This paper investigates the (3+1)-dimensional nonlinear Schrö dinger equation, incorporating cross-spatial dispersion and a generalized form of Kudryashov's self-phase modulation. Using the generalized Jacobi elliptic method, we systematically derive novel soliton solutions expressed in terms of Jacobi elliptic and Weierstrass elliptic functions, providing deeper insights into wave dynamics in nonlinear optical media. The obtained solutions exhibit diverse structural transformations governed by the parameter (n) known as full nonlinearity, encompassing optical bullet solutions, optical domain wall solutions, singular solitons, and periodic solutions. Furthermore, we discuss the potential experimental realization of these solitonic structures in ultrafast fiber lasers and nonlinear optical systems, drawing connections to recent experimental findings. To facilitate a comprehensive understanding of their physical properties, we present detailed three-dimensional (3D), two-dimensional (2D), and contour visualizations, highlighting the interplay among dispersion, nonlinearity, and self-modulation effects. These results offer new perspectives on soliton interactions and have significant implications for optical communication, signal processing, and nonlinear wave phenomena.
Citation: Nafissa Toureche Trouba, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Yakup Yildirim, Huiying Xu, Xinzhong Zhu. Novel solitary wave solutions of the (3+1)–dimensional nonlinear Schrödinger equation with generalized Kudryashov self–phase modulation[J]. AIMS Mathematics, 2025, 10(2): 4374-4411. doi: 10.3934/math.2025202
[1] | Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy b-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885 |
[2] | Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer . Multivalued contraction maps on fuzzy b-metric spaces and an application. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330 |
[3] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[4] | Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović . A fixed point theorem in strictly convex b-fuzzy metric spaces. AIMS Mathematics, 2023, 8(9): 20989-21000. doi: 10.3934/math.20231068 |
[5] | Samina Batul, Faisar Mehmood, Azhar Hussain, Reny George, Muhammad Sohail Ashraf . Some results for multivalued mappings in extended fuzzy b-metric spaces. AIMS Mathematics, 2023, 8(3): 5338-5351. doi: 10.3934/math.2023268 |
[6] | Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen . Generalized common best proximity point results in fuzzy multiplicative metric spaces. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299 |
[7] | Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular b-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107 |
[8] | Müzeyyen Sangurlu Sezen . Interpolative best proximity point results via γ-contraction with applications. AIMS Mathematics, 2025, 10(1): 1350-1366. doi: 10.3934/math.2025062 |
[9] | Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112 |
[10] | Jerolina Fernandez, Hüseyin Işık, Neeraj Malviya, Fahd Jarad . Nb-fuzzy metric spaces with topological properties and applications. AIMS Mathematics, 2023, 8(3): 5879-5898. doi: 10.3934/math.2023296 |
This paper investigates the (3+1)-dimensional nonlinear Schrö dinger equation, incorporating cross-spatial dispersion and a generalized form of Kudryashov's self-phase modulation. Using the generalized Jacobi elliptic method, we systematically derive novel soliton solutions expressed in terms of Jacobi elliptic and Weierstrass elliptic functions, providing deeper insights into wave dynamics in nonlinear optical media. The obtained solutions exhibit diverse structural transformations governed by the parameter (n) known as full nonlinearity, encompassing optical bullet solutions, optical domain wall solutions, singular solitons, and periodic solutions. Furthermore, we discuss the potential experimental realization of these solitonic structures in ultrafast fiber lasers and nonlinear optical systems, drawing connections to recent experimental findings. To facilitate a comprehensive understanding of their physical properties, we present detailed three-dimensional (3D), two-dimensional (2D), and contour visualizations, highlighting the interplay among dispersion, nonlinearity, and self-modulation effects. These results offer new perspectives on soliton interactions and have significant implications for optical communication, signal processing, and nonlinear wave phenomena.
Fixed point theory plays a fundamental role in mathematics and applied science, such as optimization, mathematical models and economic theories. Also, this theory has been applied to show the existence and uniqueness of the solutions of differential equations, integral equations and many other branches of mathematics, see [1,2]. A prominent result in fixed point theory is the Banach contraction principle [3]. Since the appearance of this principle, there has been a lot of activity in this area. Bakhtin [4] in 1989 introduced the notion of a b-metric space (Bms). Shoaib et. al [5] proved certain fixed point results in rectangular metric spaces. Multivalued mappings in various types of metric spaces have been extensively studied by many researchers to establish fixed point results and their applications, see for instance [6,7,8,9,10,11,12].
In 1965, Zadeh [13] introduced the concept of a fuzzy set theory to deal with the unclear or inexplicit situations in daily life. Using this theory, Kramosil and Michálek [14] defined the concept of a fuzzy metric space (Fms). Grabiec [15] gave contractive mappings on a Fms and extended fixed point theorems of Banach and Edelstein in such a space. Successively, George and Veeramani [16] slightly modified the notion of a Fms introduced by Kramosil and Michálek [14] and then obtained a Hausdorff topology and a first countable topology on it. Many fixed point results have been established in a Fms. For instance, see [17,18,19,20,21,22,23,24,25] and the references therein. Recently, some coupled fuzzy fixed-point results on closed ball are established in fuzzy metric spaces [26]. The notion of generalized fuzzy metric spaces is studied in [27].
The notion of a fuzzy b-metric space (Fbms) was defined in [28]. The notion of a Hausdorff Fms is introduced in [29]. Fixed point theory for multivalued mapping in fuzzy metric spaces has been extended in many directions. For a multivalued mapping (Mvp) in a complete Fms, some fixed point results are establish in [30]. Some fixed point results for a Mvp in a Hausdorff fuzzy b-metric space (Hfbms) are proved in [31]. In this article, we prove some fixed point results for a Mvp using Geraghty type contractions in a Hfbms. Results in [31,32] and [30] turn out to be special cases of our results.
Throughout the article, ℧ refers to a non-empty set, N represents the set of natural numbers, R corresponds to the collection of real numbers, CB(℧) and ˆC0(℧) represent the collection of closed and bounded subsets and compact subsets of ℧, respectively.
Let us have a look at some core concepts that will be helpful for the proof of our main results.
Definition 1.1. [33] For a real number b≥1, the triplet (℧,Θfb,∗) is called a Fbms on ℧ if for all ψ1,ψ2,ψ3∈℧ and γ>0, the following axioms hold, where ∗ is a continuous t-norm and Θfb is a fuzzy set on ℧×℧×(0,∞):
[Fb1:] Θfb(ψ1,ψ2,γ)>0;
[Fb2:] Θfb(ψ1,ψ2,γ)=1 if and only if ψ1=ψ2;
[Fb3:] Θfb(ψ1,ψ2,γ)=Θfb(ψ2,ψ1,γ);
[Fb4:] Θfb(ψ1,ψ3,b(γ+β))≥Θfb(ψ1,ψ2,γ)∗Θfb(ψ2,ψ3,β) ∀γ,β≥0;
[Fb5:] Θfb(ψ1,ψ2,.):(0,∞)→[0,1] is left continuous.
The notion of a Fms in the sense of George and Veeramani [16] can be obtained by taking b=1 in the above definition.
Example 1.1. For a Bms (℧,Θb,∧), define a mapping Θfb:℧×℧×(0,∞)→[0,1] by
Θfb(ψ1,ψ2,γ)=γγ+db(ψ1,ψ1). |
Then (℧,Θfb,∧) is a Fbms.
Following Grabiec [15], the notions of G-Cauchyness and completeness are defined as follows:
Definition 1.2. [15]
(i) If for a sequence {ψn} in a Fbms (℧,Θfb,∗), there is ψ∈℧ such that
limn→∞Θfb(ψn,ψ,γ)=1,∀γ>0, |
then {ψn} is said to be convergent.
(ii) If for a sequence {ψn} in a Fbms (℧,Θfb,∗), limn→∞Θfb(ψn,ψn+q,γ)=1 then {ψn} is a G-Cauchy sequence for all γ>0 and positive integer q.
(iii) A Fbms is G-complete if every G-Cauchy sequence is convergent.
Definition 1.3. [30] Let B be any nonempty subset of a Fms (℧,Θfb,∗) and γ>0, then we define FΘfb(ϱ1,B,γ), the fuzzy distance between an element ϱ1∈℧ and the subset B, as follows:
FΘfb(ϱ1,B,γ)=sup{Θf(ϱ1,ϱ2,γ):ϱ2∈B}. |
Note that FΘfb(ϱ1,B,γ)=FΘfb(B,ϱ1,α).
Lemma 1.1. [31] Consider a Fbms (℧,Θfb,∗) and let CB(℧) be the collection of closed bounded subsets of ℧. If A∈CB(℧) then ψ∈A if and only if FΘfb(A,ψ,γ)=1∀γ>0.
Definition 1.4. [31] Let (℧,Θfb,∗) be a Fbms. Define HFΘfb on ˆC0(℧)׈C0(℧)×(0,∞) by
HFΘfb(A,B,γ)=min{ infψ∈AFΘfb(ψ,B,γ),infϱ∈BFΘfb(A,ϱ,γ)}, |
for all A,B∈^C0(℧) and γ>0.
For Geraghty type contractions, follow [33] to define a class FΘb of all functions β:[0,∞)→[0,1b) for b≥1, as
FΘb={β:[0,∞)→[0,1b)|limn→∞β(γn)=1b⇒limn→∞γn=0}. | (1.1) |
Lemma 1.2. [31] Let (℧,Θfb,∗) be a G-complete Fbms. If ψ,ϱ∈℧ and for a function β∈FΘfb
Θfb(ψ,ϱ,β(Θfb(ψ,ϱ,γ))γ)≥Θfb(ψ,ϱ,γ), |
then ψ=ϱ.
Lemma 1.3. [31] Let (^C0(℧),HFΘfb,∗) be a Hfbms where (Θfb,∗) is a Fbm on ℧. If for all A,B∈^C0(℧), for each ψ∈A and for γ>0 there exists ϱψ∈B, satisfying FΘfb(ψ,B,γ)=Θfb(ψ,ϱψ,γ), then
HFΘfb(A,B,γ)≤Θfb(ψ,ϱψ,γ). |
In this section, we develop some fixed point results by using the idea of a Hfbms. Furthermore, an example is also presented for a deeper understanding of our results.
Recall that, given a multivalued mapping Ξ:℧→ˆC0(℧), a point ψ is said to be a fixed point of Ξ if ψ∈Ξψ.
Theorem 2.1. Let (℧,Θfb,∗) be a G-complete Fbms and (^C0(℧),HFΘfb,∗) be a Hfbms. Let Ξ:℧→^C0(℧) be a Mvp satisfying
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥Θfb(ψ,ϱ,γ), | (2.1) |
for all ψ,ϱ∈℧, where β∈FΘfb as defined in (1.1). Then Ξ has a fixed point.
Proof. Choose {ψn} for ψ0∈℧ as follows: Let ψ1∈℧ such that ψ1∈Ξψ0 by the application of Lemma 1.3, we can choose ψ2∈Ξψ1 such that for all γ>0,
Θfb(ψ1,ψ2,γ)⩾HFΘfb(Ξψ0,Ξψ1,γ). |
By induction, we have ψr+1∈Ξψr satisfying
Θfb(ψr,ψr+1,γ)⩾HFΘfb(Ξψr−1,Ξψr,γ)∀r∈N. |
By the application of (2.1) and Lemma 1.3, we have
Θfb(ψr,ψr+1,γ)≥HFΘfb(Ξψr−1,Ξψr,γ)≥Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))≥HFΘfb(Ξψr−2,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))≥Θfb(ψr−2,ψr−1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ)))⋮≥HFΘfb(Ξψ0,Ξψ1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ1,ψ2,γ)))≥Θfb(ψ0,ψ1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ))). | (2.2) |
For any q∈N, writing q(γq)=γq+γq+…+γq and using [Fb4] repeatedly,
Θfb(ψr,ψr+q,γ)≥Θfb(ψr,ψr+1,γqb)∗Θfb(ψr+1,ψr+2,γqb2)∗Θfb(ψr+2,ψr+3,γqb3)∗…∗Θfb(ψr+q−1,ψr+q,γqbq). |
Using (2.2) and [Fb5], we get
Θfb(ψr,ψr+q,γ)≥Θfb(ψ0,ψ1,γqbβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ)))∗Θfb(ψ0,ψ1,γqb2β(Θfb(ψr,ψr+1,γ))β(Θfb(ψr−1,ψr,γ))…β(Θfb(ψ0,ψ1,γ)))∗Θfb(ψ0,ψ1,γqb3β(Θfb(ψr+1,ψr+2,γ))β(Θfb(ψr,ψr+1,γ))…β(Θfb(ψ0,ψ1,γ)))∗…∗Θfb(ψ0,ψ1,γqbqβ(Θfb(ψr+q−2,ψr+q−1,γ))β(Θfb(ψr+q−3,ψr+q−2,γ))…β(Θfb(ψ0,ψ1,γ))). |
That is,
Θfb(ψr,ψr+q,γ)≥Θfb(ψ0,ψ1,br−1γq)∗Θfb(ψ0,ψ1,br−1γq)∗Θfb(ψ0,ψ1,br−1γq)∗…∗Θfb(ψ0,ψ1,br−1γq). |
Taking limit as r→∞, we get
limn→∞Θfb(ψr,ψr+q,γ)=1∗1∗…∗1=1. |
Hence, {ψr} is G-Cauchy sequence. By the G-completeness of ℧, there exists ϕ∈℧ such that
Θfb(ϕ,Ξϕ,γ)≥Θfb(ϕ,ψr+1,γ2b)∗Θfb(ψr+1,Ξϕ,γ2b)≥Θfb(ϕ,ψr+1,γ2b)∗HFΘfb(Ξψr,Ξϕ,γ2b)≥Θfb(ϕ,ψr+1,γ2b)∗Θfb(ψr,ϕ,γ2bβ(Θfb(ψr,ϕ,γ)))⟶1asr→∞. |
By Lemma 1.1, it follows that ϕ∈Ξϕ. That is, ϕ is a fixed point for Ξ.
Remark 2.1.
(1) If we take β(Θfb(ψ,ϱ,γ))=k with bk<1, we get Theorem 3.1 of [31].
(2) By setting ^C0(℧)=℧ the mapping Ξ:℧→^C0(℧) becomes a single valued and we get Theorem 3.1 of [32]. Notice that when Ξ is a singlevalued map, Ξψ becomes a singleton set and the fact that HFΘfb(Ξψ,Ξϱ,γ)=Θfb(Ξψ,Ξϱ,γ) indicates that the fixed point will be unique as proved in [32].
(3) Set b=1 and ^C0(℧)=℧ and let k∈(0,1) be such that β(Θfb(ψ,ϱ,γ))=k then we get the main result of [15].
The next example illustrates Theorem 2.1.
Example 2.1. Let ℧=[0,1] and define a G-complete Fbms by
Θfb(ψ,ϱ,γ)=γγ+(ψ−ϱ)2, |
with b≥1. For β∈Fb, define a mapping Ξ:℧→^C0(℧) by
Ξψ={{0}if ψ=0,{0,√β(Θfb(ψ,ϱ,γ))ψ2}otherwise. |
For ψ=ϱ,
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)=1=Θfb(ψ,ϱ,γ). |
If ψ≠ϱ, then following cases arise.
For ψ=0 and ϱ∈(0,1], we have
HFΘfb(Ξ0,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)=min{ infa∈Ξ0FΘfb(a,Ξϱ,β(Θfb(ψ,ϱ,γ))γ),infb∈ΞϱFΘfb(Ξ0,b,β(Θfb(ψ,ϱ,γ))γ))}=min{infa∈Ξ0FΘfb(a,{0,√β(Θfb(ψ,ϱ,γ))ϱ2},β(Θfb(ψ,ϱ,γ))γ),infb∈ΞϱFΘfb({0},b,β(Θfb(ψ,ϱ,γ))γ)}=min{inf{FΘfb(0,{0,√β(Θfb(ψ,ϱ,γ))ϱ2},β(Θfb(ψ,ϱ,γ))γ)},inf{FΘfb({0},0,β(Θfb(ψ,ϱ,γ))γ),FΘfb({0},√β(Θfb(ψ,ϱ,γ))ϱ2,β(Θfb(ψ,ϱ,γ))γ)}}=min{inf{sup{FΘfb(0,0,β(Θfb(ψ,ϱ,γ))γ),FΘfb(0,√β(Θfb(ψ,ϱ,γ))ϱ2,β(Θfb(ψ,ϱ,γ))γ)}},inf{FΘfb(0,0,β(Θfb(ψ,ϱ,γ))γ),FΘfb(0,√β(Θfb(ψ,ϱ,γ))y2,β(Θfb(ψ,ϱ,γ))γ)}}=min{inf{sup{1,γγ+ϱ24}},inf{1,γγ+ϱ24}}=min{inf{1},γγ+ϱ24}=min{1,γγ+ϱ24}=γγ+ϱ24. |
It follows that
HFΘfb(Ξ0,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)>Θfb(0,ϱ,γ)=γγ+ϱ2. |
For ψ and ϱ∈(0,1], after simplification we have
HFΘfb(S(ψ),Ξϱ,β(Θfb(ψ,ϱ,γ))γ)=min{sup{γγ+ψ24,γγ+(ψ−ϱ)24},sup{γγ+ϱ24,γγ+(ψ−ϱ)24}}≥γγ+(ψ−ϱ)24>γγ+(ψ−ϱ)2=Θfb(ψ,ϱ,γ). |
Thus, for all cases, we have
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥Θfb(ψ,ϱ,γ). |
Since all conditions of Theorem 2.1 are satisfied and 0 is a fixed point of Ξ.
Theorem 2.2. Let (℧,Θfb,∗) be a G-complete Fbms with b⩾1 and (^C0(℧),HFΘfb,∗) be a Hfbms. Let Ξ:℧→^C0(℧) be a Mvp satisfying
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥min{FΘfb(ϱ,Ξϱ,γ)[1+FΘfb(ψ,Ξψ,γ)]1+Θfb(ψ,ϱ,γ),Θfb(ψ,ϱ,γ)}, | (2.3) |
for all ψ,ϱ∈℧, where β∈FΘfb as given in (1.1). Then Ξ has a fixed point.
Proof. Choose {ψn} for ψ0∈℧ as follows: Let ψ1∈℧ such that ψ1∈Ξψ0. By the application of Lemma 1.3 we can choose ψ2∈Ξψ1 such that
Θfb(ψ1,ψ2,γ)⩾HFΘfb(Ξψ0,Ξψ1,γ),∀γ>0. |
By induction, we have ψr+1∈Ξψr satisfying
Θfb(ψr,ψr+1,γ)⩾HFΘfb(Ξψr−1,Ξψr,γ),∀r∈N. |
By the application of (2.3) and Lemma 1.3 we have
Θfb(ψr,ψr+1,γ)≥HFΘfb(Ξψr−1,Ξψr,γ)≥min{FΘfb(ψr,Ξψr,γβ(Θfb(ψr−1,ψr,γ)))[1+FΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))]1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))[1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))]1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))},Θfb(ψr,ψr+1,γ)≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}. | (2.4) |
If
min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))), |
then (2.4) implies
Θfb(ψr,ψr+1,γ)≥Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))). |
The result is obvious by Lemma 1.2.
If
min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}=Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))), |
then from (2.4) we have
Θfb(ψr,ψr+1,γ)≥Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))≥Θfb(ψr−2,ψr−1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ)))⋮⩾Θfb(ψ0,ψ1,γβ(Θfb(ψr−1,ψr,γ))β(Θfb(ψr−2,ψr−1,γ))…β(Θfb(ψ0,ψ1,γ)). |
The rest of the proof can be done by proceeding same as in Theorem 2.1.
Remark 2.2.
(1) If we take β(Θfb(ψ,ϱ,γ))=k with bk<1, we get Theorem 3.2 of [31].
(2) By taking b=1 and for some 0<k<1 setting β(Θfb(ψ,ϱ,γ))=k in Theorem 2.2, we get the main result of [30].
Theorem 2.3. Let (℧,Θfb,∗) be a G-complete Fbms with b⩾1 and (^C0(℧),HFΘfb,∗) be a Hfbms. Let Ξ:℧→ˆC0(℧) be a Mvp satisfying
HFΘfb(Ξψ,Ξϱ,β(Θfb(ψ,ϱ,γ))γ)≥min{FΘfb(ϱ,Ξϱ,γ)[1+FΘfb(ψ,Ξψ,γ)+FΘfb(ϱ,Ξψ,γ)]2+Θfb(ψ,ϱ,γ),Θfb(ψ,ϱ,γ)} | (2.5) |
for all ψ,ϱ∈℧, where β∈FΘfb, the class of functions defined in (1.1). Then Ξ has a fixed point.
Proof. Choose {ψn} for ψ0∈℧ as follows: Let ψ1∈℧ such that ψ1∈Ξψ0. by the application of Lemma 1.3 we can choose ψ2∈Ξψ1 such that
Θfb(ψ1,ψ2,γ)⩾HFΘfb(Ξψ0,Ξψ1,γ),∀γ>0. |
By induction, we have ψr+1∈Ξψr satisfying
Θfb(ψr,ψr+1,γ)⩾HFΘfb(Ξψr−1,Ξψr,γ),∀r∈N. |
By the application of (2.5) and Lemma 1.3, we have
Θfb(ψr,ψr+1,γ)≥HFΘfb(Ξψr−1,Ξψr,γ)≥min{FΘfb(ψr,Ξψr,γβ(Θfb(ψr−1,ψr,γ)))[1+FΘfb(ψr−1,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))+FΘfb(ψr,Ξψr−1,γβ(Θfb(ψr−1,ψr,γ)))]2+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))[1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))+Θfb(ψr,ψr,γβ(Θfb(ψr−1,ψr,γ)))]2+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))[1+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))+1]2+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ)))[2+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))]2+Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}≥min{Θfb(ψr,ψr+1,γβ(Θfb(ψr−1,ψr,γ))),Θfb(ψr−1,ψr,γβ(Θfb(ψr−1,ψr,γ)))}. | (2.6) |
If
\begin{align*} &\quad\min \Bigg\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Bigg\rbrace\\ & = \Theta_{fb}\Bigg( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigg), \end{align*} |
then (2.6) implies
\begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) \geq \Theta_{fb}\Bigl( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{equation*} |
and the proof follows by Lemma 1.2.
If
\begin{align*} &\quad\min \left\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right\rbrace\\ & = \Theta_{fb}\Bigl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr).\nonumber \end{align*} |
Then from (2.6) we have
\begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) &\geq \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})\\ &\geqslant \ldots \geqslant \Theta_{fb}\Biggl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))\beta(\Theta_{fb}(\psi_{r-2}, \psi_{r-1}, \gamma))\ldots \beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma))}\Biggr). \end{align*} |
The rest of the proof is same as in Theorem 2.1.
Remark 2.3. Theorem 3.3 of [31] becomes a special csae of the above theorem by setting \beta(\Theta_{fb}(\psi, \varrho, \gamma)) = k where k is chosen such that bk < 1 .
Theorem 2.4. Let (\mho, \Theta_{fb}, *) be a G -complete Fbms with b\geqslant 1 and (\hat{C_{0}} (\mho), \mathcal{H}_{F_{\Theta_{fb}}}, *) be a Hfbms. Let \Xi \colon \mho \rightarrow \hat{C}_{0}(\mho) be a multivalued mapping satisfying
\begin{align} &\quad\mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma) \\ &\geq \min \Biggl\lbrace \dfrac{F_{\Theta_{fb}}( \psi, \Xi\psi, \gamma) \left[ 1+F_{\Theta_{fb}}( \varrho, \Xi\varrho, \gamma) \right] }{1+F_{\Theta_{fb}}( \Xi\psi, \Xi\varrho, \gamma) }, \dfrac{F_{\Theta_{fb}}( \psi, \Xi\varrho, \gamma) \left[ 1+F_{\Theta_{fb}}( \psi, \Xi\psi, \gamma) \right] }{1+\Theta_{fb}( \psi, \varrho, \gamma) }, \\ &\quad\quad\quad \dfrac{F_{\Theta_{fb}}( \psi, \Xi\psi, \gamma) \left[ 2+F_{\Theta_{fb}}( \psi, \Xi\varrho, \gamma) \right] }{1+\Theta_{fb}( \psi, \Xi\varrho, \gamma)+F_{\Theta_{fb}}( \varrho, \Xi\psi, \gamma) }, \Theta_{fb}( \psi, \varrho, \gamma) \Biggr \rbrace, \end{align} | (2.7) |
for all \psi, \varrho \in \mho , where \beta \in \mathbb{F}_{fb} , the class of functions defined in (1.1). Then \Xi has a fixed point.
Proof. In the same way as Theorem 2.1, we have
\begin{equation*} \Theta_{fb}(\psi_{1}, \psi_{2}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{0}, \Xi \psi_{1}, \gamma), \quad \forall\; \gamma > 0. \end{equation*} |
By induction, we obtain \psi_{r+1} \in \Xi \psi_{r} satisfying
\begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma), \quad \forall\; n\; \in\mathbb{N}. \end{equation*} |
Now, by (2.7) together with Lemma 1.3, we have
\begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)& \geq \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma) \\ &\geq \min \Biggl\lbrace \dfrac{F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+F_{\Theta_{fb}}( \psi_{r}, S_{\psi_{r}}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+F_{\Theta_{fb}}( \Xi \psi_{r-1}, \Xi \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ &\quad \quad \dfrac{F_{\Theta_{fb}}( \psi_{r}, \Xi \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ &\quad \quad\dfrac{F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 2+F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+F_{\Theta_{fb}}( \psi_{r-1}, \Xi \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})+F_{\Theta_{fb}}( \psi_{r}, \Xi \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ &\quad \quad \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Biggr\rbrace\\ &\geq \min \Biggl\lbrace \dfrac{\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+\Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+\Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ &\quad \quad \dfrac{\Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 1+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ & \quad \quad \dfrac{\Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \left[ 2+\Theta_{fb}( \psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right] }{1+\Theta_{fb}( \psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})+\Theta_{fb}( \psi_{r}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) }, \\ & \quad\quad \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Biggr\rbrace, \\ \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geq & \min \left\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \right\rbrace.\end{align*} | (2.8) |
If
\begin{align*} &\quad\min \Bigg\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Bigg\rbrace \\ & = \Theta_{fb}\Bigr( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigl), \end{align*} |
then (2.8) implies
\begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) \geq \Theta_{fb}\Bigl( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr). \end{equation*} |
Then the proof follows by Lemma 1.2.
If
\begin{align*} &\quad\min \Bigg\lbrace \Theta_{fb}( \psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Bigg\rbrace \\ & = \Theta_{fb}\Bigl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*} |
then from (2.6) we have
\begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) &\geq \Theta_{fb}\Bigl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & \vdots\\ & \geqslant \Theta_{fb}\bigl( \psi_{0}, \psi_{1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))\beta(\Theta_{fb}(\psi_{r-2}, \psi_{r-1}, \gamma))\ldots \beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma))}\Bigr). \end{align*} |
The rest of the proof is similar as in Theorem 2.1.
Remark 2.4. Again by taking \beta(\Theta_{fb}(\psi, \varrho, \gamma)) = k with kb < 1 , we get Theorem 3.4 of [31].
Theorem 2.5. Let (\mho, \Theta_{fb}, *) be a G -complete Fbms with b\geqslant 1 and (\hat{C_{0}} (\mho), \mathcal{H}_{F_{\Theta_{fb}}}, *) be a Hfbms. Let \Xi \colon \mho \rightarrow \hat{C}_{0}(\mho) be a Mvp satisfying
\begin{align} &\quad\mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma)\\ &\geq \dfrac{ \min \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \gamma). \Theta_{fb}(\psi, \varrho, \gamma) , \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma). \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\varrho, \gamma) \rbrace )}{ \max \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma), \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\varrho, \gamma)\rbrace}, \end{align} | (2.9) |
for all \psi, \varrho \in \mho , where \beta \in \mathbb{F}_{fb}. Then \Xi has a fixed point.
Proof. In the same way as Theorem 2.1, we have
\begin{equation*} \Theta_{fb}(\psi_{1}, \psi_{2}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{0}, \Xi \psi_{1}, \gamma), \quad \forall\; \gamma > 0. \end{equation*} |
By induction we have \psi_{r+1} \in \Xi \psi_{r} satisfying
\begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma), \quad \forall\; n\; \in\mathbb{N}. \\ \end{equation*} |
Now by (2.7) together with Lemma 1.3 and some obvious simplification step, we have
\begin{align} &\quad\Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) \geq \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{r-1}, \Xi \psi_{r}, \gamma) \\ &\geq \dfrac{\min \Biggl\lbrace \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}).\Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}). \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})\Biggr \rbrace}{\max \lbrace \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}), \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \rbrace}\\ &\geq \dfrac{\Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}). \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})}{\max \lbrace \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}), \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \rbrace} \end{align} | (2.10) |
If
\begin{align*} &\quad\max \lbrace \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \rbrace \\ & = \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*} |
then (2.10) implies
\Theta_{fb}(\psi_{r}, \psi_{r+1}, t)\geq \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) |
Then the proof follows by Lemma 1.2.
If
\begin{align*} &\quad\max \lbrace \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \rbrace\\ & = \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*} |
then from (2.10) we have
\begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) &\geq \Theta_{fb}\Bigr( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & \vdots\\ & \geqslant \Theta_{fb}\Bigl( \psi_{0}, \psi_{1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))\beta(\Theta_{fb}(\psi_{r-2}, \psi_{r-1}, \gamma))\ldots \beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma))}\Bigr). \end{align*} |
The remaining proof follows in the same way as in Theorem 2.1.
Theorem 2.6. Let (\mho, \Theta_{fb}, *) be a G -complete Fbms with b\geqslant 1 and (\hat{C_{0}} (\mho), \mathcal{H}_{F_{\Theta_{fb}}}, *) be a Hfbms. Let \Xi \colon \mho \rightarrow \hat{C}_{0}(\mho) be a Mvp satisfying
\begin{equation} \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma)\geq \Gamma_{1}(\psi, \varrho, \gamma)* \Gamma_{2}(\psi, \varrho, \gamma), \end{equation} | (2.11) |
where,
\begin{align} \left. \begin{cases} \Gamma_{1}(\psi, \varrho, \gamma)& = \min \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \gamma) , \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma), \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\varrho, \gamma), \Theta_{fb}(\psi, \varrho, \gamma) \rbrace\\ \Gamma_{2}(\psi, \varrho, \gamma)& = \max \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\varrho, \gamma) , \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \varrho, \gamma) \rbrace \end{cases} \right\}, \end{align} | (2.12) |
for all \psi, \varrho \in \mho , and \beta \in \mathbb{F}_{fb}. Then \Xi has a fixed point.
Proof. In the same way as Theorem 2.1, we have
\begin{equation*} \Theta_{fb}(\psi_{1}, \psi_{2}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{0}, \Xi \psi_{1}, \gamma), \quad \forall\; \gamma > 0.\\ \end{equation*} |
By induction we have \psi_{r+1} \in \Xi \psi_{r} satisfying
\begin{align} \mathcal{H}_{F_{\Theta_{fb}}}(\psi_{r}, \psi_{r+1}, \gamma)& = F_{\theta}(\Xi\psi_{r-1}, \Xi\psi_{r}, \gamma)\\ &\geq \Gamma_{1}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)* \Gamma_{2}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \end{align} | (2.13) |
Now,
\begin{align} &\quad\Gamma_{1}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & = \min \Biggl \lbrace \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\Xi\psi_{r-1}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r-1}, \Xi\psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \\ &\quad\quad\quad \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\Biggr \rbrace \\ & = \min \Biggl \lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \\ & \quad\quad\quad \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\Biggr \rbrace. \\&\quad\Gamma_{1}(\psi_{r-1}, \psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \\ & = \min \Biggl\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \biggr\rbrace. \end{align} | (2.14) |
\begin{align} &\quad\Gamma_{2}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigl) \\ & = \max \Bigl\lbrace \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r-1}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\Xi\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\Bigr\rbrace\\ & = \max \Bigl\lbrace \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \Theta_{fb}\Bigl(\psi_{r}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigr\rbrace \\ & = \max \Bigl\lbrace \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , 1 \Bigr\rbrace. \notag \\ \\ & \ \ \ \ \ \ \ \ \ \Gamma_{2}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) = 1. \end{align} | (2.15) |
Using (2.14) and (2.15) in (2.13) we have
\begin{align} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)&\geq \min \Bigl\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigr\rbrace *1, \\ \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)&\geq \min \Bigl\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigr\rbrace. \end{align} | (2.16) |
If
\begin{align*} &\min \Bigg\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigg\rbrace \\ & = \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigl), \end{align*} |
then (2.16) implies
\Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geq \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigl) |
Then the proof follows by Lemma 1.2
If
\begin{align*} &\quad\min \Bigl\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigr\rbrace\\ & = \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*} |
then from (2.16), we have
\begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma) &\geq \Theta_{fb}\Bigl( \psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & \vdots \\ &\geqslant \Theta_{fb}\Bigl( \psi_{0}, \psi_{1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))\beta(\Theta_{fb}(\psi_{r-2}, \psi_{r-1}, \gamma))\ldots \beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma))}\Big). \end{align*} |
The remaining proof is similar as in Theorem 2.1.
Remark 2.5. If we set \hat{C_{0}} (\mho) = \mho the map \Xi becomes a singlevalued and we get Theorem 3.11 of [32]. Again as stated in Remark 2.1, the corresponding fixed point will be unique.
Theorem 2.7. Let (\mho, \Theta_{fb}, *) be a G -complete Fbms with b\geqslant 1 and (\hat{C_{0}} (\mho), \mathcal{H}_{F_{\Theta_{fb}}}, *) be a Hfbms. Let \Xi \colon \mho \rightarrow \hat{C}_{0}(\mho) be a Mvp satisfying
\begin{align} \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \beta(\Theta_{fb}(\psi, \varrho, \gamma))\gamma)\geq \dfrac{\Gamma_{1}(\psi, \varrho, \gamma)* \Gamma_{2}(\psi, \varrho, \gamma)}{\Gamma_{3}(\psi, \varrho, \gamma)}, \end{align} | (2.17) |
where
\begin{align} \left. \begin{cases} \Gamma_{1}(\psi, \varrho, \gamma)& = \min \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi, \Xi\varrho, \gamma). \Theta_{fb}(\psi, \varrho, \gamma) , \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma). \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\varrho, \gamma) \rbrace\\ \Gamma_{2}(\psi, \varrho, \gamma)& = \max \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma). \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\varrho, \gamma) , \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\psi, \gamma))^{2}\rbrace\\ \Gamma_{3}(\psi, \varrho, \gamma)& = \max \lbrace \mathcal{H}_{F_{\Theta_{fb}}}(\psi, \Xi\psi, \gamma), \mathcal{H}_{F_{\Theta_{fb}}}(\varrho, \Xi\varrho, \gamma)\rbrace \end{cases} \right\}, \end{align} | (2.18) |
for all \psi, \varrho \in \mho , and \beta \in \mathbb{F}_{fb}. Then \Xi has a fixed point.
Proof. In the same way as Theorem 2.1, we have
\begin{equation*} \Theta_{fb}(\psi_{1}, \psi_{2}, \gamma)\geqslant \mathcal{H}_{F_{\Theta_{fb}}}(\Xi \psi_{0}, \Xi \psi_{1}, \gamma), \quad \forall\; \gamma > 0. \end{equation*} |
By induction we have \psi_{r+1} \in \Xi \psi_{r} satisfying
\begin{align} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)& = \mathcal{H}_{F_{\Theta_{fb}}}(\Xi\psi_{r-1}, \Xi\psi_{r}, \gamma)\\ &\geq \dfrac{\Gamma_{1}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})* \Gamma_{2}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})}{\Gamma_{3}(\psi, \varrho, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})}. \end{align} | (2.19) |
\begin{align} &\quad\Gamma_{1}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \\ & = \min \Biggl \lbrace \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\Xi\psi_{r-1}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr).F_{\theta}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \\ &\quad\quad\quad \mathcal{H}_{F_{\Theta_{fb}}}(\psi_{r-1}, \Xi\psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}). \mathcal{H}_{F_{\Theta_{fb}}}(\psi_{r}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \Biggr \rbrace \\ & = \min \Biggl \lbrace \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}).\Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) , \\ &\quad\quad\quad\Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr). \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Biggr \rbrace \\ & = \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr).\Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr). \end{align} | (2.20) |
Similarly,
\begin{align} &\quad\Gamma_{2}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & = \max \Biggl \lbrace \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r-1}, \Xi\psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r-1}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \\ &\quad\quad\quad \Bigl(\mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r}, \Xi\psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\Bigr)^{2} \Biggr \rbrace\\ & = \max \Biggl \lbrace \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \\ &\quad\quad\quad \Bigl(\Theta_{fb}\Bigl(\psi_{r}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\Bigr)^{2} \Biggr \rbrace\\ & = \max \Biggl\lbrace \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , 1 \Biggr\rbrace. \end{align} |
It follows that
\begin{equation} \Gamma_{2}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) = 1. \end{equation} | (2.21) |
\begin{align} &\quad\Gamma_{3}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & = \max\Big\lbrace \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r-1}, \Xi\psi_{r-1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Big), \mathcal{H}_{F_{\Theta_{fb}}}\Bigl(\psi_{r}, \Xi\psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Big\rbrace \\ & = \max \Big\lbrace \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Big) \Big\rbrace. \end{align} | (2.22) |
Using (2.20), (2.21) and (2.22) in (2.19), we have
\begin{align} \Theta_{fb}(\psi_{r}, \psi_{r+1}, t)\geq \dfrac{ \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}).\Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))})}{\max \lbrace \Theta_{fb}(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}), \Theta_{fb}(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}) \rbrace}. \end{align} | (2.23) |
If
\begin{align*} &\quad\max \Bigg \lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigg\rbrace \\ & = \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*} |
then (2.23) implies
\Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geq \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr). |
It is obvious by Lemma 1.2.
If
\begin{align*} &\quad\max \Bigg\lbrace \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) , \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr) \Bigg\rbrace \\ & = \Theta_{fb}\Bigl(\psi_{r}, \psi_{r+1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr), \end{align*} |
then from (2.23), we have
\begin{equation*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, \gamma)\geq \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr). \end{equation*} |
Continuing in this way, we will get
\begin{align*} \Theta_{fb}(\psi_{r}, \psi_{r+1}, t)&\geq \Theta_{fb}\Bigl(\psi_{r-1}, \psi_{r}, \frac{\gamma}{\beta(F_{\theta}(\psi_{r-1}, \psi_{r}, \gamma))}\Bigr)\\ & \vdots\\ & \geq \Theta_{fb}\Bigl(\psi_{0}, \psi_{1}, \frac{\gamma}{\beta(\Theta_{fb}(\psi_{r-1}, \psi_{r}, \gamma)).\beta(\Theta_{fb}(\psi_{n-2}, \psi_{r-1}, \gamma))\ldots\beta(\Theta_{fb}(\psi_{0}, \psi_{1}, \gamma))}\Bigr). \end{align*} |
The rest of the proof follows in the same way as in Theorem 2.1.
Remark 2.6. By setting \hat{C_{_0}} (\mho) = \mho , the mapping \Xi \colon \mho \rightarrow \hat{C_{_0}} (\mho) becomes a self (singlevalued) mapping and we get Theorem 3.13 of [32].
An application of Theorem 2.1 is presented here. Recall that the space of all continuous realvalued functions on [0, 1] is denoted by C([0, 1], \mathbb{R}) . Now set \mho = C([0, 1], \mathbb{R}) and define the G -complete Fbm on \mho by
\Theta_{fb} (\psi, \varrho, \gamma) = e^{-\dfrac{ {\sup\limits_{u \in[0, 1]}}\vert \psi(u)-\varrho(u) \vert^{2}} {\gamma}}, \quad \forall \;\; \gamma > 0 \;\; \text{and} \; \; \psi, \varrho \in \mho. |
Consider
\begin{equation} \psi(u)\in \int_0^u G(u, v, \psi(v))dv + h(u) \quad \text{for all} \;\; u, v \in[0, 1], \quad \text{whereas}\quad h, \psi\in C([0, 1], \mathbb{R}). \end{equation} | (3.1) |
Here G \colon [0, 1]\times[0, 1] \times \mathbb{R}\rightarrow P_{cv}(\mathbb{R}) is multivalued function and P_{cv}(\mathbb{R}) represents the collections of convex and compact subsets of \mathbb{R} . Moreover, for each \psi in C([0, 1], \mathbb{R}) the operator G(\cdot, \cdot, \psi) is lower semi-continuous.
For the integral inclusion given in (3.1), define a multivalued operator S: \mho\rightarrow \hat{C_{0}} (\mho) by
S\psi(u) = \Biggl\lbrace w \in \mho : w \in \int_0^u G(u, v, \psi(v))dv + h(u), \quad u \in [0, 1]\Biggr\rbrace. |
Now for arbitrary \psi \in (C([0, 1], \mathbb{R}) , denote G_\psi(u, v) = G(u, v, \psi(v)) where u, v\in [0, 1] . For the multivalued map G_\psi : [0, 1]\times [0, 1]\rightarrow P_{cv}(\mathbb{R}) , by Michael selection theorem [34], there exists a continuous selection g_\psi :[0, 1] \times [0, 1]\rightarrow \mathbb{R} such that g_\psi(u, v)\in G_\psi(u, v) for each u, v\in [0, 1] . It follows that
\int_0^u g_\psi(u, v)dv + h(u) \in S\psi(u). |
Since g_\psi is continuous on [0, 1]\times [0, 1] and h is continuous on [0, 1] , therefore both g_\psi and h are bounded realvalued functions. It follows that, the operator S\psi is nonempty and S\psi \in \hat{C_{0}} (\mho) .
With the above setting, the upcoming outcome shows the existence of a solution of the integral inclusion (3.1).
Theorem 3.1. Let \mho = C([0, 1], \mathbb{R}) and define the multivalued operator S: \mho \rightarrow \hat{C_{0}} (\mho) by
S\psi(u) = \Biggl\lbrace w \in \mho : w \in \int_0^u G(u, v, \psi(v))dv + h(u), \quad u \in [0, 1]\Biggr\rbrace, |
where h:[0, 1]\rightarrow \mathbb{R} is continuous and the map G:[0, 1]\times [0, 1]\times \mathbb{R}\rightarrow P_{cv}(\mathbb{R}) is defined in such a way that for every \psi\in C([0, 1], \mathbb{R}) , the operator G(\cdot, \cdot, \psi) is lower semi-continuous. Assume further that the given terms are satisfied:
(i) There exists a continuous mapping f \colon [0, 1]\times [0, 1]\rightarrow [0, \infty) such that
\mathcal{H}_{F_{\Theta_{fb}}}( G(u, v, \psi(v))-G(u, v, \varrho(v))\leq f^{2}(u, v)\vert \psi(v)-\varrho(v)\vert^{2}, |
for each \psi, \varrho \in \mho and u, v\in [0, 1] .
(ii) There exists \beta \in \mathbb{F}_{\Theta 2} , such that
{ \sup\limits_{u \in[0, 1]}}\int_0^u f^{2}(u, v)dv \leq \beta({\Theta_{fb}}(\psi, \varrho, \gamma)) . |
Then (3.1) has a solution in \mho .
Proof. We will show that the operator S satisfies the conditions of Theorem 2.1. In particular we prove (2.1) as follows:
Let \psi, \varrho \in \mho be such that q\in S\psi . As stated earlier, by selection theorem there is g_\psi(u, v)\in G_\psi(u, v) = G(u, v, \psi(v)) for u, v \in [0, 1] such that
q(u) = \int_0^u g_\psi(u, v)dv+h(u), \quad u\in [0, 1]. |
Further, the condition (ⅰ) ensures that there is some g(u, v)\in G_\varrho(u, v) such that
\vert g_\psi(u, v)-g(u, v)\le f^{2}(u, v)\vert \psi(v)-\varrho(v)\vert^{2}, \quad\forall\, u, v\in [0, 1]. |
Now consider the multivalued operator T defined as follows:
T(u, v) = G_\varrho(u, v)\cap \left\lbrace w\in \mathbb{R} : \left\vert g_\psi(u, v)-w\right\vert\le f^{2}(u, v)\vert \psi(v)-\varrho(v)\vert^{2}\right\rbrace. |
Since, by construction, T is lower semi-continuous, it follows again by the selection theorem that there is continuous function g_\varrho(u, v):[0, 1]\times [0, 1]\rightarrow \mathbb{R} such that for each u, v \in [0, 1] , g_\varrho(u, v) \in T(u, v) .
Thus, we have
r(u) = \int_0^u g_\varrho(u, v)dv+h(u)\, \in \int_0^u G(u, v, \varrho(v))dv+h(u), \quad u\in [0, 1]. |
Therefore, for each u\in [0, 1] we get
\begin{align*} e^{-\dfrac{ {\sup\limits_{t \in[0, 1]}}\vert q(u)- r(u)) \vert^{2}}{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma}}& \geq e^{-\dfrac{ {\sup\limits_{u \in[0, 1]}}\int_0^u \vert g_{\psi}(u, v)-g_{\varrho}(u, v) \vert^{2} dv}{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma}}\\ & \geq e^{-\dfrac{ {\sup\limits_{u \in[0, 1]}}\int_0^u f^{2}(u, v) \vert \psi(v)-\varrho(v) \vert^{2} dv}{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma}}\\ & \geq e^{-\dfrac{\vert \psi(v)-\varrho(v) \vert^{2} {\sup\limits_{u \in[0, 1]}}\int_0^u f^{2}(u, v) dv}{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma}}\\ & \geq e^{-\dfrac{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\vert \psi(v)-\varrho(v) \vert^{2}}{\beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma}}\\ & = e^{-\dfrac{\vert \psi(v)-\varrho(v) \vert^{2}}{\gamma}}\\ & \geq e^{-\dfrac{ {\sup\limits_{v \in[0, 1]}}\vert \psi(v)-\varrho(v) \vert^{2}}{\gamma}}\\ & = \Theta_{fb}(\psi, \varrho, \gamma). \end{align*} |
This implies that,
\Theta_{fb}(q, r, \beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma)\geq \Theta_{fb}(\psi, \varrho, \gamma). |
Interchanging the roles of \psi and \varrho , we get
\mathcal{H}_{F_{\Theta_{fb}}}(S\psi, S\varrho, \beta({\Theta_{fb}}(\psi, \varrho, \gamma))\gamma) \geq \Theta_{fb}( \psi, \varrho, \gamma). |
Hence, by Theorem 2.1, the operator S has a fixed point which in turn proves the existence of a solution of integral inclusion (3.1).
In the present work, in the setting of a Hausdorff Fbms, some fixed fixed point results for multivalued mappings are established. The main result, that is, Theorem 2.1 shows that a multivalued mapping satisfying Geraghty type contractions on G -complete Hfbms has a fixed point. Example 2.1 illustrates the main result. Some other interesting fixed point theorems are also proved for the multivalued mappings satisfying certain contraction condition on G -complete Hfbms. The results proved in [30,31,32] turn out to be special cases of the results established in this work. For the significance of our results, an application is presented to prove the existence of solution of an integral inclusion.
The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work grant code: 22UQU4331214DSR02
The authors declare that they have no conflict of interest.
[1] |
A. Biswas, Theory of optical bullets- Abstract, J. Electromagnet. Wave., 16 (2002), 419–420. https://doi.org/10.1163/156939302X01254 doi: 10.1163/156939302X01254
![]() |
[2] |
A. Djazet, C. B. Tabi, S. I. Fewo, T. C. Kofane, Vector dissipative light bullets in optical laser beam, Appl. Phys. B, 126 (2020), 74. https://doi.org/10.1007/s00340-020-07422-7 doi: 10.1007/s00340-020-07422-7
![]() |
[3] |
K. S. Al-Ghafri, E. V. Krishnan, S. Khan, A. Biswas, Optical bullets and their modulational instability analysis, Appl. Sci., 12 (2022), 9221. https://doi.org/10.3390/app12189221 doi: 10.3390/app12189221
![]() |
[4] | T. Vachaspati, Kinks and Domain Walls: An introduction to classical and quantum solitons, Cambridge: Cambridge University Press, 2006. |
[5] |
N. A. Kudryashov, Hamiltonians of the generalized nonlinear Schrödinger equations, Mathematics, 11 (2023), 2304. https://doi.org/10.3390/math11102304 doi: 10.3390/math11102304
![]() |
[6] |
N. A. Kudryashov, Mathematical model with unrestricted dispersion and polynomial nonlinearity, Appl. Math. Lett., 138 (2023), 108519. https://doi.org/10.1016/j.aml.2022.108519 doi: 10.1016/j.aml.2022.108519
![]() |
[7] |
N. A. Kudryashov, Mathematical model of propagation pulse in optical fiber with power nonlinearities, Optik, 212 (2020), 164750. https://doi.org/10.1016/j.ijleo.2020.164750 doi: 10.1016/j.ijleo.2020.164750
![]() |
[8] |
N. A. Kudryashov, A generalized model for description of propagation pulses in optical fiber, Optik, 189 (2019), 42–52. https://doi.org/10.1016/j.ijleo.2019.05.069 doi: 10.1016/j.ijleo.2019.05.069
![]() |
[9] |
N. A, Kudryashov, E. V. Antonova, Solitary waves of equation for propagation pulse with power nonlinearities, Optik, 217 (2020), 164881. https://doi.org/10.1016/j.ijleo.2020.164881 doi: 10.1016/j.ijleo.2020.164881
![]() |
[10] |
W. X. Qiu, Z. Z. Si, D. S. Mou, C. Q. Dai, J. T. Li, W. Liu, Data-driven vector degenerate and nondegenerate solitons of coupled nonlocal nonlinear Schrödinger equation via improved PINN algorithm, Nonlinear Dyn., 113 (2025), 4063–4076. https://doi.org/10.1007/s11071-024-09648-y doi: 10.1007/s11071-024-09648-y
![]() |
[11] |
K. L. Geng, D. S. Mou, C. Q. Dai, Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations, Nonlinear Dyn., 111 (2023), 603–617. https://doi.org/10.1007/s11071-022-07833-5 doi: 10.1007/s11071-022-07833-5
![]() |
[12] |
D. S. Mou, Z. Z. Si, W. X. Qiu, C. Q. Dai, Optical soliton formation and dynamic characteristics in photonic Moiré lattices, Opt. Laser Technol., 181 (2025), 111774. https://doi.org/10.1016/j.optlastec.2024.111774 doi: 10.1016/j.optlastec.2024.111774
![]() |
[13] |
X. K. Wen, G. Z. Wu, W. Liu, C. Q. Dai, Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrödinger model by the MPS-PINN method, Nonlinear Dyn., 109 (2022), 3041–3050. https://doi.org/10.1007/s11071-022-07583-4 doi: 10.1007/s11071-022-07583-4
![]() |
[14] |
J. G. Liu, W. H. Zhu, Multiple rogue wave, breather wave and interaction solutions of a generalized (3+1)-dimensional variable-coefficient nonlinear wave equation, Nonlinear Dyn., 103 (2021), 1841–1850. https://doi.org/10.1007/s11071-020-06186-1 doi: 10.1007/s11071-020-06186-1
![]() |
[15] |
G. Wang, X. Wang, T. Huang, Explicit soliton solutions of (3+1)-dimensional nonlinear Schrödinger equation with time variable coefficients, Optik, 275 (2023), 170628. https://doi.org/10.1016/j.ijleo.2023.170628 doi: 10.1016/j.ijleo.2023.170628
![]() |
[16] |
G. Wang, X. Wang, F. Guan, H. Song, Exact solutions of an extended (3+1)-dimensional nonlinear Schrödinger equation with cubic-quintic nonlinearity term, Optik, 279 (2023), 170768. https://doi.org/10.1016/j.ijleo.2023.170768 doi: 10.1016/j.ijleo.2023.170768
![]() |
[17] |
B. Gao, Y. Wang, Complex wave solutions described by a (3+1)-dimensional coupled nonlinear Schrödinger equation with variable coefficients, Optik, 227 (2021), 166029. https://doi.org/10.1016/j.ijleo.2020.166029 doi: 10.1016/j.ijleo.2020.166029
![]() |
[18] |
G. Wang, A novel (3+1)-dimensional sine-Gorden and a sinh-Gorden equation: Derivation, symmetries and conservation laws, Appl. Math. Lett., 113 (2021), 106768. https://doi.org/10.1016/j.aml.2020.106768 doi: 10.1016/j.aml.2020.106768
![]() |
[19] |
A. M. Wazwaz, M. Abu Hammad, S. A. El-Tantawy, Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes, Optik, 270 (2022), 170043. https://doi.org/10.1016/j.ijleo.2022.170043 doi: 10.1016/j.ijleo.2022.170043
![]() |
[20] |
A. M. Elsherbeny, M. Mirzazadeh, A. H. Arnous, A. Biswas, Y. Yildirim, A. Dakova, A. Asiri, Optical bullets and domain walls with cross spatio-dispersion and having Kudryashov's form of self-phase modulation, Contemp. Math., 4 (2023), 505–517. https://doi.org/10.37256/cm.4320233359 doi: 10.37256/cm.4320233359
![]() |
[21] |
H. Ur Rehman, I. Iqbal, M. Mirzazadeh, M. S. Hashemi, A. U. Awan, A. M. Hassan, Optical solitons of new extended (3+1)-dimensional nonlinear Kudryashov's equation via \phi^{6}-model expansion method, Opt. Quantum Electron., 56 (2024), 279. https://doi.org/10.1007/s11082-023-05850-1 doi: 10.1007/s11082-023-05850-1
![]() |
[22] | A. M. Elsherbeny, M. Mirzazadeh, A. H. Arnous, A. Biswas, Y. Yıldırım, A. Asiri, Optical bullets and domain walls with cross-spatio dispersion having parabolic law of nonlinear refractive index, J. Opt., 2023. https://doi.org/10.1007/s12596-023-01398-1 |
[23] |
M. Ekici, A. Sonmezoglu, A. Biswas, Stationary optical solitons with Kudryashov's laws of refractive index, Chaos Soliton. Fract., 151 (2021), 111226. https://doi.org/10.1016/j.chaos.2021.111226 doi: 10.1016/j.chaos.2021.111226
![]() |
[24] |
H. Esen, A. Secer, M. Ozisik, M. Bayram, Analytical soliton solutions of the higher order cubic-quintic nonlinear Schrödinger equation and the influence of the model's parameters, J. Appl. Phys., 132 (2022), 053103. https://doi.org/10.1063/5.0100433 doi: 10.1063/5.0100433
![]() |
[25] |
A. T. Ali, New generalized Jacobi elliptic function rational expansion method, J. Comput. Appl. Math., 235 (2011), 4117–4127. https://doi.org/10.1016/j.cam.2011.03.002 doi: 10.1016/j.cam.2011.03.002
![]() |
[26] |
E. M. E. Zayed, M. E. M. Alngar, Optical solitons in birefringent fibers with Biswas–Arshed model by generalized Jacobi elliptic function expansion method, Optik, 203 (2020), 163922. https://doi.org/10.1016/j.ijleo.2019.163922 doi: 10.1016/j.ijleo.2019.163922
![]() |
[27] |
Z. Z. Si, Y. Y. Wang, C. Q. Dai, Switching, explosion, and chaos of multi-wavelength soliton states in ultrafast fiber lasers, Sci. China Phys. Mech. Astron., 67 (2024), 274211. https://doi.org/10.1007/s11433-023-2365-7 doi: 10.1007/s11433-023-2365-7
![]() |
[28] |
Z. Z. Si, Z. T. Ju, L. F. Ren, X. P. Wang, B. A. Malomed, C. Q. Dai, Polarization-induced buildup and switching mechanisms for soliton molecules composed of noise-like-pulse transition states, Laser Photon. Rev., 19 (2025), 2401019. https://doi.org/10.1002/lpor.202401019 doi: 10.1002/lpor.202401019
![]() |
[29] |
Z. T. Ju, Z. Z. Si, X. Yan, C. Q. Dai, Solitons and their biperiodic pulsation in ultrafast fiber lasers based on CB/GO, Chinese. Phys. Lett., 41 (2024), 084203. https://doi.org/10.1088/0256-307X/41/8/084203 doi: 10.1088/0256-307X/41/8/084203
![]() |
[30] |
Z. Z. Si, D. L. Wang, B. W. Zhu, Z. T. Ju, X. P. Wang, W. Liu, et al., Deep learning for dynamic modeling and coded information storage of vector-soliton pulsations in mode-locked fiber lasers, Laser Photon. Rev., 18 (2024), 2400097. https://doi.org/10.1002/lpor.202400097 doi: 10.1002/lpor.202400097
![]() |
[31] |
Z. Z. Si, C. Q. Dai, W. Liu, Tunable three-wavelength fiber laser and transient switching between three-wavelength soliton and Q-switched mode-locked states, Chin. Phys. Lett., 41 (2024), 020502. https://doi.org/10.1088/0256-307X/41/2/020502 doi: 10.1088/0256-307X/41/2/020502
![]() |
[32] |
Z. Z. Si, L. F. Ren, D. L. Wang, Z. T. Ju, X. P. Wang, Y. Y. Wang, et al., Generation and \pi-phase-induced oscillations of multi-soliton molecular complexes in ultrafast fiber lasers based on MOF-253@Au, Chem. Eng. J., 505 (2025) 159024. https://doi.org/10.1016/j.cej.2024.159024 doi: 10.1016/j.cej.2024.159024
![]() |