Research article Special Issues

The DH5 system and the Chazy and Ramamani equations

  • Published: 21 March 2025
  • MSC : 30C20, 33C05, 34A34, 34M55

  • This article considers a class of nonlinear ordinary differential equations (ODEs) whose general solutions possess a natural boundary in the complex plane and admit special solutions that are automorphic under the action of subgroups of the modular group P$ \text{SL}_2(\mathbb{Z}) $. Specifically, a $ 3 \times 3 $ matrix valued system known as the Darboux-Halphen 9 (DH9) system and its fifth-order reduction to the DH5 system are discussed. These systems arise as reductions of the self-dual Yang-Mills equations of mathematical physics. It is shown that the equations discovered by J. Chazy (1908) and V. Ramamani (1970) are embedded in the DH5 system.

    Citation: S. Chakravarty, P. Guha. The DH5 system and the Chazy and Ramamani equations[J]. AIMS Mathematics, 2025, 10(3): 6318-6337. doi: 10.3934/math.2025288

    Related Papers:

  • This article considers a class of nonlinear ordinary differential equations (ODEs) whose general solutions possess a natural boundary in the complex plane and admit special solutions that are automorphic under the action of subgroups of the modular group P$ \text{SL}_2(\mathbb{Z}) $. Specifically, a $ 3 \times 3 $ matrix valued system known as the Darboux-Halphen 9 (DH9) system and its fifth-order reduction to the DH5 system are discussed. These systems arise as reductions of the self-dual Yang-Mills equations of mathematical physics. It is shown that the equations discovered by J. Chazy (1908) and V. Ramamani (1970) are embedded in the DH5 system.



    加载中


    [1] M. J. Ablowitz, S. Chakravarty, R. Halburd, Darboux-Halphen systems and the singularity structure of its solutions, Proceedings of 4th International Conference on Mathematical and Numerical Aspects of Wave Propagation, 1998,408–412.
    [2] M. J. Ablowitz, S. Chakravarty, H. Hahn, Integrable systems and modular forms of level 2, J. Phys. A: Math. Gen., 39 (2006), 15341. https://doi.org/10.1088/0305-4470/39/50/003 doi: 10.1088/0305-4470/39/50/003
    [3] M. F. Atiyah, N. J. Hitchin, The geometry and dynamics of magnetic monopoles, Princeton: Princeton University Press, 1988. https://doi.org/10.1515/9781400859306
    [4] F. J. Bureau, Sur des systèmes différentiels non linéares du troisiéme ordre, Bulletins de l'Académie Royale de Belgique, 73 (1987), 335–353.
    [5] S. Chakravarty, M. J. Ablowitz, Integrability, monodromy, evolving deformations, and self-dual Bianchi IX systems, Phys. Rev. Lett., 76 (1996), 857. https://doi.org/10.1103/PhysRevLett.76.857 doi: 10.1103/PhysRevLett.76.857
    [6] S. Chakravarty, M. J. Ablowitz, L. A. Takhtajan, Self-dual Yang-Mills equation and new special functions in integrable systems, In: Nonlinear evolution equations and dynamical systems: Proceedings Needs'91, Singapore: World Scientific, 1992, 3–11.
    [7] S. Chakravarty, M. J. Ablowitz, P. A. Clarkson, Reductions of self-dual Yang-Mills fields and classical systems, Phys. Rev. Lett., 65 (1990), 2086. https://doi.org/10.1103/PhysRevLett.65.1085
    [8] S. Chakravarty, M. J. Ablowitz, Parameterizations of the Chazy equation, Stud. Appl. Math., 124 (2010), 105–135. https://doi.org/10.1111/j.1467-9590.2009.00463.x
    [9] S. Chakravarty, Differential equations for triangle groups, In: Algebraic and geometric aspects of integrable systems and random matrices, Providence: American Mathematical Society, 2013,179–204.
    [10] S. Chanda, S. Chakravarty, P. Guha, On a reduction of the generalized Darboux-Halphen system, Phys. Lett. A, 382 (2018), 455–460. https://doi.org/10.1016/j.physleta.2017.12.034
    [11] J. Chazy, Sur les équations différentielles dont l'intégrale générale est uniforme et admet des singularities essentielles mobiles, CR Acad. Sci. Paris, 149 (1909), 563–565.
    [12] J. Chazy, Sur les équations différentielles dont l'intégrale générale possède une coupure essentielle mobile, CR Acad. Sci. Paris, 150 (1910), 456–458.
    [13] J. Chazy, Sur les équations différentielles du troisième et d'ordre supérieur dont l'intégrale générale à ses points critiques fixés, Acta Math., 34 (1911), 317–385. https://doi.org/10.1007/BF02393131 doi: 10.1007/BF02393131
    [14] G. Darboux, Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux, Annales scientifiques de l'École Normale Supérieure, 7 (1878), 275–348. https://doi.org/10.24033/asens.164 doi: 10.24033/asens.164
    [15] B. Dubrovin, Geometry of 2D topological field theories, In: Integrable systems and quantum groups, Berlin: Springer, 1996,120–348. https://doi.org/10.1007/BFb0094793
    [16] A. Erdelyi, H. Bateman, Higher transcendental functions, volume I, New York: McGraw-Hill, 1953.
    [17] E. V. Ferapontov, C. A. P. Galvao, O. I. Mokhov, Y. Nutku, Bi-Hamiltonian structure of equations of associativity in $2$-d topological field theory, Comm. Math. Phys., 186 (1997), 649–669. https://doi.org/10.1007/s002200050123
    [18] G. W. Gibbons, C. N. Pope, The positive action conjecture and asymptotically Euclidean metrics in quantum gravity, Comm. Math. Phys., 66 (1979), 267–290. https://doi.org/10.1007/BF01197188 doi: 10.1007/BF01197188
    [19] G. Halphen, Sur certains systèmes d'équations différentielles, CR Acad. Sci. Paris, 92 (1881), 1404–1406.
    [20] G. Halphen, Sur un système d'équations différentielles, CR Acad. Sci. Paris, 92 (1881), 1101–1103.
    [21] N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differ. Geom., 42 (1995), 30–112. https://doi.org/10.4310/jdg/1214457032
    [22] N. J. Hitchin, Hypercomplex manifolds and the space of framings, In: The geometric universe: science, geometry, and the work of Roger Penrose, Oxford: Oxford Academic, 1998, 9–30. https://doi.org/10.1093/oso/9780198500599.003.0002
    [23] Z. Nehari, Conformal mapping, New York: McGraw-Hill, 1952.
    [24] P. Painlevé, Lecons sur la théorie analytique des équations différentielles, Paris: A. Hermann, 1897.
    [25] V. Ramamani, On some identities conjectured by Ramanujan in his lithographed notes connected with partition theory and elliptic modular functions–-their proofs–-interconnection with various other topics in the theory of numbers and some generalizations thereon, Ph.D Thesis, The University of Mysore, 1970.
    [26] S. Ramanujan, On certain arithmetical functions, Transactions of the Cambridge Philosophical Society, 22 (1916), 159–184.
    [27] G. H. Hardy, P. V. Seshu Aiyar, B. M. Wilson, Collected papers of Srinivasa Ramanujan, Providence: American Mathematical Society, 2000.
    [28] S. Ramanujan, Notebooks of Srinivasa Ramanujan, Bombay: Tata Institute of Fundamental Research, 1957.
    [29] R. A. Rankin, Modular forms and functions, Cambridge: Cambridge University Press, 1977. https://doi.org/10.1017/CBO9780511566035
    [30] B. Schoeneberg, Elliptic modular functions: an introduction, Berlin: Springer-Verlag, 1974. https://doi.org/10.1007/978-3-642-65663-7
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1010) PDF downloads(45) Cited by(0)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog