This paper investigated the $ \mathfrak{q} $-analogue of the multiplier-Ruscheweyh operator acting on meromorphic analytic functions, denoted by $ \mathfrak{D}_{\mathfrak{q}, \varepsilon }^{r}(\varkappa, \varrho). $ By applying tools from $ \mathfrak{q} $-calculus together with the principle of subordination, we developed several analytical results that deepened the understanding of geometric function theory (GFT) in the setting of meromorphic functions. The study focused on constructing new subclasses of meromorphic univalent functions associated with the operator $ \mathfrak{D} _{\mathfrak{q}, \varepsilon }^{r}(\varkappa, \varrho), $ characterized by $ \mathfrak{q} $-starlikeness, $ \mathfrak{q} $-convexity, and related geometric classes. Various inclusion relationships, differential inequalities, and integral preservation properties were examined to establish the structural behavior of these families of functions. The findings generalized and unified several existing results in the literature concerning different operators and extended their applications to broader contexts within meromorphic function theory with $ \mathfrak{q} $-calculus operator.
Citation: Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi. Geometric applications for meromorphic functions involving $ \mathfrak{q} $-linear operators[J]. AIMS Mathematics, 2025, 10(12): 30990-31009. doi: 10.3934/math.20251360
This paper investigated the $ \mathfrak{q} $-analogue of the multiplier-Ruscheweyh operator acting on meromorphic analytic functions, denoted by $ \mathfrak{D}_{\mathfrak{q}, \varepsilon }^{r}(\varkappa, \varrho). $ By applying tools from $ \mathfrak{q} $-calculus together with the principle of subordination, we developed several analytical results that deepened the understanding of geometric function theory (GFT) in the setting of meromorphic functions. The study focused on constructing new subclasses of meromorphic univalent functions associated with the operator $ \mathfrak{D} _{\mathfrak{q}, \varepsilon }^{r}(\varkappa, \varrho), $ characterized by $ \mathfrak{q} $-starlikeness, $ \mathfrak{q} $-convexity, and related geometric classes. Various inclusion relationships, differential inequalities, and integral preservation properties were examined to establish the structural behavior of these families of functions. The findings generalized and unified several existing results in the literature concerning different operators and extended their applications to broader contexts within meromorphic function theory with $ \mathfrak{q} $-calculus operator.
| [1] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. |
| [2] | F. H. Jackson, On $\mathfrak{q}$-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 4 (1908), 253–281. |
| [3] | F. H. Jackson, On $\mathfrak{q}$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
| [4] | H. Exton, $\mathfrak{q}$-hypergeometric functions and applications, Hastead Press, 1983. |
| [5] |
M. E. H. Ismail, P. Simeonov, $\mathfrak{q}$-difference operators for orthogonal polynomials, J. Comput. Appl. Math., 233 (2009), 749–761. https://doi.org/10.1016/j.cam.2009.02.044 doi: 10.1016/j.cam.2009.02.044
|
| [6] |
S. M. Zagorodnyuk, On a family of hypergeometric Sobolev orthogonal polynomials on the unit circle, Constr. Math. Anal., 3 (2020), 75–84. https://doi.org/10.33205/cma.690236 doi: 10.33205/cma.690236
|
| [7] | E. Frenkel, E. Mukhin, Combinatorics of $\mathfrak{q}$ -characters of finite-dimensional representations of quantum affine algebras, Commun. Math. Phys., 216 (2001), 23–57. |
| [8] |
H. M. Srivastava, A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics, Symmetry, 13 (2021), 2294. https://doi.org/10.3390/sym13122294 doi: 10.3390/sym13122294
|
| [9] | A. Aral, V. Gupta, R. P. Agarwal, Applications of $\mathfrak{q}$ -calculus in operator theory, Springer Science Business Media, 2013. |
| [10] | M. Annaby, Z. S. Mansour, $\mathfrak{q}$-fractional calculus and equations, Springer, 2012. https://doi.org/10.1007/978-3-642-30898-7 |
| [11] | H. M. Srivastava, Univalent functions, fractional calculus and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, Univalent functions, fractional calculus, and their applications, Halsted Press, 1989. |
| [12] |
E. E. Ali, M. Vivas-Cortez, R. M. El-Ashwah, New results about fuzzy $\gamma $-convex functions connected with the $\mathfrak{q}$-analogue multiplier-Noor integral operator, AIMS Math., 9 (2024), 5451–5465. https://doi.org/10.3934/math.2024263 doi: 10.3934/math.2024263
|
| [13] |
E. E. Ali, G. I. Oros, R. M. El-Ashwah, W. Y. Kota, A. M. Albalahi, Geometric properties connected with a certain multiplier integral $\mathfrak{ q}$-analogue operator, Symmetry, 16 (2024), 863. https://doi.org/10.3390/sym16070863 doi: 10.3390/sym16070863
|
| [14] |
E. E. Ali, H. M. Srivastava, A. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the $\mathfrak{q}$-derivatives of the $\mathfrak{q}$-binomials, Mathematics, 11 (2023), 2496. https://doi.org/10.3390/math11112496 doi: 10.3390/math11112496
|
| [15] |
E. E. Ali, R. M. El-Ashwah, A. M. Albalahi, R. Sidaoui, M. Ennaceur, M. Vivas-Cortez, Convolution results with subclasses of $p$-valent meromorphic function connected with $\mathfrak{q}$-difference operator, Mathematics, 12 (2024), 3548. https://doi.org/10.3390/math12223548 doi: 10.3390/math12223548
|
| [16] |
W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional $\mathfrak{q}$-calculus operator, Math. Bohem., 148 (2023), 131–148. https://doi.org/10.21136/MB.2022.0047-21 doi: 10.21136/MB.2022.0047-21
|
| [17] |
E. E. Ali, H. M. Srivastava, A. M. Albalahi, Subclasses of $ p$-valent $k$-uniformly convex and starlike functions defined by the $ \mathfrak{q}$-derivative operator, Mathematics, 11 (2023), 2578. https://doi.org/10.3390/math11112578 doi: 10.3390/math11112578
|
| [18] |
S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Mich. Math. J., 28 (1981), 157–172. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507
|
| [19] | S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, CRC Press, 2000. https://doi.org/10.1201/9781482289817 |
| [20] |
J. Clunie, On meromorphic Schlicht functions, J. London Math. Soc., 34 (1959), 215–216. https://doi.org/10.1112/jlms/s1-34.2.215 doi: 10.1112/jlms/s1-34.2.215
|
| [21] | C. Pommerenke, On meromorphic starlike functions, Pac. J. Math., 13 (1963), 221–235. |
| [22] |
J. E. Miller, Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc., 25 (1970), 220–228. https://doi.org/10.2307/2037197 doi: 10.2307/2037197
|
| [23] |
B. Ahmad, M. Arif, New subfamily of meromorphic convex functions in circular domain involving $\mathfrak{q}$-operator, Int. J. Anal. Appl. 16 (2018), 75–82. https://doi.org/10.28924/2291-8639-16-2018-75 doi: 10.28924/2291-8639-16-2018-75
|
| [24] |
S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), 521–527. https://doi.org/10.2307/2044151 doi: 10.2307/2044151
|
| [25] |
T. Bulboaca, M. K. Aouf, R. M. El-Ashwah, Convolution properties for subclasses of meromorphic univalent functions of complex order, Filomat, 26 (2012), 153–163. https://doi.org/10.2298/FIL1201153B doi: 10.2298/FIL1201153B
|
| [26] | R. M. El-Ashwah, Argument properties for $p$-valent meromorphic functions defined by differintegral operator, Asia. Bull. Math., 42 (2018), 359–365. |
| [27] | M. Nunokawa, On properties of close-to-convex meromorphic functions, Proc. Jpn. Acad., 46 (1970), 577–580. |
| [28] | J. Kaczmarski, On the coefficients of some classes of starlike functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 17 (1969), 495–501. |
| [29] |
H. Shamsan, S. Latha, On genralized bounded Mocanu variation related to $\mathfrak{q}$-derivative and conic regions, Ann. Pure Appl. Math., 17 (2018), 67–83. https://doi.org/10.22457/apam.v17n1a8 doi: 10.22457/apam.v17n1a8
|
| [30] |
D. Breaz, A. A. Alahmari, L. I. Cotîrlă, S. A. Shah, On generalizations of the close-to-convex functions associated with $\mathfrak{q }$-Srivastava-Attiya operator, Mathematics, 11 (2023), 2022. https://doi.org/10.3390/math11092022 doi: 10.3390/math11092022
|
| [31] | K. I. Noor, S. Riaz, M. A. Noor, On $\mathfrak{q}$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. |
| [32] | H. M.Srivastava, S. H. Hadi, M. Darus, Some subclasses of $p$ -valent $g$-uniformly type $\mathfrak{q}$-starlike and $\mathfrak{q}$-convex functions defined by using a certain generalized $\mathfrak{q}$-Bernardi integral operator, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A, 117 (2023), 50. |
| [33] | M. K. Aouf, On certain classes of meromorphic univalent functions, Math. Jpn., 5 (1988), 725–732. |