In this paper, some fixed point results for multivalued contractions are established in setting G-complete extended fuzzy b-metric spaces. An example is furnished to demonstrate the validity of results. An application of integral type inclusion is given to authenticate the theorems. Our results extend and generalize many existing results in literature.
Citation: Samina Batul, Faisar Mehmood, Azhar Hussain, Reny George, Muhammad Sohail Ashraf. Some results for multivalued mappings in extended fuzzy b-metric spaces[J]. AIMS Mathematics, 2023, 8(3): 5338-5351. doi: 10.3934/math.2023268
[1] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended $ b $-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[2] | Rashid Ali, Faisar Mehmood, Aqib Saghir, Hassen Aydi, Saber Mansour, Wajdi Kallel . Solution of integral equations for multivalued maps in fuzzy $ b $-metric spaces using Geraghty type contractions. AIMS Mathematics, 2023, 8(7): 16633-16654. doi: 10.3934/math.2023851 |
[3] | Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer . Multivalued contraction maps on fuzzy $ b $-metric spaces and an application. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330 |
[4] | Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy $ b $-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885 |
[5] | Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović . A fixed point theorem in strictly convex $ b $-fuzzy metric spaces. AIMS Mathematics, 2023, 8(9): 20989-21000. doi: 10.3934/math.20231068 |
[6] | Badshah-e-Rome, Muhammad Sarwar, Thabet Abdeljawad . µ-extended fuzzy b-metric spaces and related fixed point results. AIMS Mathematics, 2020, 5(5): 5184-5192. doi: 10.3934/math.2020333 |
[7] | Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular $ b $-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107 |
[8] | Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112 |
[9] | Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki . Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular $ b $-metric spaces. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608 |
[10] | Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for $ b $-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728 |
In this paper, some fixed point results for multivalued contractions are established in setting G-complete extended fuzzy b-metric spaces. An example is furnished to demonstrate the validity of results. An application of integral type inclusion is given to authenticate the theorems. Our results extend and generalize many existing results in literature.
In the early twentieth century functional analysis was quite new in research. The mathematician of that time were demonstrating various notions of convergence on various spaces. There was a dire need to simplify things and unify arguments. This need was fulfilled by Frechet in his PhD dissertation on functional analysis by introducing the notion of metric space. This new idea lead Banach [2] to prove the well known fixed point theorem in 1922. This theorem become a land mark for the researchers to establish a number of extensions of metric spaces.The idea of b-metric was originated from the works of Bourbaki [6] and Bakhtin [5]. Czerwik [8] introduced an axiom which was weaker than the triangular inequality and precisely defined a b-metric space with a view of generalizing the Banach contraction mapping theorem. Several fixed point theorems on the platform of b-metric space endowed with different contractions are proved by many scholars for instance, see [7,8,10,25,28].
The concept of fuzzy sets has been introduced by Zadeh [30] in 1965. This concept was used in topology and analysis by many authors. The idea of fuzzy sets is utilized by Michalek and Kramosoil [17] in 1975 to establish an important notion of fuzzy metric space. In 1988, Grabiec [12] proved the well known Banach fixed point theorem in the setting of fuzzy metric spaces. In 1994, George and Veermani [9] modified the definition of fuzzy metric space given by Michalek and Kramosil [17] and defined the Hausdorff topology of fuzzy metric spaces, which have important applications [26] in quantum particle physics. After that many fixed point results have been established by many researchers in fuzzy metric spaces. For instance see [1,11,19,22,24]. In 2016, N\v{a}d\v{a}ban [20] introduced the concept of fuzzy b-metric space. In 2017, Mehmood et al. [18] generalized the idea of extended b-metric space given by Kamran and Samreen [27] by introducing the idea of an extended fuzzy b-metric space and proved the Banach fixed point theorem in this new frame. In [21] the notion of Hausdorff fuzzy metric (HFM) on compact set is introduced. Recently Batul et al. [3] proved some results using multivalued mappings (MVM) in FBMS. In this article, motivated by the idea of EFBMS given in [18] we generalizes the results of the new article [3] for MVM in Hausdorff extended fuzzy b-metric space (HEFBMS). These results generalizes both the results of [3,23].
Recently, the concept of EFBMS is introduced in [18] as follows:
Definition 2.1. [18] Let W be a non empty set, θ:W×W→[1,∞) and ∗ be a continuous t-norm. A mapping Mθ:W×W×[0,+∞)→[0,1] is called an extended fuzzy b-metric on W if for all ρ1,ρ2,ρ3∈W, the following conditions hold:
[Mbθ1]:Mθ(ρ1,ρ2,0)=0;
[Mbθ2]:Mθ(ρ1,ρ2,ϑ)=1,for allϑ>0 if and only if ρ1=ρ2;
[Mbθ3]:Mθ(ρ1,ρ2,ϑ)=Mθ(ρ2,ρ1,ϑ);
[Mbθ4]:Mθ(ρ1,ρ3,θ(ρ1,ρ3)(ϑ+β))≥Mθ(ρ1,ρ2,ϑ)∗Mθ(ρ2,ρ3,β) for allϑ,β≥0;
[Mbθ5]:Mθ(ρ1,ρ2,.):(0,+∞)→[0,1] is left continuous, and limt→+∞Mθ(ρ1,ρ2,ϑ)=1.
Then (W,Mθ,∗) is an EFBMS.
Remark 2.1. By taking θ(ρ1,ρ3)=b we get the notion of FBMS defined in [16] and by taking θ(ρ1,ρ3)=1 the notion of FMS defined in [9] is obtained.
Example 2.1. [18] Let W={1,2,3} and define db:W×W→R by
db(ρ1,ρ2)=(ρ1−ρ2)2. |
Then (W,db) is a b-metric space. Define a mapping θ:W×W→[1,+∞) by
θ(ρ1,ρ2)=1+ρ1+ρ2. |
Let Mθ:W×W×[0,∞)→[0,1] be defined by
Mθ(ρ1,ρ2,ϑ)={ϑϑ+db(ρ1,ρ2)if ϑ>00if ϑ=0. |
Then (W,Mθ,∧) is an EFBMS with ϑ1∗ϑ2=ϑ1∧ϑ2=min{ϑ1,ϑ2}.
Following are the definitions of G-Cauchy sequence and completeness in [18].
Definition 2.2. [18] For an EFBMS (W,Mθ,∗):
(1) Let {ρn} in W be any sequence, then {ρn} is called G-Cauchy if limn→+∞Mθ(ρn,ρn+q,ϑ)=1 for ϑ>0 and q>0.
(2) If every G-Cauchy sequence is convergent in an EFBMS then EFBMS is called G-complete EFBMS.
Similarly, for an EFBMS (W,Mθ,∗), a sequence {ρn} in W is convergent if there exits ρ∈W such that
limn→+∞Mθ(ρn,ρ,ϑ)=1for allϑ>0. |
Definition 2.3. [23] Let (W,M,∗) be FMS and Y be any non empty subset of (W,M,∗), the fuzzy distance M of an element σ1∈W and the subset Y⊂W is defined as
M(σ1,Y,ϑ)=sup{M(σ1,σ2,ϑ):σ2∈Y}. |
Note that M(σ1,Y,ϑ)=M(Y,σ1,ϑ).
Lemma 2.1. [31] Suppose X∈CB(W),thenρ1∈X if and only if M(X,ρ1,ϑ)=1 for all ϑ>0.
Definition 2.4. [23] Let (W,M,∗) be a FMS and ^C0(W) be the collection of all nonempty compact subsets of W. By HM we mean a function on ^C0(W)×^C0(W)×(0,+∞) defined by,
HM(X,Y,ϑ)=min{ infσ1∈XF(σ1,Y,ϑ),infσ2∈YM(X,σ2,ϑ)} |
for all X,Y∈^C0(W) and ϑ>0.
Lemma 2.2. [14] Let (W,M,∗) be a FMS and M(ρ1,ρ2,kϑ)≥M(ρ1,ρ2,ϑ) for all ρ1,ρ2∈W,k∈(0,1) and ϑ>0 then ρ1=ρ2.
Lemma 2.3. [23] Let (W,M,∗) be a FMS and (^C0,HM,∗) is a HFMS on ^C0. If for all X,Y∈^C0, for each ρ∈X and ϑ>0 there exist σρ∈Y, such that M(ρ,Y,ϑ)=M(ρ,σρ,ϑ) then
HM(X,Y,ϑ)≤M(ρ,σρ,ϑ). |
The extention of Definition 2.3 of [23], in HEFBMS on ^C0 is given in the following definition.
Definition 2.5. Consider (W,Mθ,∗) a EFBMS and define HMθ on ^C0(W)×^C0(W)×(0,∞) by,
HMθ(X,Y,ϑ)=min{ infρ∈XMθ(ρ,Y,ϑ),infσ∈YMθ(X,σ,ϑ)} |
for all X,Y∈^C0(W), ϑ>0, where Mθ is defined in the same way as in Definition 2.3. That is,
Mθ(ρ,Y,ϑ)=sup{Mθ(ρ,σ,ϑ):σ∈Y}. |
In this section, we prove certain new fixed point results by using the idea of HFMS in HEFBMS. The extention of Lemmas 2.1–2.3 in the setting of EFBMS is as follows:
Lemma 3.1. If X∈CB(W), then ρ∈X if and only if Mθ(X,ρ,ϑ)=1∀ϑ>0.
Proof. Since
Mθ(X,ρ,ϑ)=sup{Mθ(ρ,σ,ϑ):σ∈X}=1, |
there exists a sequence {σn}⊂X such that
Mθ(ρ,σn,ϑ)>1−1n. |
Letting n→+∞, we get σn→ρ. From A∈CB(W), it follows that ρ∈X.
Conversely, if ρ∈X, we have
Mθ(X,ρ,ϑ)=sup{Mθ(ρ,σ,ϑ):σ∈X}>Mθ(ρ,ρ,ϑ)=1, |
Again following [19], it follows from Fbθ5.
Lemma 3.2. In G-complete EFBMS (W,Mθ,∗) if for ρ,σ∈W and for k∈(0,1),
Mθ(ρ,σ,kϑ)≥Mθ(ρ,σ,ϑ) |
then ρ=σ.
Lemma 3.3. Let (W,Mθ,∗) be an EFBMS and (^C0,HMθ,∗) is a HEFBMS on ^C0. If for all X,Y∈^C0, and each ρ∈X there exists σρ∈Y, satisfying Mθ(ρ,Y,ϑ)=Mθ(ρ,σρ,ϑ), where ϑ>0 then
HMθ(X,Y,ϑ)≤Mθ(ρ,σρ,ϑ). |
Proof. If
HMθ(X,Y,ϑ)=infρ∈XMθ(ρ,B,ϑ), |
then
HFθ(X,Y,ϑ)≤Mθ(ρ,Y,ϑ). |
Since for each ρ∈X there exists σρ∈Y satisfying
Mθ(ρ,Y,ϑ)=Mθ(ϑ,σρ,ϑ). |
Hence
HMθ(X,Y,ϑ)≤Mθ(ρ,σρ,ϑ). |
Now if
HMθ(X,Y,ϑ)=infσ∈YMθ(X,σ,ϑ)≤infρ∈XMθ(ρ,Y,ϑ)≤Mθ(ρ,Y,ϑ)=Mθ(ρ,σρ,ϑ). |
This implies
HMθ(X,Y,ϑ)≤Mθ(ρ,σρ,ϑ) |
for some σρ∈Y. Hence in both cases result is proved.
Theorem 3.1. Let (W,Mθ,∗) be G-complete EFBMS with θ(ρ,σ)⩾1 and HMθ be a HEFBMS. Let Φ:W→^C0(W) be a multivalued mapping satisfying
HMθ(Φρ,Φσ,kϑ)≥Mθ(ρ,σ,ϑ) | (3.1) |
∀ρ,σ∈W,kθ(ρ,σ)<1. Then Φ has a fixed point.
Proof. We choose a sequence {ci} in W, for c0∈W as follows: Let c1∈W such that c1∈Φc0 with the help of Lemma 3.3 we can choose c2∈Φc1 such that
Mθ(c1,c2,ϑ)⩾HMθ(Φc0,Φc1,ϑ)for allϑ>0. |
By induction we have ci+1∈Φci satisfying
Mθ(ci,ci+1,ϑ)⩾HMθ(Φci−1,Φci,ϑ)for alli∈N. |
Now using (3.1) and Lemma 3.3 we can write
Mθ(ci,ci+1,ϑ)≥HMθ(Φci−1,Φci,ϑ)≥Mθ(ci−1,ci,ϑk)≥HMθ(Φci−2,Φci−1,ϑk)≥Mθ(ci−2,ci−1,ϑk2)⋮≥HMθ(Φc0,Φc1,ϑki−1)≥Mθ(c0,c1,ϑki). | (3.2) |
For any q∈N, writing q(ϑq)=ϑq+ϑq+…+ϑq and using [Mbθ4] repeatedly,
Mθ(ci,ci+q,ϑ)≥Mθ(ci,ci+1,ϑqθ(ci,ci+q))∗Mθ(ci+1,ci+2,ϑqθ(ci,ci+q)θ(ci+1,ci+q))∗Mθ(ci+2,ci+3,ϑqθ(ci,ci+q)θ(ci+1,ci+q)θ(xn+2,xn+q))∗…∗Mθ(ci+q−1,ci+q,ϑqθ(ci,ci+q)θ(ci+1,ci+q)θ(ci+2,ci+q)…θ(ci+q−1,ci+q)). |
Using (3.2) and [Mbθ5], we get
Mθ(ci,ci+q,ϑ)≥Mθ(c0,c1,ϑqθ(ci,ci+q)ki)∗Mθ(c0,c1,ϑqθ(ci,ci+q)θ(ci+1,ci+q)ki+1)∗Mθ(c0,c1,ϑqθ(ci,ci+q)θ(ci+1,ci+q)θ(ci+2,ci+q)kn+3)∗…∗Mθ(c0,c1,ϑqθ(ci,ci+q)θ(ci+1,ci+q)θ(ci+2,ci+q)…θ(ci+q−1,ci+q)kn+q). |
Since θ(ci,ci+q)k<1for alli,q∈N, taking limit as i→+∞, we get
limi→+∞Mθ(ci,ci+q,ϑ)=1∗1∗…∗1=1. |
Hence {ci} is G-Cauchy sequence. As W is G-complete so there exists z∈W such that {ci} converges to z. To prove that z is a fixed point of Φ we proceed as follows:
Mθ(z,Φz,ϑ)≥Mθ(z,ci+1,ϑ2θ(z,Φz))∗Mθ(ci+1,Φz,ϑ2θ(z,Φz))≥Mθ(z,ci+1,ϑ2θ(z,Φz))∗HMθ(Φci,Φz,ϑ2θ(z,Φz))≥Mθ(z,ci+1,ϑ2θ(z,Φz))∗Mθ(ci,z,ϑ2θ(z,Φz)k)⟶1asi→+∞. |
By Lemma 3.1 z∈Φz.
This implies that z is fixed point of Φ.
Example 3.1. Let W=[0,1] and Mθ(ρ,σ,ϑ)=ϑϑ+(ρ−σ)2. Then (W,Mθ,∗) is a G-complete EFBMS with
θ(ρ,σ)=1+ρ+σ. |
Let Φ:W→^C0(W) be a mapping defined by
Φ(ρ)={{0}if ρ=0,{0,√kρn}otherwise, |
where k∈(0,1) and n⩾2. For ρ=σ, we have
HMθ(Φρ,Φσ,kϑ)=1=Mθ(ρ,σ,ϑ). |
For ρ≠σ, we have the following cases:
For ρ=0 and σ∈(0,1], we have
HMθ(Φ(0),Φ(σ),kϑ)=min{ infa∈Φ(0)Mθ(a,Φ(σ),kϑ),infb∈Φ(σ)Mθ(Φ(0),b,kϑ)}=min{infa∈Φ(0)Mθ(a,{0,√kσn},kϑ),infb∈Φ(σ)Mθ({0},b,kϑ)}=min{inf{Mθ(0,{0,√kσn},kϑ)},inf{Mθ({0},0,kt),Mθ({0},√kσn,kϑ)}}=min{inf{sup{Mθ(0,0,kϑ),Mθ(0,√kσn,kϑ)}},inf{Mθ(0,0,kϑ),Mθ(0,√kyn,kϑ)}}=min{inf{sup{1,ϑϑ+σ2n2}},inf{1,ϑϑ+σ2n2}}=min{inf{1},ϑϑ+σ2n2}=min{1,ϑϑ+σ2n2}=ϑϑ+σ2n2. |
It follows that
HMθ(Φ(0),Φ(σ),kϑ)>Mθ(0,σ,ϑ)=ϑϑ+σ2. |
For ρ and σ∈(0,1], after some simple calculation, we get:
HMθ(Φ(ρ),Φ(σ),kϑ)=min{sup{ϑϑ+ρ2n2,ϑϑ+(ρ−σ)2n2},sup{ϑϑ+σ2n2,ϑϑ+(ρ−σ)2n2}}≥ϑϑ+(ρ−σ)2n2>ϑϑ+(ρ−σ)2=Mθ(ρ,σ,ϑ). |
Thus for all cases, we have
HMθ(Φρ,Φσ,kϑ)≥Mθ(ρ,σ,ϑ). |
Hence 0 is a fixed point of Φ.
Following results follows from Theorem 3.1.
Remark 3.1. (i) Taking θ(ρ,σ)=b in the above Thoerem, we get the Theorem 3.2 of [3].
(ii) Taking θ(ρ,σ)=1 in the above Theorem, the same result follows for FMS.
Theorem 3.2. Let (W,Mθ,∗) be a G-complete EFBMS with θ(ρ,σ)⩾1 and HMθ be a HEFBMS. Let Φ:W→^C0(W) be a multivalued mapping satisfying
HMθ(Φρ,Φσ,kϑ)≥min{Mθ(σ,Φσ,ϑ)[1+Mθ(ρ,Φρ,ϑ)]1+Mθ(ρ,σ,ϑ),Mθ(ρ,σ,ϑ)} | (3.3) |
for allρ,σ∈W,kθ(ρ,σ)<1. Then Φ has a fixed point.
Proof. Proceeding as in Theorem 3.1 we have
Mθ(c1,c2,ϑ)⩾HMθ(Φc0,Φc1,ϑ)for allϑ>0. |
By induction, we have ci+1∈Φci satisfying
Mθ(ci,ci+1,ϑ)⩾HMθ(Φci−1,Sci,ϑ)for alli∈N. |
Now using (3.3) and Lemma 3.3 we can write
Mθ(ci,ci+1,ϑ)≥HMθ(Φci−1,Φci,ϑ)≥min{Mθ(ci,Φci,ϑk)[1+Mθ(ci−1,Φci−1,ϑk)]1+Mθ(ci−1,ci,ϑk),Mθ(ci−1,ci,ϑk)}≥min{Mθ(ci,ci+1,ϑk)[1+Mθ(ci−1,ci,ϑk)]1+Mθ(ci−1,ci,ϑk),Mθ(ci−1,ci,ϑk)}≥min{Mθ(ci,ci+1,ϑk),Mθ(ci−1,ci,ϑk)}. | (3.4) |
If
min{Mθ(ci,ci+1,ϑk),Mθ(ci−1,ci,ϑk)}=Mθ(ci,ci+1,ϑk). |
Then (3.4) implies
Mθ(ci,ci+1,ϑ)≥Mθ(ci,ci+1,ϑk). |
Then Lemma 3.2 yield the proof and if
min{Mθ(ci,ci+1,ϑk),Mθ(ci−1,ci,ϑk)}=Mθ(ci−1,ci,ϑk). |
Then from (3.4) we have
Mθ(ci,ci+1,ϑ)≥Mθ(ci−1,ci,ϑk)⩾…⩾Mθ(ci−1,ci,ϑki). |
One can complete the proof as in Theorem 3.1.
Remark 3.2. By taking θ(ρ,σ)=b in Theorem 3.2, the Theorem 3.2 of [3] is obtained and by taking θ(ρ,σ)=1 in Theorem 3.2, the main result of [23] is obtained.
Theorem 3.3. Let (W,Mθ,∗) be a G-complete EFBMS with θ(ρ,σ)⩾1 and HMθ be a HEFBMS. Let Φ:W→ˆC0(W) be a multivalued mapping satisfying
HMθ(Φρ,Φσ,kϑ)≥min{Mθ(σ,Φσ,ϑ)[1+Mθ(ρ,Φρ,ϑ)+Mθ(σ,Φρ,ϑ)]2+Mθ(ρ,σ,ϑ),Mθ(ρ,σ,ϑ)} | (3.5) |
for allρ,σ∈W,kθ(ρ,σ)<1. Then Φ has a fixed point.
Proof. Proceeding as in Theorem 3.1 we can write
Mθ(c1,c2,ϑ)⩾HMθ(Φc0,Φc1,ϑ)for allϑ>0. |
By induction, we have ci+1∈Φci satisfying
Mθ(ci,ci+1,ϑ)⩾HMθ(Φci−1,Φci,ϑ)for alli∈N. |
Using (3.5) and Lemma 3.3, we have
Mθ(ci,ci+1,ϑ)≥HMθ(Φci−1,Φci,ϑ)≥min{Mθ(ci,Φci,ϑk)[1+Mθ(ci−1,Φci−1,ϑk)+Mθ(ci,Φci−1,ϑk)]2+Mθ(ci−1,ci,ϑk),Mθ(ci−1,ci,ϑk)}≥min{Mθ(ci,ci+1,ϑk)[1+Mθ(ci−1,ci,ϑk)+Mθ(ci,ci,ϑk)]2+Mθ(ci−1,ci,ϑk),Mθ(ci−1,ci,ϑk)}≥min{Mθ(ci,ci+1,ϑk)[1+Mθ(ci−1,ci,ϑk)+1]2+Mθ(ci−1,ci,ϑk),Mθ(ci−1,ci,ϑk)}≥min{Mθ(ci,ci+1,ϑk)[2+Mθ(ci−1,ci,ϑk)]2+Mθ(ci−1,ci,ϑk),Mθ(ci−1,ci,ϑk)}≥min{Mθ(ci,ci+1,ϑk),Mθ(ci−1,ci,ϑk)}. | (3.6) |
If
min{Mθ(ci,ci+1,ϑk),Mθ(ci−1,ci,ϑk)}=Mθ(ci,ci+1,ϑk). |
Then (3.6) implies
Mθ(ci,ci+1,ϑ)≥Mθ(ci,ci+1,ϑk). |
Then it is trivial by Lemma 3.2.
If
min{Mθ(ci,ci+1,ϑk),Mθ(ci−1,ci,ϑk)}=Mθ(ci−1,ci,ϑk). |
Then from (3.6) we have
Mθ(ci,ci+1,ϑ)≥Mθ(ci−1,ci,ϑk)⩾…⩾Mθ(ci−1,ci,ϑki). |
Now one can complete the proof by using Theorem 3.1.
Remark 3.3. Taking θ(ρ,σ)=b in Theorem 3.3, we get the Theorem 3.3 of [3] by taking θ(ρ,σ)=1, the same result follows for FMS.
Theorem 3.4. Let (W,Mθ,∗) be a G-complete EFBMS with θ(ρ,σ)⩾1 and HMθ be a HEFBMS. Let Φ:W→ˆC0(W) be a multivalued mapping satisfying
HMθ(Φρ,Φσ,kϑ)≥min{Mθ(ρ,Φρ,ϑ)[1+Mθ(σ,Φσ,ϑ)]1+Mθ(Φρ,Φσ,ϑ),Mθ(σ,Φσ,ϑ)[1+Mθ(ρ,Φρ,ϑ)]1+Mθ(ρ,σ,ϑ),Mθ(ρ,Φρ,ϑ)[2+Mθ(ρ,Φσ,ϑ)]1+Mθ(ρ,Φσ,ϑ)+Mθ(σ,Φρ,ϑ),Mθ(ρ,σ,ϑ)} | (3.7) |
for allρ,σ∈W,kθ(ρ,σ)<1. Then Φ has a fixed point.
Proof. Proceeding as in Theorem 3.1, we get
Mθ(c1,c2,ϑ)⩾HMθ(Φc0,Φc1,ϑ)for allϑ>0. |
By induction we have ci+1∈Φci satisfying
Mθ(ci,ci+1,ϑ)⩾HMθ(Φci−1,Φci,ϑ)for alli∈N. |
Now by using (3.7) and Lemma 3.3, we can write
Mθ(ci,ci+1,ϑ)≥HMθ(Φci−1,Φci,ϑ)≥min{Mθ(ci−1,Φci−1,ϑk)[1+Mθ(ci,Φci,ϑk)]1+Mθ(Φci−1,Φci,ϑk),Mθ(ci,Φci,ϑk)[1+Mθ(ci−1,Φci−1,ϑk)]1+Mθ(ci−1,ci,ϑk),Mθ(ci−1,Φci−1,ϑk)[2+Mθ(ci−1,Φci,ϑk)]1+Mθ(ci−1,Φci,ϑk)+Mθ(ci,Φci−1,ϑk),Mθ(ci−1,ci,ϑk)}≥min{Mθ(ci−1,ci,ϑk)[1+Mθ(ci,ci+1,ϑk)]1+Mθ(ci,ci+1,ϑk),Mθ(ci,ci+1,ϑk)[1+Mθ(ci−1,ci,ϑk)]1+Mθ(ci−1,ci,ϑk),Mθ(ci−1,ci,ϑk)[2+Mθ(ci−1,ci+1,ϑk)]1+Mθ(ci−1,ci+1,ϑk)+Mθ(ci,ci,ϑk),Mθ(ci−1,ci,ϑk)}, |
Mθ(ci,ci+1,ϑ)≥min{Mθ(ci,ci+1,ϑk),Mθ(ci−1,ci,ϑk)}. | (3.8) |
If
min{Mθ(ci,ci+1,ϑk),Mθ(ci−1,ci,ϑk)}=Mθ(ci,ci+1,ϑk). |
Then (3.8) implies
Mθ(ci,ci+1,ϑ)≥Mθ(ci,ci+1,ϑk). |
The case is trivial by Lemma 3.2 and if
min{Mθ(ci,ci+1,ϑk),Mθ(ci−1,ci,ϑk)}=Mθ(ci−1,ci,ϑk). |
Then from (3.6) we have
Mθ(ci,ci+1,ϑ)≥Mθ(ci−1,ci,ϑk)⩾…⩾Mθ(ci−1,ci,ϑki). |
The proof then follows by Theorem 3.1.
Remark 3.4. Taking θ(ρ,σ)=b in Theorem 3.4, the Theorem 3.4 of [3] is obtained and by taking θ(ρ,σ)=1 in Theorem 3.4, the same result follows in FMS.
Nonlinear integral equations in abstract spaces arise in different fields of physical sciences, engineering, biology, and applied mathematics [4,15]. The theory of nonlinear integral equations in abstract spaces is a fast growing field with important applications to a number of areas of analysis as well as other branches of science [13].
As an application of our main fixed point result Theorem 3.1, Volterra-Type integral inclusion has been studied for the existence of the solution.
Let W=C([0,1],R) and define the EFBMS on W with θ(ρ,ϱ)=1+ρ+ϱ by
Mθ(ρ,ϱ,ϑ)=e−supu∈[0,1]|ρ(u)−ϱ(u)|2ϑ |
for allϑ>0 and ρ,ϱ∈W. Then (W,Mθ,∗) is a G-complete EFBMS with t norm a∗b=ab for all a,b∈[0,1]. Consider
ρ(u)∈∫u0G(u,v,ρ(v))dv+Θ(u)for allu,v∈[0,1], | (4.1) |
where Θ:[0,1]→R+ and G:[0,1]×[0,1]×R→R are continuous functions.
Define a multivalued operator Φ:W→^C0(W) by
Φ(ρ(u))={w∈W:w∈∫u0Ψ(u,v,ρ(v))dv+Θ(u),u∈[0,1]}. |
The following theorem proves the existence of a solution of the integral inclusion (4.1).
Theorem 4.1. Let Φ:W→^C0(W) be the multivalued integral operator given by
Φ(ρ(u))={w∈W:w∈∫u0Ψ(u,v,ρ(v))dv+Θ(u),u∈[0,1]}. |
Suppose the following hold:
(1) Ψ:[0,1]×[0,1]×R→Pcv(R) is such that Ψ(u,v,ρ(v)) is lower semi-continuous in [0,1]×[0,1].
(2) For allu,v∈[0,1], Θ(u,v)∈W, we have
|Ψ(u,v,ρ(v))−Ψ(u,v,ϱ(v))|2≤Θ2(u,v)|ρ(v)−ϱ(v)|2. |
(3) For 0<k<1 we have
supu∈[0,1]∫u0Θ2(u,v)dv≤k. |
Then (4.1) has the solution in W.
Proof. For Ψ:[0,1]×[0,1]×R→Pcv(R), by Michael's selection theorem there exists an operator Ψi:[0,1]×[0,1]×R→R such that Ψi(u,v,ϱ(v))∈Ψ(u,v,ϱ(v))for allu,v∈[0,1].
It follows that
ρ(u)∈∫u0Ψi(u,v,ρ(v))dv+Θ(u)∈Φ(ρ(u)) |
hence Φ(ρ(u))≠∅ and closed. Moreover, since Θ(u) and Ψ are continuous are bounded. This means that Φ(ρ(u)) is bounded and Φ(ρ(u))∈^C0(W) Let q,r∈W there exist q(u)∈Φ(ρ(u)) and r(u)∈Φ(ϱ(u)) such that
q(ρ(u))={w∈W:w∈∫u0Ψi(u,v,ρ(v))dv+Θ(u),v∈[0,1]} |
and
r(ϱ(u))={w∈W:w∈∫u0Ψi(u,v,ϱ(v))dv+Θ(v),v∈[0,1]}. |
It follows from assumption (4.1) that
|Ψi(u,v,ρ(v))−Ψi(u,v,ϱ(v))|2≤Θ2(u,v)|ρ(v)−ϱ(v)|2. |
Now,
e−supu∈[0,1]|q(ρ(u)−r(ϱ(u))|2kϑ≥e−supu∈[0,1]∫u0|Ψi(u,v,ρ(v))−Ψi(u,v,ϱ(v))|2dvkϑ≥e−supu∈[0,1]∫u0Θ2(u,v)|ρ(v)−ϱ(v)|2dvkϑ≥e−|ρ(v)−ϱ(v)|2supu∈[0,1]∫u0Θ2(u,v)dvkϑ≥e−k|ρ(v)−ϱ(v)|2kϑ=e−|ρ(v)−ϱ(v)|2ϑ≥e−supv∈[0,1]|ρ(v)−ϱ(v)|2ϑ=Mθ(u,v,ϑ). |
So, we have
Mθ(q,r,kϑ)≥Mθ(u,v,ϑ). |
By replacing the roll of u and v, we have
HMθ(Φρ,Φϱ,kϑ)≥Mθ(ρ,ϱ,ϑ). |
Hence, Φ has a fixed point in W, which satisfies the integral inclusion (4.1).
In this article fixed point results in the setting of Hausdorff extended fuzzy b-metric spaces have been estabilshed. The main results are validated by an example. Theorem 3.1 generalizes the result of [3]. These results extend the theory of fixed points for multivalued mappings in a more general class of extended fuzzy b-metric spaces. For instance, some fixed point results can be obtained by taking θ(σ,ρ)=b (corresponding to G-complete FBMSs). An application for the existence of a solution for a Volterra type integral inclusion is also presented.
The authors declare that they have no conflicts of interest.
[1] |
M. S. Ashraf, R. Ali, N. Hussain, New fuzzy fixed point results in generalized fuzzy metric spaces with application to integral equations, IEEE Access, 8 (2020), 91653–91660. https://doi.org/10.1109/ACCESS.2020.2994130 doi: 10.1109/ACCESS.2020.2994130
![]() |
[2] | S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrals, Fund. Math., 3 (1922), 133–181. |
[3] |
S. Batul, F. Mehmood, A. Hussain, H. Aydi, A. Mukheimer, Multivalued contraction maps on fuzzy b-metric spaces and an application, AIMS Math., 7 (2022), 5925–5942. https://doi.org/10.3934/math.2022330 doi: 10.3934/math.2022330
![]() |
[4] |
P. Diamond, Theory and applications of fuzzy Volterra integral equations, IEEE T. Fuzzy Syst., 10 (2002), 97–102. https://doi.org/10.1109/91.983284 doi: 10.1109/91.983284
![]() |
[5] | I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
[6] | N. Bourbaki, Eléments de mathématique, Hermann, Paris, 1965. |
[7] | M. Boriceanu, A. Petrusel, I. A. Rus, Fixed point theorems for some multi-valued generalized contraction in b-metric spaces, Int. J. Math. Stat., 6 (2010), 65–76. |
[8] | S. Czerwick, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5–11. |
[9] |
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
![]() |
[10] |
R. George, S. Radenovic, K. P. Reshma, S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013. https://doi.org/10.22436/jnsa.008.06.11 doi: 10.22436/jnsa.008.06.11
![]() |
[11] | D. Gopal, C. Vetro, Some new fixed point theorems in fuzzy metric spaces, Iran. J. Fuzzy Syst., 11 (2014), 95–107. |
[12] |
M. Grabeic, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
![]() |
[13] | D. J. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear integral equations in abstract spaces, Dordrecht: Kluwer Academic Publishers, 1996. |
[14] | V. Gupta, N. Mani, A. Saini, Fixed point theorems and its applications in fuzzy metric spaces, Proceedings of the conference AEMDS-2013, 2013. |
[15] | A. Jerri, Introduction to integral equations with applications, John Wiley & Sons, 1999. |
[16] |
N. Hussain, P. Salimi, V. Parvaneh, Fixed point results for various contractions in parametric and fuzzy b-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 719–739. https://doi.org/10.22436/jnsa.008.05.24 doi: 10.22436/jnsa.008.05.24
![]() |
[17] | I. Kramosil, J. Michálek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326–334. |
[18] | F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy b-metric spaces, J. Math. Anal., 8 (2017), 124–131. |
[19] |
S. N. Mishra, S. N. Sharma, S. L. Singh, Common fixed point of maps on fuzzy metric spaces, Int. J. Math. Sci., 17 (1994), 915450. https://doi.org/10.1155/S0161171294000372 doi: 10.1155/S0161171294000372
![]() |
[20] | S. Nădăban, Fuzzy b-metric spaces, Int. J. Comput. Commun. Control, 11 (2016), 273–281. |
[21] |
J. Rodŕiguez-López, S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Syst., 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007 doi: 10.1016/j.fss.2003.09.007
![]() |
[22] |
A. F. Roldán-López-de-Hierro, E. Karapinar, S. Manro, Some new fixed point theorems in fuzzy metric space, J. Intell. Fuzzy Syst., 27 (2014), 2257–2264. https://doi.org/10.3233/IFS-141189 doi: 10.3233/IFS-141189
![]() |
[23] | A. Shahzad, A. Shoaib, Q. Mahmood, Fixed point results for the multivalued mapping in Hausdorff fuzzy metric space, J. Fixed Point Theory, 2017 (2017), 3. |
[24] |
C. Vetro, Fixed points in a weak non-Archemedean fuzzy metric spaces, Fuzzy Sets Syst., 162 (2011), 84–90. https://doi.org/10.1016/j.fss.2010.09.018 doi: 10.1016/j.fss.2010.09.018
![]() |
[25] |
D. Shehwar, S. Batul, T. Kamran, A. Ghiura, Caristis fixed point theorem on C∗-algebra valued metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 584–588. https://doi.org/10.22436/jnsa.009.02.22 doi: 10.22436/jnsa.009.02.22
![]() |
[26] |
Y. Tanaka, Y. Mizuno, T. Kado, Chaotic dynamics in the Friedmann equation, Chaos Solitons Fract., 24 (2005), 407–422. https://doi.org/10.1016/j.chaos.2004.09.034 doi: 10.1016/j.chaos.2004.09.034
![]() |
[27] |
T. Kamran, M. Samreen, Q. ul Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
![]() |
[28] |
T. Kamran, M. Postolache, A. Ghiura, S. Batul, R. Ali, The Banach contraction principle in C∗-algebra-valued b-metric spaces with application, Fixed Point Theory Appl., 1 (2016), 10. https://doi.org/10.1186/s13663-015-0486-z doi: 10.1186/s13663-015-0486-z
![]() |
[29] |
C. Vetro, Fixed points in a weak non-Archemedean fuzzy metric spaces, Fuzzy Sets Syst., 162 (2011), 84–90. https://doi.org/10.1016/j.fss.2010.09.018 doi: 10.1016/j.fss.2010.09.018
![]() |
[30] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[31] |
Z. Qiu, S. Hong, Coupled fixed points for multivalued mappings in fuzzy metric spaces, J. Fixed Point Theory, 2013 (2013), 162. https://doi.org/10.1186/1687-1812-2013-162 doi: 10.1186/1687-1812-2013-162
![]() |