choudhury, Inverse scattering method for a new integrable nonlinear evolution equation under nonvanishing boundary conditions, J. Phys. Soc. Jpn., 51 (1982), 2312–2317. https://doi.org/10.1143/JPSJ.51.2312 doi: 10.1143/JPSJ.51.2312
    [8] Y. Ishimori, A relationship between the Ablowitz-Kaup-Newell-Segur and Wadati-Konno-Ichikawa schemes of the inverse scattering method, J. Phys. Soc. Jpn., 51 (1982), 3036–3041. https://doi.org/10.1143/jpsj.51.3036 doi: 10.1143/jpsj.51.3036
    [9] M. Wadati, K. Sogo, Gauge transformations in soliton theory, J. Phys. Soc. Jpn., 52 (1983), 394–398. https://doi.org/10.1143/JPSJ.52.394 doi: 10.1143/JPSJ.52.394
    [10] D. Levi, O. Ragnisco, A. Sym, The Bäcklund transformations for nonlinear evolution equations which exhibit exotic solitons, Phys. Lett. A., 100 (1984), 7–10. https://doi.org/10.1016/0375-9601(84)90341-4 doi: 10.1016/0375-9601(84)90341-4
    [11] M. Boiti, V. S. Gerdjikov, F. Pempinelli, The WKIS system: Bäcklund transformations, generalized Fourier transforms and all that, Prog. Theor. Phys., 75 (1986), 1111–1141. https://doi.org/10.1143/PTP.75.1111 doi: 10.1143/PTP.75.1111
    [12] A. Kundu, Explicit auto-Bäcklund relation through gauge transformation, J. Phys. A: Math. Gen., 20 (1987), 1107–1114. https://doi.org/10.1088/0305-4470/20/5/022 doi: 10.1088/0305-4470/20/5/022
    [13] Y. Xiao, The Bäcklund transformations for the Wadati-Konno-Ichikawa system, Phys. Lett. A., 149 (1990), 369–370. https://doi.org/10.1016/0375-9601(90)90895-U doi: 10.1016/0375-9601(90)90895-U
    [14] Z. J. Qiao, A completely integrable system and parametric representation of solutions of the Wadati-Konno-Ichikawa hierarchy, J. Math. Phys., 36 (1995), 3535–3540. https://doi.org/10.1063/1.530979 doi: 10.1063/1.530979
    [15] Z. Li, X. G. Geng, L. Guan, Algebro-geometric constructions of the Wadati-Konno-Ichikawa flows and applications, Math. Meth. Appl. Sci., 39 (2016), 734–743. https://doi.org/10.1142/S0219887823502390 doi: 10.1142/S0219887823502390
    [16] Y. S. Zhang, D. Qiu, Y. Cheng, The Darboux transformation for the Wadati-Konno-Ichikawa system, Theor. Math. Phys., 191 (2017), 710–724. https://doi.org/10.1134/S0040577917050117 doi: 10.1134/S0040577917050117
    [17] H. F. Liu, Y. Schimabukuro, N-soliton formula and blow-up result of the Wadati-Konno-Ichikawa equation, J. Phys. A: Math. Theor., 50 (2017), 315204. https://doi.org/10.1088/1751-8121/aa75af doi: 10.1088/1751-8121/aa75af
    [18] Y. S. Zhang, J. G. Rao, Y. Cheng, J. S. He, Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation: N simple poles and one higher-order pole, Phys. D., 399 (2019), 173–185. https://doi.org/10.1016/j.physd.2019.05.008 doi: 10.1016/j.physd.2019.05.008
    [19] Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.48550/arXiv.2109.07042 doi: 10.48550/arXiv.2109.07042
    [20] Y. S. Zhang, S. W. Xu, The soliton solutions for the Wadati-Konno-Ichikawa equation, Appl. Math. Lett., 99 (2020), 105995. https://doi.org/10.1016/j.aml.2019.07.026 doi: 10.1016/j.aml.2019.07.026
    [21] X. X. Xu, A generalized Wadati-Konno-Ichikawa hierarchy and new finite-dimensional integrable systems, Phys. Lett. A., 301 (2002), 250–262. https://doi.org/10.1016/S0375-9601(02)00957-X doi: 10.1016/S0375-9601(02)00957-X
    [22] C. Z. Qu, R. X. Xia, Z. B. Li, Two-component Wadati-Konno-Ichikawa equation and tts symmetry reductions, Chin. Phys. Lett., 21 (2004), 2077–2080. https://doi.org/10.1088/0256-307X/21/11/002 doi: 10.1088/0256-307X/21/11/002
    [23] H. Y. Zhu, S. M. Yu, S. F. Shen, W. X. Ma, New integrable $sl(2, R)$-generalization of the classical Wadati-Konno-Ichikawa hierarchy, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1341–1349. https://doi.org/10.1016/j.cnsns.2014.07.023 doi: 10.1016/j.cnsns.2014.07.023
    [24] X. G. Geng, Y. F. Guo, Y. Y. Zhai, Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws, Chin. Phys. B., 29 (2020), 050201. https://doi.org/10.1088/1674-1056/ab7e9d doi: 10.1088/1674-1056/ab7e9d
    [25] A. V. Bäcklund, Om ytor med konstant negativ Krökning, Lunds Univ. Årsskr, 19 (1883), 1–48.
    [26] L. Bianchi, Sulle trasformazioni delle superficie a curvatura costante, Ann. Mat. Pura Appl., 18 (1899), 329–346. https://doi.org/10.1007/BF02419245 doi: 10.1007/BF02419245
    [27] H. D. Wahlquist, F. B. Estabrook, Bäcklund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett., 31 (1973), 1386. https://doi.org/10.1103/PhysRevLett.31.1386 doi: 10.1103/PhysRevLett.31.1386
    [28] G. L. Lamb Jr., Bäcklund transformations of certain nonlinear evolution equations, J. Math. Phys., 15 (1974), 2157–2165. https://doi.org/10.48550/arXiv.2101.09245 doi: 10.48550/arXiv.2101.09245
    [29] K. Konno, M. Wadati, Simple derivation of Bäcklund transformation from Riccati form of inverse method, Prog. Theo. Phys., 53 (1975), 1652–1656. https://doi.org/10.1143/PTP.53.1652 doi: 10.1143/PTP.53.1652
    [30] C. Rogers, W. K. Schief, Bäcklund and Darboux transformations: geometry and modern applications in soliton theory, Cambridge: Cambridge University Press, 2002.
    [31] M. Boiti, F. Pempinelli, G. Z. Tu, The nonlinear evolution equations related to the Wadati-Konno-Ichikawa spectral problem, Prog. Theor. Phys., 69 (1983), 48–64. https://doi.org/10.1143/PTP.69.48 doi: 10.1143/PTP.69.48
    [32] A. G. Rasin, J. Schiff, Bäcklund transformations for the Camassa-Holm equation, J. Nonlinear Sci., 27 (2017), 45–69. https://doi.org/10.48550/arXiv.1508.05636 doi: 10.48550/arXiv.1508.05636
    [33] G. H. Wang, Q. P. Liu, H. Mao, The modified Camassa-Holm equation: Bäcklund transformation and nonlinear superposition formula, J. Phys. A: Math. Theor., 53 (2020), 294003. https://doi.org/10.1088/1751-8121/ab7136 doi: 10.1088/1751-8121/ab7136
    [34] H. Mao, G. H. Wang, Bäcklund transformations for the Degasperis-Procesi equation, Theor. Math. Phys., 203 (2020), 747–760. https://doi.org/10.1134/S0040577920060045 doi: 10.1134/S0040577920060045
    [35] H. Mao, Q. P. Liu, The short pulse equation: Bäcklund transformations and applications, Stud. Appl. Math., 145 (2020), 791–811. https://doi.org/10.1111/sapm.12336 doi: 10.1111/sapm.12336
    [36] H. Mao, Novikov equation: Bäcklund transformation and applications, Theor. Math. Phys., 206 (2021), 163–173. https://doi.org/10.1134/S0040577921020045 doi: 10.1134/S0040577921020045
    [37] F. L. Tan, L. H. Wu, On the Bäcklund transformation of a generalized Harry Dym type equation, Wave. Motion., 120 (2023), 103162. https://doi.org/10.1016/j.wavemoti.2023.103162 doi: 10.1016/j.wavemoti.2023.103162
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1045) PDF downloads(93) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog