Research article Special Issues

The identification numbers of lollipop graphs

  • Published: 02 April 2025
  • MSC : 05C35, 05C45, 05C50

  • A nontrivial connected graph $ G $ with diameter $ d $ can be assigned a red-white coloring, where the vertices of $ G $ are colored either red or white, with the stipulation that at least one vertex must be red. Associated with each vertex $ v $ of $ G $ is a $ d $-vector, called the code of $ v $, whose $ i $th coordinate is the number of red vertices at distance $ i $ from $ v $. A red-white coloring of $ G $ for which distinct vertices have distinct codes is called an identification coloring or $ ID $-coloring of $ G $. A graph $ G $ possessing an $ ID $-coloring is called an $ ID $-graph. The minimum number of red vertices among all $ ID $-colorings of an $ ID $-graph $ G $ is the identification number or $ ID $-number of $ G $. The number of red vertices in an identification coloring is called the identification coloring number. This article studied the identification coloring number of lollipop graphs by constructing vertex colorings.

    Citation: Gaixiang Cai, Fengru Xiao, Guidong Yu. The identification numbers of lollipop graphs[J]. AIMS Mathematics, 2025, 10(4): 7813-7827. doi: 10.3934/math.2025358

    Related Papers:

  • A nontrivial connected graph $ G $ with diameter $ d $ can be assigned a red-white coloring, where the vertices of $ G $ are colored either red or white, with the stipulation that at least one vertex must be red. Associated with each vertex $ v $ of $ G $ is a $ d $-vector, called the code of $ v $, whose $ i $th coordinate is the number of red vertices at distance $ i $ from $ v $. A red-white coloring of $ G $ for which distinct vertices have distinct codes is called an identification coloring or $ ID $-coloring of $ G $. A graph $ G $ possessing an $ ID $-coloring is called an $ ID $-graph. The minimum number of red vertices among all $ ID $-colorings of an $ ID $-graph $ G $ is the identification number or $ ID $-number of $ G $. The number of red vertices in an identification coloring is called the identification coloring number. This article studied the identification coloring number of lollipop graphs by constructing vertex colorings.



    加载中


    [1] P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559.
    [2] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195.
    [3] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/s0166-218x(00)00198-0 doi: 10.1016/s0166-218x(00)00198-0
    [4] G. Chartrand, P. Zhang, The theory and applications of resolvability in graphs, Congr. Numer., 160 (2003), 47–68.
    [5] P. J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci., 22 (1988), 445–455.
    [6] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Statist., 3 (1993), 203–236. https://doi.org/10.1080/10543409308835060 doi: 10.1080/10543409308835060
    [7] M. A. Johnson, Browsable structure-activity datasets, Advances in molecular similarity, 2 (1998), 153–170.
    [8] F. Foucaud, G. B. Mertzios, R. Naserasr, A. Parreau, P. Valicov, Identification, location-domination and metric dimension on interval and permutation graphs. Ⅰ. Bounds, Theoret. Comput. Sci., 668 (2017), 43–58. https://doi.org/10.1016/j.tcs.2017.01.006 doi: 10.1016/j.tcs.2017.01.006
    [9] F. Foucaud, G. B. Mertzios, R. Naserasr, A. Parreau, P. Valicov, Identification, location-domination and metric dimension on interval and permutation graphs. Ⅱ. Algorithms and complexity, Algorithmica, 78 (2017), 914–944. https://doi.org/10.1007/s00453-016-0184-1 doi: 10.1007/s00453-016-0184-1
    [10] M. Hauptmann, R. Schmied, C. Viehmann, Approximation complexity of metric dimension problem, J. Discrete Algorithms, 14 (2012), 214–222. https://doi.org/10.1016/j.jda.2011.12.010 doi: 10.1016/j.jda.2011.12.010
    [11] C. Hernando, M. Mora, I. M. Pelayo, C. Seara, D. R. Wood, Extremal graph theory for metric dimension and diameter, Electron. J. Combin., 17 (2010), 1–28. https://doi.org/10.37236/302 doi: 10.37236/302
    [12] P. Zhang, Color-induced graph colorings, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-20394-2
    [13] P. Zhang, A kaleidoscopic view of graph colorings, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-30518-9
    [14] G. Chartrand, Y. Kono, P. Zhang, Distance vertex identification in graphs, J. Interconnect. Netw., 21 (2021), 2150005. https://doi.org/10.1142/s0219265921500055 doi: 10.1142/s0219265921500055
    [15] Y. Kono, P. Zhang, Vertex identification in trees, Discrete Math. Lett., 7 (2021), 66–73. https://doi.org/10.47443/dml.2021.0042. doi: 10.47443/dml.2021.0042
    [16] Y. Kono, P. Zhang, A note on the identification numbers of caterpillars, Discrete Math. Lett., 8 (2022), 10–15. https://doi.org/10.47443/dml.2021.0073 doi: 10.47443/dml.2021.0073
    [17] Y. Kono, P. Zhang, Vertex identification in grids and prisms, J. Interconnect. Netw., 22 (2022), 2150019. https://doi.org/10.1142/s0219265921500195 doi: 10.1142/s0219265921500195
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1030) PDF downloads(78) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog