Research article Special Issues

Extremal unicyclic and bicyclic graphs of the Euler Sombor index

  • Published: 21 March 2025
  • MSC : 05C05, 05C09, 05C92

  • Topological indices are widely used to analyze and predict the physicochemical properties of compounds, and have good application prospects. Recently, the Euler Sombor index was introduced, which is defined as

    $ \begin{align} EP(G) = \sum\limits_{v_iv_j\in E(G)}\sqrt{d(v_i)^2+d(v_j)^2+d(v_i)d(v_j)}.& \end{align} $

    As the latest index with geometry motivation, it has excellent discrimination and predictive ability for compounds, in addition to mathematical practicality. The unicyclic graphs and bicyclic graphs are composed of various chemical structures, and are of particular importance in the study of topological indices. In this paper, the maximal and minimal values of Euler Sombor index for all unicyclic and bicyclic graphs are determined, and the corresponding extremal graphs are characterized.

    Citation: Zhenhua Su, Zikai Tang. Extremal unicyclic and bicyclic graphs of the Euler Sombor index[J]. AIMS Mathematics, 2025, 10(3): 6338-6354. doi: 10.3934/math.2025289

    Related Papers:

  • Topological indices are widely used to analyze and predict the physicochemical properties of compounds, and have good application prospects. Recently, the Euler Sombor index was introduced, which is defined as

    $ \begin{align} EP(G) = \sum\limits_{v_iv_j\in E(G)}\sqrt{d(v_i)^2+d(v_j)^2+d(v_i)d(v_j)}.& \end{align} $

    As the latest index with geometry motivation, it has excellent discrimination and predictive ability for compounds, in addition to mathematical practicality. The unicyclic graphs and bicyclic graphs are composed of various chemical structures, and are of particular importance in the study of topological indices. In this paper, the maximal and minimal values of Euler Sombor index for all unicyclic and bicyclic graphs are determined, and the corresponding extremal graphs are characterized.



    加载中


    [1] J. Devillers, A. T. Balaban, Topological indices and related descriptors in QSAR and QSPR, Amsterdam: Gordon & Breach, 1999.
    [2] R. Todeschini, V. Consonni, Handbook of molecular descriptors, Weinheim: Wiley-VCH, 2020.
    [3] I. Gutman, B. Furtula, C. Elphick, Three new/old vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem., 72 (2014), 617–632.
    [4] K. C. Das, S. Elumalai, S. Balachandran, Open problems on the exponential vertex-degree-based topological indices of graphs, Discrete Appl. Math., 293 (2021), 38–49. https://doi.org/10.1016/j.dam.2021.01.018 doi: 10.1016/j.dam.2021.01.018
    [5] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16.
    [6] H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quant. Chem., 121 (2021), e26622. https://doi.org/10.1002/qua.26622 doi: 10.1002/qua.26622
    [7] I. Gutman, Some basic properties of Sombor indices, Open J. Discr. Appl. Math., 4 (2021), 1–3.
    [8] M. Chen, Y. Zhu, Extremal unicyclic graphs of Sombor index, Appl. Math. Comput., 463 (2024), 128374. https://doi.org/10.1016/j.amc.2023.128374 doi: 10.1016/j.amc.2023.128374
    [9] I. Gutman, B. Furtula, M. S. Oz, Geometric approach to vertex-degree-based topological indices-Elliptic Sombor index, theory and application, Int. J. Quantum Chem., 124 (2024), e27346. https://doi.org/10.1002/qua.27346 doi: 10.1002/qua.27346
    [10] S. Kosari, N. Dehgardi, A. Khan, Lower bound on the KG-Sombor index, Commun. Comb. Optim., 8 (2023) 2538–2128. https://doi.org/10.22049/CCO.2023.28666.1662
    [11] H. Liu, I. Gutman, L. You, Y. Huang, Sombor index: Review of extremal results and bounds, J. Math. Chem., 66 (2022), 771–798. https://doi.org/10.1007/s10910-022-01333-y doi: 10.1007/s10910-022-01333-y
    [12] C. Yang, M. Ji, K. C. Das, Y. Mao, Extreme graphs on the Sombor indices, AIMS Math., 7 (2022), 19126–19146. https://doi.org/10.3934/math.20221050 doi: 10.3934/math.20221050
    [13] P. Chinglensana, M. Sainkupar, M. B. Ardeline, On general Sombor index of graphs, Asian-European J. Math., 16 (2023), 1793–5571. https://doi.org/10.1142/S1793557123500523 doi: 10.1142/S1793557123500523
    [14] I. Gutman, Relating sombor and euler indices, Vojnotehnički Glasn., 72 (2024), 1–12. https://doi.org/10.5937/vojtehg72-48818 doi: 10.5937/vojtehg72-48818
    [15] Z. Tang, Y. Li, H. Deng, The Euler Sombor index of a graph, Int. J. Quantum Chem., 124 (2024), e27387. https://doi.org/10.1002/qua.27387 doi: 10.1002/qua.27387
    [16] R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem., 59 (2021), 1098–1116. https://doi.org/10.1007/s10910-021-01232-8 doi: 10.1007/s10910-021-01232-8
    [17] K. C. Das, Open problems on Sombor index of unicyclic and bicyclic graphs, Appl. Math. Comput., 473 (2024), 128647. https://doi.org/10.1016/j.amc.2024.128647 doi: 10.1016/j.amc.2024.128647
    [18] J. A. Bondy, U. S. R. Murty, Graph theory with applications, New York: Macmillan Press, 1976.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1075) PDF downloads(73) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog