In this paper, we conducted an in-depth study of a generalized Korteweg-de Vries–Caudrey Dodd Gibbon (gKdV–CDG) equation modeling specific oceanic waves. Through the Bell polynomial approach (BPA), the Hirota D-operator expression of the gKdV–CDG equation was first constructed. An integrability test of the governing model was then carried out, and consequently, multi solitons were constructed using the Hirota method. Ultimately, using symbolic computations, breather and complexiton waves were derived from the gKdV–CDG equation by serving distinct ansatzes. A few representations positioned two- and three-dimensionally were provided to characterize the nonlinear wave's physical features. Based on the results, suitable methods were suggested to assess the height and width of nonlinear waves in the ocean.
Citation: Kamyar Hosseini, Farzaneh Alizadeh, Sekson Sirisubtawee, Chaiyod Kamthorncharoen, Samad Kheybari, Kaushik Dehingia. Integrability, Hirota D-operator expression, multi solitons, breather wave, and complexiton of a generalized Korteweg-de Vries–Caudrey Dodd Gibbon equation[J]. AIMS Mathematics, 2025, 10(3): 5248-5263. doi: 10.3934/math.2025242
[1] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[2] | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463 |
[3] | Murat A. Sultanov, Vladimir E. Misilov, Makhmud A. Sadybekov . Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(12): 36385-36404. doi: 10.3934/math.20241726 |
[4] | Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312 |
[5] | Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481 |
[6] | Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574 |
[7] | Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477 |
[8] | Nichaphat Patanarapeelert, Thanin Sitthiwiratthame . On nonlocal fractional symmetric Hanh integral boundary value problems for fractional symmetric Hahn integrodifference equation. AIMS Mathematics, 2020, 5(4): 3556-3572. doi: 10.3934/math.2020231 |
[9] | Abdelkader Amara . Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075 |
[10] | Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037 |
In this paper, we conducted an in-depth study of a generalized Korteweg-de Vries–Caudrey Dodd Gibbon (gKdV–CDG) equation modeling specific oceanic waves. Through the Bell polynomial approach (BPA), the Hirota D-operator expression of the gKdV–CDG equation was first constructed. An integrability test of the governing model was then carried out, and consequently, multi solitons were constructed using the Hirota method. Ultimately, using symbolic computations, breather and complexiton waves were derived from the gKdV–CDG equation by serving distinct ansatzes. A few representations positioned two- and three-dimensionally were provided to characterize the nonlinear wave's physical features. Based on the results, suitable methods were suggested to assess the height and width of nonlinear waves in the ocean.
Fractional calculus is an emerging field drawing attention from both theoretical and applied disciplines. In particular, fractional calculus is a powerful tool for explaining problems in ecology, biology, chemistry, physics, mechanics, networks, flow in porous media, electricity, control systems, viscoelasticity, mathematical biology, fitting of experimental data, and so forth. One may see the papers [1,2,3,4,5] and the references therein.
Fractional difference calculus or discrete fractional calculus is a very new field for mathematicians. Some real-world phenomena are being studied with the assistance of fractional difference operators. Basic definitions and properties of fractional difference calculus can be found in the book [6]. Fractional boundary value problems can be found in the books [7,8]. Now, the studies of boundary value problems for fractional difference equations are extended to be more complex. Excellent papers related to discrete fractional boundary value problems can be found in [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] and references cited therein. In particular, there are some recent papers that present the Caputo fractional difference calculus [36,37,38,39,40,41]. In the literature, there are apparently few research works studying boundary value problems for Caputo fractional difference-sum equations. For example, [42] studied a boundary value problem for p−Laplacian Caputo fractional difference equations with fractional sum boundary conditions of the forms
{ΔαC[ϕp(ΔβCx)](t)=f(t+α+β−1,x(t+α+β−1)),t∈N0,T:={0,1,…,T},ΔβCx(α−1)=0,x(α+β+T)=ρΔ−γx(η+γ). | (1.1) |
In [43], investigated a nonlocal fractional sum boundary value problem for a Caputo fractional difference-sum equation of the form
ΔαCu(t)=F[t+α−1,ut+α−1,ΔβCu(t+α−β)],t∈N0,T,ΔγCu(α−γ−1)=0,u(T+α)=ρΔ−ωu(η+ω). | (1.2) |
In addition, [44] considered a periodic boundary value problem for Caputo fractional difference-sum equations of the form
ΔαCu(t)=F[t+α−1,u(t+α−1),Ψγu(t+α−1)],t∈N0,T,t+α−1≠tk,Δu(tk)=Ik(u(tk−1)),k=1,2,...,p,Δ(Δ−βu(tk+β))=Jk(Δ−βu(tk+β−1)),k=1,2,...,p,Au(α−1)+BΔ−βu(α+β−1)=Cu(T+α)+DΔ−βu(T+α+β). | (1.3) |
We aim to fill the gaps related to the boundary value problem of Caputo fractional difference-sum equations. The goal of this paper is to enrich this new research area by using the unknown function of Caputo fractional difference and fractional sum in the problem. So, in this paper, we consider a sequential nonlinear Caputo fractional sum-difference equation with fractional difference boundary value conditions of the form
CΔααCΔβα+β−1x(t)=H[t+α+β−1,x(t+α+β−1),CΔνα+β−1x(t+α+β−ν),Ψμ(t+α+β−1,x(t+α+β−1))],t∈N0,T,ρ1x(α+β−2)=x(T+α+β),ρ2CΔγα+β−2x(α+β−γ−1)=CΔγα+β−2x(T+α+β−γ+1), | (1.4) |
where ρ1,ρ2∈R, 0<α,β,γ,ν,μ≤1, 1<α+β≤2 are given constants, H∈C(Nα+β−2,T+α+β×R3,R), and for φ∈C(⊙×R2,[0,∞)), ⊙:={(t,r):t,r∈Nα+β−2,T+α+βandr≤t}. The operator Ψμ is defined by
Ψμ(t,x(t)):=t−μ∑s=α+β−μ−2(t−σ(s))μ−1_Γ(μ)φ(t,s+μ,x(s+μ),CΔνα+β−2x(s+μ−ν+1)). |
The plan of this paper is as follows. In Section 2, we recall some definitions and basic lemmas. Also, we derive the solution of (1.4) by converting the problem to an equivalent equation. In Section 3, we prove existence and uniqueness results of the problem (1.4) using the Banach contraction principle and Schaefer's theorem. Furthermore, we also show the existence of a positive solution to (1.4). An illustrative example is presented in Section 4.
In the following, there are notations, definitions and lemmas which are used in the main results.
Definition 2.1. [10] We define the generalized falling function by tα_:=Γ(t+1)Γ(t+1−α), for any t and α for which the right-hand side is defined. If t+1−α is a pole of the Gamma function and t+1 is not a pole, then tα_=0.
Lemma 2.1. [9] Assume the following factorial functions are well defined. If t≤r, then tα_≤rα_ for any α>0.
Definition 2.2. [10] For α>0 and f defined on Na:={a,a+1,…}, the α-order fractional sum of f is defined by
Δ−αaf(t)=Δ−αf(t):=1Γ(α)t−α∑s=a(t−σ(s))α−1_f(s), |
where t∈Na+α and σ(s)=s+1.
Definition 2.3. [11] For α>0 and f defined on Na, the α-order Caputo fractional difference of f is defined by
CΔαaf(t)=ΔαCf(t):=Δ−(N−α)aΔNf(t)=1Γ(N−α)t−(N−α)∑s=a(t−σ(s))N−α−1_ΔNf(s), |
where t∈Na+N−α and N∈N is chosen so that 0≤N−1<α<N. If α=N, then ΔαCf(t)=ΔNf(t).
Lemma 2.2. [11] Assume that α>0 and 0≤N−1<α≤N. Then,
Δ−αa+N−αCΔαay(t)=y(t)+C0+C1t1_+C2t2_+...+CN−1tN−1_, |
for some Ci∈R, 0≤i≤N−1.
To study the solution of the boundary value problem (1.4), we need the following lemma that deals with a linear variant of the boundary value problem (1.4) and gives a representation of the solution.
Lemma 2.3. Let Λ(ρ1−1)≠0, 0<α,β,γ,ν,μ≤1, 1<α+β≤2 and h∈C(Nα+β−1,T+α+β−1,R) be given. Then, the problem
CΔααCΔβα+β−1x(t)=h(t+α+β−1),t∈N0,T | (2.1) |
{ρ1x(α+β−2)=x(T+α+β),ρ2CΔγα+β−2x(α+β−γ−1)=CΔγα+β−2x(T+α+β−γ+1), | (2.2) |
has the unique solution
x(t)=T+(ρ1−1)(t−α−β)+2ρ1Λ(ρ1−1)Γ(1−γ)Γ(β−1)Γ(α)T+α+β∑s=α+β−1s−β+1∑r=αr−α∑ξ=0(T+α+β−γ+1−σ(s))−γ_×(s−σ(r))β−2_(r−σ(ξ))α−1_h(ξ+α+β−1)+1(ρ1−1)Γ(β)Γ(α)T+α∑s=αs−α∑ξ=0(T+α+β−σ(s))β−1_(s−σ(ξ))α−1_h(ξ+α+β−1)+1Γ(β)Γ(α)t−β∑s=αs−α∑ξ=0(t−σ(s))β−1_(s−σ(ξ))α−1_h(ξ+α−1), | (2.3) |
where
Λ=ρ2−Γ(T−γ+4)Γ(2−γ)Γ(T+3). | (2.4) |
Proof. Using the fractional sum of order α∈(0,1] for (2.1) and from Lemma 2.2, we obtain
CΔβα+β−2x(t)=C1+1Γ(α)t−α∑s=0(t−σ(s))α−1_h(s+α+β−1), | (2.5) |
for t∈Nα−1,T+α.
Using the fractional sum of order 0<β≤1 for (2.5), we obtain
x(t)=C2+C1t+1Γ(β)Γ(α)t−β∑s=αs−α∑ξ=0(t−σ(s))β−1_(s−σ(ξ))α−1_h(ξ+α+β−1), | (2.6) |
for t∈Nα+β−2,T+α+β.
By substituting t=α+β−2,T+α+β into (2.6) and employing the first condition of (2.2), we obtain
−C2(ρ1−1)+C1[(T−(ρ1−1)(α+β)+2ρ1]=−1Γ(β)Γ(α)T+α∑s=αs−α∑ξ=0(T+α+β−σ(s))β−1_(s−σ(ξ))α−1_h(ξ+α+β−1). | (2.7) |
Using the fractional Caputo difference of order 0<γ≤1 for (2.6), we obtain
CΔγα+β−2x(t)=C1Γ(1−γ)t+γ−1∑s=α+β−2(t−σ(s))−γ_+1Γ(1−γ)Γ(β)Γ(α)×t+γ−1∑s=α+β−2(t−σ(s))−γ_sΔ[s−β∑r=αr−α∑ξ=0(s−σ(r))β−1_(r−σ(ξ))α−1_h(ξ+α+β−1)]=C1Γ(1−γ)t+γ−1∑s=α+β−2(t−σ(s))−γ_+1Γ(1−γ)Γ(β−1)Γ(α)×t+γ−1∑s=α+β−2s−β+1∑r=αr−α∑ξ=0(t−σ(s))−γ_(s−σ(r))β−2_(r−σ(ξ))α−1_h(ξ+α+β−1), | (2.8) |
for Nα+β−γ−1,T+α+β−γ+1.
By substituting t=α+β−γ−1,T+α+β−γ+1 into (2.8) and employing the second condition of (2.2), it implies
C1=−1ΛΓ(1−γ)Γ(β−1)Γ(α)T+α+β∑s=α+β−1s−β+1∑r=αr−α∑ξ=0(T+α+β−γ+1−σ(s))−γ_×(s−σ(r))β−2_(r−σ(ξ))α−1_h(ξ+α+β−1). |
The constant C2 can be obtained by substituting C1 into (2.7). Then, we get
C2=T−(ρ1−1)(α+β)+2ρ1(ρ1−1)ΛΓ(1−γ)Γ(β−1)Γ(α)T+α+β∑s=α+β−1s−β+1∑r=αr−α∑ξ=0(T+α+β−γ+1−σ(s))−γ_×(s−σ(r))β−2_(r−σ(ξ))α−1_h(ξ+α+β−1)+1(ρ1−1)Γ(β)Γ(α)T+α∑s=αs−α∑ξ=0(T+α+β−σ(s))β−1_(s−σ(ξ))α−1_h(ξ+α+β−1), |
where Λ is defined by (2.4). Substituting the constants C1 and C2 into (2.6), we obtain (2.3).
In this section, we wish to establish the existence results for the problem (1.4). We denote C=C(Nα+β−2,T+α+β,R) as the Banach space of all functions x with the norm defined by
‖x‖C=‖x‖+‖ΔνCx‖, |
where ‖x‖=maxt∈Nα+β−2,T+α+β|x(t)| and \|\Delta^{\nu}_Cx\| = \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}}\big|\Delta^{\nu}_{C}x(t-\nu+1)\big| .
The following assumptions are assumed:
\textbf{(A1)} {\mathcal{H}}[t, x, y, z]:{\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} \times {\mathbb{R}}^3\rightarrow \mathbb{R} is a continuous function.
\textbf{(A2)} There exist constants K_1, K_2 > 0 such that for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} and all x_i, y_i, z_i\in {\mathbb{R}}, \; i = 1, 2 , we have
\Big|{\mathcal{H}}[t,x_1,y_1,z_1]-{\mathcal{H}}[t,x_2,y_2,z_2]\Big| \leq K_1\,\Big[|x_1-x_2|+|y_1-y_2|+|z_1-z_2|\Big], |
and
K_2 = \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}} \Big|{\mathcal{H}}[t,0,0,\Psi^\mu (t,0) ]\Big|, |
where \; \Psi^\mu (t, 0): = \frac{1}{\Gamma(\mu)}\sum\limits_{s = \alpha+\beta-\mu-2}^{t-\mu}(t-\sigma(s))^{\underline{\mu-1}}\, \varphi\Big(t, s+\mu, 0, 0\Big) .
\textbf{(A3)} \varphi:\odot \times {\mathbb{R}}^2\rightarrow {\mathbb{R}} is continuious for (t, s)\in \odot , and there exists a constant L > 0 , such that for each (t, s)\in \odot and all x_i, y_i\in \mathcal{C}, \; i = 1, 2 we have
\Big|\varphi(t,s+\mu,x_1,y_1)-\varphi(t,s+\mu,x_2,y_2)\Big|\leq L\,\Big[|x_1-x_2|+|y_1-y_2|\Big]. |
Let us define the operator {\widetilde{\mathcal{H}}}[t, x(t)] by
\begin{align} \; \,{\widetilde{\mathcal{H}}}[t,x(t)]: = {\mathcal{H}}\Big[&t,x(t),\Delta^\nu_C x(t-\nu+1),\Psi^\mu (t,x(t))\Big], \end{align} | (3.1) |
for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\; and \; x\in {\mathcal{C}} .
Note that \; \Delta^{-\beta} \Delta^{-\alpha}\, {\widetilde{\mathcal{H}}}[t, x(t)] and \Delta^{\nu}_C\, \Delta^{-\beta} \Delta^{-\alpha} \, {\widetilde{\mathcal{H}}}[t, x(t)]\; exist when \; \nu < \alpha+\beta\leq2.
Lemma 3.1. Assume that (A1)–(A3) hold. Then, the following property holds:
(A4) There exits a positive constant \Theta such that
\Big|\,{\widetilde{\mathcal{H}}}[t,x_1(t)]-{\widetilde{\mathcal{H}}}[t,x_2(t)]\,\Big| \leq \Theta\,\|x_1-x_2\|_{\mathcal{C}}, |
for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\; and \; x_1, x_2\in {\mathcal{C}} , where
\begin{align} \Theta: = K_1\left[1+ \frac{L\,\Gamma(T+\mu+3)}{\Gamma(\mu+1)\Gamma(T+3)}\right]. \end{align} | (3.2) |
Proof. By \textbf{(A3)} , for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\; and \; x_1, x_2\in {\mathcal{C}} , we obtain
\begin{align*} &\Big|(\Psi^\mu x_1)(t)-(\Psi^\mu x_2)(t)\Big|\\ \leq&\; \frac{1}{\Gamma(\mu)}\sum\limits_{s = \alpha+\beta-\mu-2}^{t-\mu}(t-\sigma(s))^{\underline{\mu-1}}\,\\ & \Big|\varphi\Big(t,s+\mu,x_1(s+\mu),\Delta^\nu_C x_1(s+\mu-\nu+1)\Big)\\ &\; -\varphi\Big(t,s+\mu,x_2(s+\mu),\Delta^\nu_C x_2(s+\mu-\nu+1)\Big) \Big|\\ \leq&\; \frac{1}{\Gamma(\mu)}\sum\limits_{s = \alpha+\beta-\mu-2}^{T+\alpha+\beta-\mu}(T+\alpha+\beta-\sigma(s))^{\underline{\mu-1}}\times\\ &\; L\,\Big[\big|x_1(s+\mu)-x_2(s+\mu)\big|+\\ &\big|\Delta^\nu_C x_1(s+\mu-\nu+1)-\Delta^\nu_C x_2(s+\mu-\nu+1)\big|\Big]\\ \leq&\; \frac{L\,\Gamma(T+\mu+3)}{\Gamma(\mu+1)\Gamma(T+3)}\,\Bigg\{ \big\|x_1-x_2\big\| + \big\|\Delta^\nu_C x_1-\Delta^\nu_C x_2\big\|\Bigg\}, \end{align*} |
and hence
\begin{align*} &\Big|\,{\widetilde{\mathcal{H}}}[t,x_1(t)]-{\widetilde{\mathcal{H}}}[t,x_2(t)]\,\Big| \\ \leq&\; K_1\,\Big[\big|x_1(t)-x_2(t)\big|+\big|\Delta^\nu_C x_1(t-\nu+1)-\Delta^\nu_C x_2(t-\nu+1)\big|\Big]\\ &\; +\frac{K_1L\,\Gamma(T+\mu+3)}{\Gamma(\mu+1)\Gamma(T+3)}\,\Bigg\{ \big\|x_1-x_2\big\| + \big\|\Delta^\nu_C x_1-\Delta^\nu_C x_2\big\|\Bigg\}\\ = &\; \Theta\,\|x_1-x_2\|_{\mathcal{C}}.\end{align*} |
Next, we define the operator {\mathcal{F}}:\mathcal{C}\longrightarrow\mathcal{C} by
\begin{align} &({\mathcal{F}}x)(t) \\ = & \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,{\widetilde{\mathcal{H}}}\\ & [\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)] \\ & +\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} \frac{(T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}}{\left(\rho_1-1\right)\Gamma(\beta)\Gamma(\alpha)}\,\\ & {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)] \\ & +\sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}\frac{(t-\sigma(s))^{\underline{\beta-1}} (s-\sigma(\xi))^{\underline{\alpha-1}}}{\Gamma(\beta)\Gamma(\alpha)}\,\\ & {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)] , \end{align} | (3.3) |
where
\begin{align} {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi) : = &\; \frac{T+\left(\rho_1-1\right)(t-\alpha-\beta)+2\rho_1}{\Lambda\left(\rho_1-1\right)\Gamma(1-\gamma)\Gamma(\beta-1)\Gamma(\alpha)}\times\\ &\; (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}. \end{align} | (3.4) |
By Lemma 2.3, we find that any solution of the problem (1.4) is the fixed point of the operator {\mathcal{F}} .
Lemma 3.2. Assume that the function {\mathcal{A}}_{\alpha, \beta, \gamma, \rho_1, \rho_2}(t, s, r, \xi) satisfies the following properties:
(A5) {\mathcal{A}}_{\alpha, \beta, \gamma, \rho_1, \rho_2}(t, s, r, \xi) is a continuous function for all (t, s, r, \xi)\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\times{\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\times{\mathbb{N}}_{\alpha-1, T+\alpha+1}\times {\mathbb{N}}_{0, T+2} = :\mathcal{D} , and there exist two constants \; \Omega_1, \Omega_2 > 0 , such that
\begin{align*} \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}\Big| {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\Big|\leq &\; \Omega_1,\\ \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,_t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\Big|\leq &\; \Omega_2, \end{align*} |
where
\begin{align} \Omega_1: = &\; \left[\frac{\left(1+|\rho_1-1|\right)T+2p_1}{|\rho_1-1||\Lambda|}\right]\frac{\Gamma(T+\gamma+3)\Gamma(T+\alpha+\beta+1)}{\Gamma(2-\gamma)\Gamma(\alpha+\beta)[\Gamma(T+2)]^2} , \end{align} | (3.5) |
\begin{align} \Omega_2: = &\; \left|\frac{1-\alpha-\beta}{\Lambda} \right| \frac{\Gamma(T-\gamma+3)[\Gamma(T+\alpha+\beta+1)]^2}{ \Gamma(2-\nu) \Gamma(2-\gamma)\Gamma(\alpha+\beta) [\Gamma(T+2)]^2\Gamma(T+\alpha+\beta-\nu)}, \end{align} | (3.6) |
and \; _t\Delta_C^{\nu}\; is the Caputo fractional difference with respect to t .
Proof. It is obvious that {\mathcal{A}}_{\alpha, \beta, \gamma, \rho_1, \rho_2}(t, s, r, \xi) is a continuous function for all (t, s, r, \xi)\in {\mathcal{D}} . Next, we consider
\begin{align*} & \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ \leq&\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\, \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ = &\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\,\Bigg|\, \frac{T+\left(\rho_1-1\right)(t-\alpha-\beta)+2\rho_1}{\Lambda\left(\rho_1-1\right)\Gamma(1-\gamma)\Gamma(\beta-1) \Gamma(\alpha)}\,\Bigg|\times\nonumber \\ &\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \\ &(T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left[\frac{\left(1+|\rho_1-1|\right)T+2p_1}{|\rho_1-1||\Lambda|}\right] \\ &\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left[\frac{\left(1+|\rho_1-1|\right)T+2p_1}{|\rho_1-1||\Lambda|}\right] \\ & \frac{\Gamma(T+\gamma+3)\Gamma(T+\alpha+\beta+1)}{\Gamma(T+2)\Gamma(T+2)\Gamma(2-\gamma)\Gamma(\alpha+\beta)}\; = \; \Omega_1, \end{align*} |
and
\begin{align*} \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}& \big|\,_t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ \leq&\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\, \\ &\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|\,_t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ = &\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\,\\ &\Bigg|\frac{ \sum\limits_{s = \alpha+\beta-2}^{t+\nu-1}(t-\sigma(s))^{\underline{-\nu}} {_s}\Delta \left[ T+(\rho_1-1)(s-\alpha-\beta)+2\rho_1 \right] }{\Lambda\Gamma(1-\nu)\Gamma(1-\gamma)\Gamma(\beta-1)\Gamma(\alpha)}\Bigg|\times\\ &\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \\ &(T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\nonumber \\ \leq&\; \Bigg|\frac{ \sum\limits_{s = \alpha+\beta-2}^{T+\alpha+\beta+\nu-1}(T+\alpha+\beta-\sigma(s))^{\underline{-\nu}}(1-\alpha-\beta)}{\Lambda\Gamma(1-\nu)}\Bigg| \\ & \,\frac{\Gamma(T-\gamma+3)\Gamma(T+\alpha+\beta+1)}{[\Gamma(T+2)]^2\Gamma(2-\gamma)\Gamma(\alpha+\beta)}\nonumber \\ \leq&\; \left|\frac{1-\alpha-\beta}{\Lambda} \right| \\ &\frac{\Gamma(T-\gamma+3)[\Gamma(T+\alpha+\beta+1)]^2}{ \Gamma(2-\nu) \Gamma(2-\gamma)\Gamma(\alpha+\beta) [\Gamma(T+2)]^2\Gamma(T+\alpha+\beta-\nu)}\; = \; \Omega_2. \end{align*} |
Thus, the condition \textbf{(A5)} holds.
In what follows, we consider the existence and uniqueness of a solution to the problem (1.4) using the Banach contraction principle.
Theorem 3.1. Assume that (A1)–(A5) hold. If
\begin{equation} \Theta \big[\, \Omega_1+\Omega_2+\phi_1+\phi_2 \,\big]\; < \; 1, \end{equation} | (3.7) |
where \Omega_1, \Omega_2 are defined as (3.5)–(3.6), and
\begin{align} \phi_1 = &\left[\frac{1+|\rho_1-1|}{|\rho_1-1|}\right] \frac{\Gamma(T+\alpha+\beta+1)}{\Gamma(T+1)\Gamma(\alpha+\beta+1)}, \end{align} | (3.8) |
\begin{align} \phi_2 = &\frac{\Gamma(T+2)\Gamma(T+\alpha+\beta+\nu)} {\Gamma(2-\nu)\Gamma(\alpha+\beta+\nu+1)\left[\Gamma(T+\nu+1)\right]^2}, \end{align} | (3.9) |
then, the problem (1.4) has a unique solution in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}.
Proof. Choose a constant R satisfying
\begin{equation*} R\geq\frac{K_2 \big(\, \Omega_1+\Omega_2+\phi_1+\phi_2 \,\big) }{1-\Theta \big(\, \Omega_1+\Omega_2+\phi_1+\phi_2 \,\big) }. \end{equation*} |
We will show that {\mathcal{F}}(B_R)\subset B_R, where B_R = \{x \in \mathcal{C}: \|x\|_{\mathcal{C}} \leq R\} . For all x\in B_R, we have
\begin{align*} &|({\mathcal{F}}x)(t)| \nonumber\\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\Big|\,\\ &\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\nonumber \\ &\; \; \; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \nonumber \\ &\; +\Bigg|\,\frac{1}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\\ &\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times \nonumber \\ &\; \; \; \; \Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \nonumber \\ &\; +\frac{1}{\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}(t-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\\ &\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; \; \; \; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \,\Bigg|\\ \leq&\; \left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\Omega_1 +\left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\left(\frac{1+|\rho_1-1|}{\Gamma(\beta)\Gamma(\alpha)\,|\rho_1-1|}\right)\times\nonumber \\ &\; \,\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left(\Theta\,\|x\|_{\mathcal{C}}+K_2\right) \Bigg\{ \Omega_1+\left(\frac{1+|\rho_1-1|}{|\rho_1-1|}\right) \frac{\Gamma(T+\alpha+\beta+1)}{\Gamma(T+1)\Gamma(\alpha+\beta+1)} \Bigg\}\\ \leq&\; \left(\Theta\,R+K_2\right)\big[\,\Omega_1+\phi_1\,\big], \end{align*} |
and
\begin{align*} &|(\Delta^\nu_C {\mathcal{F}}x)(t-\nu+1)| \\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|_t\Delta^\nu_C\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\big|\,\\ &\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\nonumber \\ &\; \; \; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \nonumber \\ & +\frac{1}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha+\beta-2}^{t+\nu-1} (t-\sigma(s))^{\underline{-\nu}}\Delta_s\,\Bigg[\sum\limits_{r = \alpha}^{s-\beta}\sum\limits_{\xi = 0}^{r-\alpha}(s-\sigma(r))^{\underline{\beta-1}}\times\\ &\; \; \; (r-\sigma(\xi))^{\underline{\alpha-1}}\,\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big|\nonumber \\ &\; \; \; +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \,\Bigg]\\ \leq&\; \left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\Omega_2+\frac{\left(\Theta\|x\|_{\mathcal{C}}+K_2\right)}{\Gamma(1-\nu) \Gamma(\beta)\Gamma(\alpha)}\times\nonumber \\ & \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta+\nu-1} \sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}(T+\alpha+\beta-\sigma(s))^{\underline{-\nu}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\Bigg\{\Omega_2 + \frac{\Gamma(T+2)\Gamma(T+\alpha+\beta+\nu)} {\Gamma(2-\nu)\Gamma(\alpha+\beta+\nu+1)\left[\Gamma(T+\nu+1)\right]^2} \Bigg\}\nonumber \\ \leq&\; \left(\Theta R+K_2\right)\,\big[\,\Omega_2+\phi_2\,\big].\nonumber \end{align*} |
Thus,
\| {\mathcal{F}}x \|_{\mathcal{C}}\; \leq\; \left(\Theta R+K_2\right)\,\big[\,\Omega_1+\Omega_2+\phi_1+\phi_2\,\big]\; \leq\; R, |
and hence, {\mathcal{F}}(B_R)\subset B_R .
We next show that \mathcal{F} is a contraction. For all x, y\in \mathcal{C} and for each t\in \mathbb{N}_{\alpha+\beta-2, T+\alpha+\beta} , we have
\begin{align*} &\; \big|({\mathcal{F}}x)(t)-({\mathcal{F}}y)(t)\big|\\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\Big|\,\\ &\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big| \nonumber \\ &\; +\frac{1}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times \nonumber \\ &\; \; \; \; \Big| \,\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big| \nonumber \\ &\; +\frac{1}{\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}(t-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\\ &\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,\\ &{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\Big|\,\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big| \nonumber \\ &\; +\left(\frac{1+|\rho_1-1|}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\right)\,\\ &\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times \nonumber \\ &\; \; \; \; \,\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\\ \leq&\; \Theta\,\|x-y\|_{\mathcal{C}}\Omega_1 +\Theta\,\|x-y\|_{\mathcal{C}}\left(\frac{1+|\rho_1-1|}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\right)\times\nonumber \\ &\; \sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\nonumber \\ \leq&\; \Theta\,\big[\,\Omega_1+\phi_1\,\big]\,\|x-y\|_{\mathcal{C}}, \end{align*} |
and
\begin{align*} &\; |(\Delta^\nu_C {\mathcal{F}}x)(t-\nu+1)| \\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|_t\Delta^\nu_C\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\big|\,\\ &\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\nonumber \\ & \; +\frac{1}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\,\sum\limits_{s = \alpha+\beta-1}^{t+\nu-1} \\ & \sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}(t-\sigma(s))^{\underline{-\nu}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}\times\\ &\; \; \; \; \Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\\ \leq&\; \Theta\,\|x-y\|_{\mathcal{C}} \,\Omega_2+\Theta\,\|x-y\|_{\mathcal{C}}\,\frac{1}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\times\nonumber \\ & \; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta+\nu-1} \sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}(T+\alpha+\beta-\sigma(s))^{\underline{-\nu}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \Theta\,\big[\,\Omega_2+\phi_2\,\big]\,\|x-y\|_{\mathcal{C}}. \end{align*} |
Thus,
\begin{equation} \nonumber \|{\mathcal{F}}x-{\mathcal{F}}y\|_{\mathcal{C}}\leq \Theta\,\big[\,\Omega_1+\Omega_2+\phi_1+\phi_2\,\big]\,\|x-y\|_{\mathcal{C}}\leq \|x-y\|_{\mathcal{C}}. \end{equation} |
Therefore, {\mathcal{F}} is a contraction. Hence, by using Banach fixed point theorem, we get that {\mathcal{F}} has a fixed point which is a unique solution of the problem (1.4).
We next deduce the existence of a solution to (1.4) by using the following Schaefer's fixed point theorem.
Theorem 3.2. [45] (Arzelá-Ascoli Theorem) A set of functions in C[a, b] with the sup norm is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b] .
Theorem 3.3. [45] If a set is closed and relatively compact, then it is compact.
Theorem 3.4. [46] Let X be a Banach space and T: X\rightarrow X be a continuous and compact mapping. If the set
\{x\in X\; :\; x = \lambda T(x),\; {{for \;some}}\; \lambda\in(0, 1) \} |
is bounded, then T has a fixed point.
Theorem 3.5. Suppose that (A1)–(A5) hold. Then, the problem (1.4) has at least one solution on \mathbb{N}_{\alpha+\beta-2, T+\alpha+\beta} .
Proof. We shall use Schaefer's fixed point theorem to prove that the operator F defined by (3.3) has a fixed point. It is clear that {\mathcal{F}}:\mathcal{C}\longrightarrow\mathcal{C} is completely continuous. So, it remains to show that the set
E = \Big\lbrace u\in C({\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}):u = \lambda {\mathcal{F}}u\; {\rm{for \;some\; }} 0 < \lambda < 1\Big\rbrace \rm{\; \; is \;bounded.} |
Let u\in E . Then,
u(t) = \lambda (Fu)(t)\; {\rm{\; \; for \;some\; }}\;0 < \lambda < 1. |
Thus, for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} , we have
\begin{align*} &|\lambda({\mathcal{F}}x)(t)| \nonumber\\ \leq&\; \lambda\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\\ &\Big|\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big| \nonumber \\ &\; +\frac{\lambda}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times\\ &\; \; \; \; \; \big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big| \nonumber \\ &\; +\frac{\lambda}{\Gamma(\beta)\Gamma(\alpha)} \sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}(t-\sigma(s))^{\underline{\beta-1}} \\ & (s-\sigma(\xi))^{\underline{\alpha-1}}\,\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big|\\ < &\; \left(\Theta\,R+K_2\right)\big[\,\Omega_1+\phi_1\,\big], \end{align*} |
and
\begin{align*} &|\lambda(\Delta^\nu_C {\mathcal{F}}x)(t-\nu+1)| \\ \leq&\; \lambda\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|_t\Delta^\nu_C\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\big|\,\\ &\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big|\nonumber \\ & +\frac{\lambda}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha+\beta-2}^{t+\nu-1} (t-\sigma(s))^{\underline{-\nu}}\Delta_s\,\\ &\Bigg[\sum\limits_{r = \alpha}^{s-\beta}\sum\limits_{\xi = 0}^{r-\alpha}(s-\sigma(r))^{\underline{\beta-1}}\times\\ &\; \; \; (r-\sigma(\xi))^{\underline{\alpha-1}}\,\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big|\,\Bigg]\\ < &\; \left(\Theta R+K_2\right)\,\big[\,\Omega_2+\phi_2\,\big].\nonumber \end{align*} |
Hence,
\big\|\lambda({\mathcal{F}}x)(t)\big\|\; < \; {\widetilde{\Theta}}_{R}\,\big[\,\Omega_1+\Omega_2+\phi_1+\phi_2\,\big]\; < \; R. |
This shows that E is bounded. By Schaefer's fixed point theorem, we conclude that the problem (1.4) has at least one solution.
In the sequel, we discuss the positivity of the obtained solution x\in\mathcal{C} . To this end, we add adequate assumptions and provide the following theorem.
We note that a positive solution of (1.4) in \mathcal{C} is a function x(t) > 0 which has \Delta^\nu_C\, x(t-\nu+1) > 0 for all t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} .
Theorem 3.6. Suppose that (A1)–(A5) are fulfilled in {\mathbb{R}^+} , where \; \mathcal{H}\in C\big({\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} \times {\mathbb{R}}^+\times {\mathbb{R}}^+\times {\mathbb{R}}^+, \mathbb{R}^{+}\big)\; and \; \varphi \in C\big(\odot\times {\mathbb{R}^{+}}\times {\mathbb{R}^{+}}, {\mathbb{R}}^{+}\big) . If condition (3.7) is satisfied, for \; \alpha, \beta, \gamma, \nu, \mu \in (0, 1), and in addition
\rho_1 > 1 \; \; {{and}}\; \; \rho_2 > \frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)}, |
then a solution in \mathcal{C} of the problem (1.4) is positive.
Proof. By Theorem 3.1 and the fact that, for \; \rho_1 > 1 \; \; \rm{and}\; \; \rho_2 > \frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)} , the condition (3.7) is a particular case, the problem (1.4) admits a unique solution in \mathcal{C} .
Moreover, since \; \alpha, \beta, \gamma, \nu, \mu \in (0, 1) , we obtain for each (t, s, r, \xi)\in {\mathcal{D}} ,
\begin{align*} {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi) = &\; \Bigg[ \frac{ T+(\rho_1-1)(t-\alpha-\beta)+2\rho_1}{(\rho_1-1)\left(\rho_2-\frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)}\right)\Gamma(1-\gamma)\Gamma(\beta)\Gamma(\alpha)}\Bigg] \times\\ &\; \; (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\; > \; 0, \end{align*} |
and
\begin{align*} &\; _t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\nonumber\\ = &\; \sum\limits_{s = \alpha+\beta-2}^{t+\nu-1} \Bigg[ \frac{(t-\sigma(s))^{\underline{-\nu}}(s-\alpha-\beta) }{\left(\rho_2-\frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)}\right)\Gamma(1-\nu)\Gamma(1-\gamma)\Gamma(\beta)\Gamma(\alpha)}\Bigg]\times\\ &\; \; (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\; > \; 0. \end{align*} |
It results that the unique solution x(t) of problem (1.4) which satisfies with (3.3) is positive for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} .
In this section, we present an example to illustrate our results.
Example. Consider the following fractional difference boundary value problem:
\begin{align} {^C}\Delta^{\frac{2}{3}}_{\frac{2}{3}}\,{^C}\Delta^{\frac{5}{6}}_{\frac{1}{2}}x(t) = &\frac{x\left(t+\frac{1}{2}\right)}{\left((t+\frac{1}{2})+5\right)^5\big[1+|x\left(t+\frac{1}{2}\right)|\big]} +\\ &\frac{{^C}\Delta^{\frac{1}{2}}_{\frac{1}{2}} x\left(t-1\right)}{\left((t+\frac{1}{2})+5\right)^5\big[1+|{^C}\Delta^{\frac{1}{2}}_{\frac{1}{2}} x\left(t-1\right)|\big]}\; \; \\ &+\Psi^{\frac{1}{4}}\left(t+\frac{1}{2},x\left( t+\frac{1}{2}\right) \right),\quad t\in N_{0,4},\\ 2x\left(-\frac{1}{2}\right) = &\; x\left(\frac{11}{2}\right),\; \; \; \; \; 20\Delta^{\frac{1}{3}}x\left(\frac{1}{6}\right) = \Delta^{\frac{1}{3}}x\left(\frac{37}{6}\right), \end{align} | (4.1) |
\begin{array}{l} {\rm{where\; \; \; }}\;\Psi^{\frac{1}{4}}\left(t+\frac{1}{2},x\left( t+\frac{1}{2}\right) \right) =\\ \sum\limits_{s = -\frac{3}{4}}^{t-\frac{1}{4}}\frac{(t-\sigma(s))^{-\frac{3}{4}}}{\Gamma\left(\frac{1}{4}\right)}\Bigg[\frac{e^{-(s+\frac{1}{4})}\big[x\left(s+\frac{1}{4}\right)+1\big]}{\left((t+\frac{1}{2})+5\right)^2\big[3+|x(s+\frac{1}{4})|\big]} \\ + \frac{e^{-(s+\frac{1}{4})}\big[{^C}\Delta^{\frac{1}{2}}_{-\frac{1}{2}} x\left(s+\frac{3}{4}\right)+1\big]}{\left((t+\frac{1}{2})+5\right)^2\big[3+|{^C}\Delta^{\frac{1}{2}}_{-\frac{1}{2}} x(s+\frac{3}{4})|\big]}\Bigg]. \end{array} |
By letting \; \alpha = \frac{2}{3}, \; \beta = \frac{5}{6}, \; \gamma = \frac{1}{3}, \; \nu = \frac{1}{2}, \; \mu = \frac{1}{4}, \; T = 4, \; \rho_1 = 2, \; \rho_2 = 20 , {\mathcal{H}}[t, x, y, z] = \frac{1}{(t+5)^5}\left[\frac{x}{1+|x|} + \frac{y}{1+|y|} + z \right] {\rm{\; and }}\; \varphi[t+\frac{1}{2}, s+\frac{1}{4}, x, y] = \frac{e^{-s}}{(t+5)^2}\left[\frac{x+1}{3+|x|} + \frac{y+1}{3+|y|} \right], we can show that
\Lambda\approx16.0098,\; \; \Theta\approx0.000199,\; \; {\Omega_1\approx35.0489,\; \; \Omega_2\approx19.7664},\\ \Phi_1\approx18.0469{\rm{\; \; \; and \; \; }}\;\Phi_2\approx2.9653. |
Observe that (A1)–(A5) hold for all x_i, y_i, z_i\in \mathbb{R}, \; i = 1, 2 , and for each t\in \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} , we obtain
\Big|{\mathcal{H}}[t,x_1,y_1,z_1]-{\mathcal{H}}[t,x_2,y_2,z_2]\Big|\leq \frac{1}{(t+5)^5}\Big[|x_1-x_2|+|y_1-y_2|+|z_1-z_2|\Big]. |
So, K_1 = \left(\frac{2}{11}\right)^5\approx 0.000199, \; and \; K_2 = \max\limits_{t\in \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}}}{\widetilde{\mathcal{H}}[t, 0]}\approx0.0000394.
Next, for all x_i, y_i\in \mathbb{R}, \; i = 1, 2, and each (t, s)\in \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}}\times \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} , we obtain
\Big|\varphi[t,s+\frac{3}{4},x_1,y_1]-{\mathcal{H}}[t,s+\frac{3}{4},x_2,y_2]\Big|\leq \frac{e^{-s}}{(t+5)^5}\Big[|x_1-x_2|+|y_1-y_2|\Big]. |
So, K_2 = e^{-\frac{1}{2}}\left(\frac{2}{11}\right)^5\approx 0.000121.
Finally, we can show that
\Theta\left[\Omega_1+\Omega_2+\Phi_1+\Phi_2\right]\approx {0.0151} < 1. |
Hence, by Theorem 3.1, the problem (4.1) has a unique solution.
Moreover, by Theorem 3.5, the problem (4.1) has at least one solution on \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} .
Furthermore, {\mathcal{H}}, \varphi \in {\mathbb{R}}^+, and
\; \rho_1 = 2 > 1,\; \; \rho_2 = 20 > \frac{\Gamma\left(\frac{25}{3}\right)}{\Gamma\left(\frac{5}{3}\right)\Gamma\left(7\right)}\approx 15.293. |
Therefore, the solution of the problem (4.1) is positive on \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} by Theorem 3.6.
In the present research, we considered a sequential nonlinear Caputo fractional sum-difference equation with fractional difference boundary conditions. Notice that the unknown function of this problem is in the form of Caputo fractional difference and fractional sum with different orders, which expands the research scope of the problems in [42,43,44]. Existence results are established by a Banach contraction principle and Schaefer's fixed point theorem. {The results of the paper are new and enrich the subject of boundary value problems for Caputo fractional difference-sum equations. In future work, we may extend this work by considering new boundary value problems.
This research was funded by the National Science, Research and Innovation Fund (NSRF) and Suan Dusit University with Contract no. 64-FF-06.
The authors declare no conflict of interest.
[1] |
A. M. Wazwaz, Painlevé integrability and lump solutions for two extended (3+1)- and (2+1)-dimensional Kadomtsev–Petviashvili equations, Nonlinear Dyn., 111 (2023), 3623–3632. https://doi.org/10.1007/s11071-022-08074-2 doi: 10.1007/s11071-022-08074-2
![]() |
[2] |
A. M. Wazwaz, Extended (3+1)-dimensional Kairat-Ⅱ and Kairat-X equations: Painleve integrability, multiple soliton solutions, lump solutions, and breather wave solutions, Int. J. Numer. Method. H., 34 (2024), 2177–2194. https://doi.org/10.1108/HFF-01-2024-0053 doi: 10.1108/HFF-01-2024-0053
![]() |
[3] |
K. Hosseini, S. Salahshour, D. Baleanu, M. Mirzazadeh, K. Dehingia, A new generalized KdV equation: Its lump-type, complexiton and soliton solutions, Int. J. Mod. Phys. B, 36 (2022), 2250229. https://doi.org/10.1142/S0217979222502290 doi: 10.1142/S0217979222502290
![]() |
[4] |
W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simulat., 43 (1997), 13–27. https://doi.org/10.1016/S0378-4754(96)00053-5 doi: 10.1016/S0378-4754(96)00053-5
![]() |
[5] |
A. M. Wazwaz, S. A. El-Tantawy, Solving the (3+1)-dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota's method, Nonlinear Dyn., 88 (2017), 3017–3021. https://doi.org/10.1007/s11071-017-3429-x doi: 10.1007/s11071-017-3429-x
![]() |
[6] |
K. Hosseini, R. Ansari, R. Pouyanmehr, F. Samadani, M. Aligoli, Kinky breather-wave and lump solutions to the (2+1)-dimensional Burgers equations, Anal. Math. Phys., 10 (2020), 65. https://doi.org/10.1007/s13324-020-00405-z doi: 10.1007/s13324-020-00405-z
![]() |
[7] |
Y. Zhou, W. X. Ma, Complexiton solutions to soliton equations by the Hirota method, J. Math. Phys., 58 (2017), 101511. https://doi.org/10.1063/1.4996358 doi: 10.1063/1.4996358
![]() |
[8] |
J. Weiss, M. Tabor, G. Carnevale, The Painlevé property for partial differential equations, J. Math. Phys., 24 (1983), 522–526. https://doi.org/10.1063/1.525721 doi: 10.1063/1.525721
![]() |
[9] |
Y. L. Ma, A. M. Wazwaz, B. Q. Li, A new (3+1)-dimensional Sakovich equation in nonlinear wave motion: Painlevé integrability, multiple solitons and soliton molecules, Qual. Theory Dyn. Syst., 21 (2022), 158. https://doi.org/10.1007/s12346-022-00689-5 doi: 10.1007/s12346-022-00689-5
![]() |
[10] |
J. Chu, X. Chen, Y. Liu, Integrability, lump solutions, breather solutions and hybrid solutions for the (2+1)-dimensional variable coefficient Korteweg-de Vries equation, Nonlinear Dyn., 112 (2024), 619–634. https://doi.org/10.1007/s11071-023-09062-w doi: 10.1007/s11071-023-09062-w
![]() |
[11] |
L.L. Zhang, X. Lü, S.Z. Zhu, Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient Boussinesq Equation, Int. J. Theor. Phys., 63 (2024), 160. https://doi.org/10.1007/s10773-024-05670-3 doi: 10.1007/s10773-024-05670-3
![]() |
[12] |
E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258–277. https://doi.org/10.2307/1968431 doi: 10.2307/1968431
![]() |
[13] |
F. Lambert, I. Loris, J. Springael, R. Willox, On a direct bilinearization method: Kaup's higher-order water wave equation as a modified nonlocal Boussinesq equation, J. Phys. A: Math. Gen., 27 (1994), 5325. https://doi.org/10.1088/0305-4470/27/15/028 doi: 10.1088/0305-4470/27/15/028
![]() |
[14] |
F. Lambert, J. Springael, Construction of Bäcklund transformations with binary Bell polynomials, J. Phys. Soc. Jpn., 66 (1997), 2211–2213. https://doi.org/10.1143/JPSJ.66.2211 doi: 10.1143/JPSJ.66.2211
![]() |
[15] |
Y. Zhang, W. W. Wei, T. F. Cheng, Y. Song, Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients, Chinese Phys. B, 20 (2011), 110204. https://doi.org/10.1088/1674-1056/20/11/110204 doi: 10.1088/1674-1056/20/11/110204
![]() |
[16] |
Y. H. Wang, C. Temuer, Y. Q. Yang, Integrability for the generalised variable-coefficient fifth-order Korteweg-de Vries equation with Bell polynomials, Appl. Math. Lett., 29 (2014), 13–19. https://doi.org/10.1016/j.aml.2013.10.007 doi: 10.1016/j.aml.2013.10.007
![]() |
[17] |
U. K. Mandal, A. Das, W. X. Ma, Integrability, breather, rogue wave, lump, lump-multi-stripe, and lump-multi-soliton solutions of a (3+1)-dimensional nonlinear evolution equation, Phys. Fluids, 36 (2024), 037151. https://doi.org/10.1063/5.0195378 doi: 10.1063/5.0195378
![]() |
[18] |
K. Hosseini, F. Alizadeh, E. Hinçal, M. Ilie, M. S. Osman, Bilinear Bäcklund transformation, Lax pair, Painlevé integrability, and different wave structures of a 3D generalized KdV equation, Nonlinear Dyn., 112 (2024), 18397–18411. https://doi.org/10.1007/s11071-024-09944-7 doi: 10.1007/s11071-024-09944-7
![]() |
[19] |
T. Umar, K. Hosseini, B. Kaymakamzade, S. Boulaaras, M. S. Osman, Hirota D-operator forms, multiple soliton waves, and other nonlinear patterns of a 2D generalized Kadomtsev–Petviashvili equation, Alex. Eng. J., 108 (2024), 999–1010. https://doi.org/10.1016/j.aej.2024.09.070 doi: 10.1016/j.aej.2024.09.070
![]() |
[20] |
E. Asadi, K. Hosseini, M. Madadi, Superposition of soliton, breather and lump waves in a non-Painleve integrabale extension of the Boiti–Leon–Manna–Pempinelli equation, Phys. Scr., 99 (2024), 125242. https://doi.org/10.1088/1402-4896/ad8f74 doi: 10.1088/1402-4896/ad8f74
![]() |
[21] |
A. M. Wazwaz, N-soliton solutions for the combined KdV–CDG equation and the KdV–Lax equation, Appl. Math. Comput., 203 (2008), 402–407. https://doi.org/10.1016/j.amc.2008.04.047 doi: 10.1016/j.amc.2008.04.047
![]() |
[22] |
A. Biswas, G. Ebadi, H. Triki, A. Yildirim, N. Yousefzadeh, Topological soliton and other exact solutions to KdV–Caudrey–Dodd–Gibbon equation, Results Math., 63 (2013), 687–703. https://doi.org/10.1007/s00025-011-0226-6 doi: 10.1007/s00025-011-0226-6
![]() |
[23] |
H. Ma, H. Huang, A. Deng, Soliton molecules, asymmetric solitons and hybrid solutions for KdV–CDG equation, Partial Differ. Equ. Appl. Math., 5 (2022), 100214. https://doi.org/10.1016/j.padiff.2021.100214 doi: 10.1016/j.padiff.2021.100214
![]() |
[24] | K. Hosseini, A. Akbulut, D. Baleanu, S. Salahshour, M. Mirzazadehh, K. Dehingia, The Korteweg-de Vries–Caudrey–Dodd–Gibbon dynamical model: Its conservation laws, solitons, and complexiton, J. Ocean Eng. Sci., 2022. In press. https://doi.org/10.1016/j.joes.2022.06.003 |
[25] |
H. Almusawa, A. Jhangeer, Exploring wave interactions and conserved quantities of KdV–Caudrey–Dodd–Gibbon equation using Lie theory, Mathematics, 12 (2024), 2242. https://doi.org/10.3390/math12142242 doi: 10.3390/math12142242
![]() |
[26] | M. D. Kruskal, N. Joshi, R. Halburd, Analytic and asymptotic methods for nonlinear singularity analysis: A review and extensions of tests for the Painlevé property, In: Integrability of nonlinear systems, Berlin, Heidelberg: Springer, 1997,171–205. https://doi.org/10.1007/BFb0113696 |
[27] |
D. Baldwin, W. Hereman, Symbolic software for the Painlevé test of nonlinear ordinary and partial differential equations, J. Nonlinear Math. Phys., 13 (2006), 90–110. https://doi.org/10.2991/jnmp.2006.13.1.8 doi: 10.2991/jnmp.2006.13.1.8
![]() |
[28] |
J. Hietarinta, A search for bilinear equations passing Hirota's three soliton condition. Ⅰ. KdV type bilinear equations, J. Math. Phys., 28 (1987), 1732–1742. https://doi.org/10.1063/1.527815 doi: 10.1063/1.527815
![]() |
[29] |
W. X. Ma, Comment on the 3+1 dimensional Kadomtsev–Petviashvili equations, Commun. Nonlinear Sci., 16 (2011), 2663–2666. https://doi.org/10.1016/j.cnsns.2010.10.003 doi: 10.1016/j.cnsns.2010.10.003
![]() |
[30] |
W. X. Ma, N-soliton solution of a combined pKP–BKP equation, J. Geom. Phys., 165 (2021), 104191. https://doi.org/10.1016/j.geomphys.2021.104191 doi: 10.1016/j.geomphys.2021.104191
![]() |
[31] |
W. X. Ma, Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A, 301 (2002), 35–44. https://doi.org/10.1016/S0375-9601(02)00971-4 doi: 10.1016/S0375-9601(02)00971-4
![]() |
[32] |
F. Alizadeh, K. Hosseini, S. Sirisubtawee, E. Hinçal, Classical and nonclassical Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to a 3D-modified nonlinear wave equation in liquid involving gas bubbles, Bound. Value Probl., 2024 (2024), 111. https://doi.org/10.1186/s13661-024-01921-8 doi: 10.1186/s13661-024-01921-8
![]() |