Research article Special Issues

Picard $ S $-type semi implicit mid-point method for fixed point approximation with applications

  • Published: 31 December 2025
  • MSC : 47H05, 47H09, 47H10, 47H22, 47H25, 49J40

  • In this article, our goal is to propose and design a hybrid Picard $ S $-type semi-implicit mid-point method to approximate the fixed point of a contractive-like mapping. The convergence result and stability of the proposed method are established under suitable assumptions. We implemented the newly constructed method to approximate the common element, which is the fixed point of a contractive-like mapping and simultaneously solves a general variational inequality. Finally, the significance of the proposed scheme is illustrated through the study of a fractional diffusion equation.

    Citation: Doaa Filali, Mohammad Dilshad, Ibrahim Alraddadi, Mohammad Akram. Picard $ S $-type semi implicit mid-point method for fixed point approximation with applications[J]. AIMS Mathematics, 2025, 10(12): 30968-30989. doi: 10.3934/math.20251359

    Related Papers:

  • In this article, our goal is to propose and design a hybrid Picard $ S $-type semi-implicit mid-point method to approximate the fixed point of a contractive-like mapping. The convergence result and stability of the proposed method are established under suitable assumptions. We implemented the newly constructed method to approximate the common element, which is the fixed point of a contractive-like mapping and simultaneously solves a general variational inequality. Finally, the significance of the proposed scheme is illustrated through the study of a fractional diffusion equation.



    加载中


    [1] R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79.
    [2] R. Agarwal, S. Hristova, D. O'Regan, Basic concepts on Riemann-Liouville fractional differential equations with non-instantaneous impulses, Symmetry, 11 (2019), 614. https://doi.org/10.3390/sym11050614 doi: 10.3390/sym11050614
    [3] M. O. Aibinu, P. Pillay, J. O. Olaleru, O. T. Mewomo, The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces, J. Nonlinear Sci. Appl., 11 (2018), 1374–1391. https://doi.org/10.22436/jnsa.011.12.08 doi: 10.22436/jnsa.011.12.08
    [4] M. Akram, A four-step semi-implicit midpoint approximation scheme for fixed point with applications, Eur. J. Pure Appl. Math., 18 (2025), 5744. https://doi.org/10.29020/nybg.ejpam.v18i1.5744 doi: 10.29020/nybg.ejpam.v18i1.5744
    [5] T. Alpcan, T. Başar, Distributed algorithms for Nash equilibria of flow control games, In: Advances in dynamic games, Boston, 2005,473–498. https://doi.org/10.1007/0-8176-4429-6_26
    [6] M. A. Alghamdi, M. A. Alghamdi, N. Shahzad, H. K. Xu, The implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., 2014 (2014), 96. https://doi.org/10.1186/1687-1812-2014-96 doi: 10.1186/1687-1812-2014-96
    [7] A. S. Alshehry, S. Mukhtar, H. S. Khan, R. Shah, Fixed-point theory and numerical analysis of an epidemic model with fractional calculus: Exploring dynamical behavior, Open Phys., 21 (2023), 20230121. https://doi.org/10.1515/phys-2023-0121 doi: 10.1515/phys-2023-0121
    [8] R. T. Alqahtani, G. A. Okeke, C. I. Ugwuogor, A novel fixed point iterative process for multivalued mappings applied in solving a HIV model of fractional order, Mathematics, 13 (2025), 739. https://doi.org/10.3390/math13050739 doi: 10.3390/math13050739
    [9] C. Baiocchi, Variational and quasivariational inequalities, 1984.
    [10] D. Baleanu, S. Arshad, A. Jajarmi, W. Shokat, F. A. Ghassabzade, M. Wali, Dynamical behaviors and stability analysis of a generalied fractional model with a real case study, J. Adv. Res., 48 (2023), 157–173. https://doi.org/10.1016/j.jare.2022.08.010 doi: 10.1016/j.jare.2022.08.010
    [11] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181.
    [12] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi contractive operators, Fixed Point Theory Appl., 2004 (2004), 716359. https://doi.org/10.1155/S1687182004311058 doi: 10.1155/S1687182004311058
    [13] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpath J. Math., 19 (2003), 7–22.
    [14] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA, 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041
    [15] F. E. Browder, Nonlinear mappings of nonexpansive and accretive-type in Banach spaces, Bull. Amer. Math. Soc., 73 (1967), 875–882.
    [16] C. E. Chidume, Geometric properties of banach spaces and nonlinear iterations, London: Springer, 2009.
    [17] J. A. Clarkson, Uniformly convex spaces, T. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.2307/1989630 doi: 10.2307/1989630
    [18] R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, SIAM, 1992.
    [19] D. Filali, M. Akram, M. Dilshad, A. A. Khidir, General semi-implicit midpoint approximation for fixed point of almost contraction mapping and applications, Appl. Math. Sci. Eng., 32 (2024), 2365687. https://doi.org/10.1080/27690911.2024.2365687 doi: 10.1080/27690911.2024.2365687
    [20] F. Giannessi, A. Maugeri, Variational inequalities and network equilibrium problems, New York: Springer, 1995. https://doi.org/10.1007/978-1-4899-1358-6
    [21] D. Gohde, Zum Prinzip der contraktiven abbildung, Math. Nachr., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312
    [22] F. Gursoy, V. Karakaya, A Picard-$S$ hybrid type iteration method for solving a differential equation with retarded argument, 2014. https://doi.org/10.48550/arXiv.1403.2546
    [23] C. O. Imoru, M. O. Olatinwo, On the stability of Picard and Mann iteration processes, Carpathian J. Math., 19 (2003), 155–160.
    [24] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
    [25] P. Jana, Anisotropic $p$-Laplace equations on long cylindrical domain, Opuscula Math., 44 (2024), 249–265. https://doi.org/10.7494/OpMath.2024.44.2.249 doi: 10.7494/OpMath.2024.44.2.249
    [26] A. Kajouni, A. Chafiki, K. Hilal, M. Oukessou, A new conformable fractional derivative and applications, Int. J. Differ. Equ., 2021 (2021), 6245435. https://doi.org/10.1155/2021/6245435 doi: 10.1155/2021/6245435
    [27] S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 2013 (2013), 69. https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69
    [28] A. Krogh, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, J. Physiol., 52 (1919), 409–415. https://doi.org/10.1113/jphysiol.1919.sp001839 doi: 10.1113/jphysiol.1919.sp001839
    [29] R. M. Leach, D. F. Treacher, ABC of oxygen, Oxygen transport-2. Tissue hypoxia, BMJ, 317 (1998), 1370–1373. https://doi.org/10.1136/bmj.317.7169.1370 doi: 10.1136/bmj.317.7169.1370
    [30] P. Luo, G. Cai, Y. Shehu, The viscosity iterative algorithms for the implicit midpoint rule of nonexpansive mappings in uniformly smooth Banach spaces, J. Inequal Appl., 2017 (2017), 154. https://doi.org/10.1186/s13660-017-1426-8 doi: 10.1186/s13660-017-1426-8
    [31] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162
    [32] M. A. Noor, Y. Yao, Three-step iterations for variational inequalities and nonexpansive mappings, Appl. Math Comput., 190 (2007), 1312–1321. https://doi.org/10.1016/j.amc.2007.02.013 doi: 10.1016/j.amc.2007.02.013
    [33] M. A. Noor, General variational inequalities, Appl. Math. Lett., 1 (1988), 119–122.
    [34] M. A. Noor, General variational inequalities and nonexpansive mappings, J. Math. Anal. Appl., 331 (2007), 810–822. https://doi.org/10.1016/j.jmaa.2006.09.039 doi: 10.1016/j.jmaa.2006.09.039
    [35] G. A. Okeke, Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications, Afr. Mat., 30 (2019), 817–835. https://doi.org/10.1007/s13370-019-00686-z doi: 10.1007/s13370-019-00686-z
    [36] H. E. Scarf, T. B. Hansen, The computation of economic equilibria, 1973.
    [37] G. Scutari, D. P. Palomar, F. Facchinei, J. S. Pang, Monotone games for cognitive radio systems, In: Distributed decision making and control, London: Springer, 417 (2012). 83–112. https://doi.org/10.1007/978-1-4471-2265-4_4
    [38] Y. Song, Y. Pei, A new modified semi-implicit midpoint rule for nonexpansive mappings and 2-generalized hybrid mappings, J. Nonlinear Sci. Appl., 9 (2016), 6348–6363. https://doi.org/10.22436/jnsa.009.12.35 doi: 10.22436/jnsa.009.12.35
    [39] J. Srivastava, Introduction of new Picard-$S$ hybrid iteration with application and some results for nonexpansive mappings, Arab J. Math. Sci., 28 (2022), 61–76. https://doi.org/10.1108/AJMS-08-2020-0044 doi: 10.1108/AJMS-08-2020-0044
    [40] V. Srivastava, K. N. Rai, A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Model., 51 (2010), 616–624. https://doi.org/10.1016/j.mcm.2009.11.002 doi: 10.1016/j.mcm.2009.11.002
    [41] G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, C. R. Hebdomadaires Des Seances De L Academie Des Sci., 258 (1964), 4413–4416.
    [42] G. Szajnowska, M. Zima, Positive solutions to a third order nonlocal boundary value problem with a parameter, Opuscula Math., 44 (2024), 267–283. https://doi.org/10.7494/OpMath.2024.44.2.267 doi: 10.7494/OpMath.2024.44.2.267
    [43] X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc., 113 (1991), 727–731. https://doi.org/10.1090/S0002-9939-1991-1086345-8 doi: 10.1090/S0002-9939-1991-1086345-8
    [44] H. Y. Xu, H. Y. Lan, F. Zhang, General semi-implicit approximations with errors for common fixed points of nonexpansive type operators and applications to Stampacchia variational inequality, Comp. Appl. Math., 41 (2022), 190. https://doi.org/10.1007/s40314-022-01890-7 doi: 10.1007/s40314-022-01890-7
    [45] H. K. Xu, M. A. Alghamdi, N. Shahzad, The implicit midpoint rule for nonexpansive mappings in Banach spaces, Fixed Point Theory, 17 (2016), 509–517.
    [46] H. K. Xu, M. A. Alghamdi, N. Shahzad, The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., 2015 (2015), 41. https://doi.org/10.1186/s13663-015-0282-9 doi: 10.1186/s13663-015-0282-9
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(145) PDF downloads(20) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog