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Abstract: This paper investigated the q-analogue of the multiplier-Ruscheweyh operator acting on
meromorphic analytic functions, denoted byDr

q,ε(κ, ϱ). By applying tools from q-calculus together with
the principle of subordination, we developed several analytical results that deepened the understanding
of geometric function theory (GFT) in the setting of meromorphic functions. The study focused
on constructing new subclasses of meromorphic univalent functions associated with the operator
Dr
q,ε(κ, ϱ), characterized by q-starlikeness, q-convexity, and related geometric classes. Various inclusion

relationships, differential inequalities, and integral preservation properties were examined to establish
the structural behavior of these families of functions. The findings generalized and unified several
existing results in the literature concerning different operators and extended their applications to
broader contexts within meromorphic function theory with q-calculus operator.
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1. Introduction

Numerous fields of mathematics and science including complex analysis, hypergeometric series,
particle physics, and most importantly geometric function theory (GFT), have found extensive uses
for the idea of q-calculus operators. Ismail and his associates’ introduction of the idea of q-starlike
functions in 1990 [1] was a significant turning point in this direction and signaled the start of a new
field of study in GFT.
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Jackson [2,3] established the foundation for q-analogues of classical operators by introducing the q-
differential and q-integral operators and proving their applicability to the study of geometric functions.

Symmetric quantum (or q-) calculus applies q-calculus concepts to define new families of
multivalent functions in GFT, which studies the geometric properties of analytic functions. This
approach uses symmetric quantum difference operators to generate new subclasses of functions with
properties like q-starlikeness and q-convexity. Research in this area focuses on using these operators
to establish necessary and sufficient conditions for function classes, explore properties like
compactness and coefficient bounds, and generalize existing results in GFT for both analytic
functions. q-difference equations are an important aspect of mathematical analysis, particularly in the
field known as GFT. Quantum calculus is frequently used in mathematical disciplines because of its
numerous possible applications in basic hypergeometric functions [4], orthogonal polynomials [5, 6],
combinatorics [7], and number theory [8]. Several fundamental ideas in q-calculus [9,10] demonstrate
how it is integrated into mathematical ideas. Srivastava’s 1989 [11, chapter 25, P. 329] offered the
appropriate foundation for integrating the concepts of q-calculus into GFT. Several researchers have
studied different q-calculus applications for subclasses of analytic functions (see [12–17]).

We say f and l, are analytic functions and are subordinated, then the result is f ≺ l, which is defined
as

f(τ) = l(χ(τ)),

where χ(τ) is the Schwartz function in U (see [18, 19]).
Let Σ be the class of meromorphic analytic functions in punctured unit disk

U∗ = U \ {0} = {τ : τ ∈ C and 0 < |τ| < 1},

with:

f(τ) =
1
τ
+

∞∑
κ=1

aκτκ. (1.1)

Let ST, CV, K and Q represent the corresponding subclasses from the univalent class Σ that are
starlike, convex, close-to-convex, and quasi-convex functions.

For f given by (1.1) and ℏ given by

ℏ(τ) =
1
τ
+

∞∑
κ=1

bκτκ, τ ∈ U∗,

the well-known convolution product is

(f ∗ ℏ)(τ) := (ℏ ∗ f)(τ) =
1
τ
+

∞∑
κ=1

aκbκτκ =: (ℏ ∗ f)(τ).

A meromorphic function f ∈ Σ in U∗ is a meromorphically starlike function of order α(0 ≤ α < 1)
if

−Re
{
τf′ (τ)
f (τ)

}
> α (τ ∈ U∗) . (1.2)

Meromorphic convex functions f ∈ Σ in U∗ is a meromorphically convex function of order α(0 ≤
α < 1) if

−Re
[
1 +

τf′′(τ)
f′(τ)

]
> α, τ ∈ U∗.
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These classes’ foundational concepts began in 1959 when Cluin [20] investigated meromorphic
schlicht functions. Meromorphic starlike functions were defined by Pommerenke [21] in 1963. A
meromorphic convex function was introduced by Miller [22] in 1970. He also looked at certain
generalized coefficient problems and other helpful properties of meromorphic convex functions.

Definition 1. [2, 3] The q-derivative, or the Jackson derivative of a function f is defined by

Dqf(τ) := dqf(τ) =
f(qτ) − f(τ)

(q − 1)τ

= −
1
qτ2 +

∞∑
κ=1

[κ]qaκτκ−1 (q ∈ (0, 1), τ ∈ U∗),

where

[κ]q =


κ−1∑
j=0
qκ = 1 + q + q2 + .... + qκ−1, κ ∈ N = {1, 2, 3, ...},

0, κ = 0,

[κ]q! =
{

[κ]q [κ − 1]q ......... [2]q [1]q , κ = 1, 2, 3, ...,
1, κ = 0,

and
lim
q→1−
dqf(τ) = f

′

(τ).

The q-difference operator is subject to the following basic laws:

dq (cϖ1 (τ) ± dϖ2 (τ)) = cdqϖ1 (τ) ± ddqϖ2 (τ) ,
dq (ϖ1 (τ)ϖ2 (τ)) = ϖ1 (qτ) dq (ϖ2 (τ)) +ϖ2(τ)dq (ϖ1 (τ)) ,

dq

(
ϖ1 (τ)
ϖ2(τ)

)
=
dq (ϖ1 (τ))ϖ2(τ) −ϖ1 (τ) dq (ϖ2(τ))

ϖ2(qτ)ϖ2(τ)
, ϖ2(qτ)ϖ2(τ) , 0,

dq
(
logϖ1 (τ)

)
=

ln q
q−1
dq (ϖ1 (τ))
ϖ1 (τ)

,

where ϖ1, ϖ2 are analytic functions and c and d are real or complex constants.
Also, Jackson [2] introduced the q-integral as∫ τ

0
f(τ)dqτ = (1 − q)τ

∞∑
n=0

q
n
f(qnτ), (1.3)

we note that ∫ τ

0
f(τ)dqτ =

∫ τ

0
τndqτ =

1
[n + 1]q

τn+1 (n , −1),

and
lim
q→1−

∫ τ

0
f(τ)dqτ = lim

q→1−

1
[n + 1]q

τn+1 =
1
n + 1

τn+1 =

∫ τ

0
f(τ)dτ,

where
∫ τ

0
f(τ)dτ denotes the ordinary integral.
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For ε > −1, define the meromorphic q-analogue of Ruscheweyh operatorℜε
q: Σ → Σ by Hadmard

product (convolution)

ℜε
qf(τ) = f(τ) ∗ ϕ(q, ε + 1; τ) =

1
τ
+

∞∑
κ=1

[κ + ε + 1]q
[ε]q![κ + 1]q!

aκτκ, (ε ≥ 0, 0 < q < 1),

where

ϕ(q, ε; τ) =
1
τ
+

∞∑
κ=1

[κ + ε + 1]q
[ε]q![κ + 1]q!

τκ,

was introduced and studied by Ahmad and Arif [23].
The q-analogue of the Ruscheweyh operator is a natural extension of the classical Ruscheweyh

derivative obtained by replacing ordinary derivatives and convolutions with their q-calculus
counterparts.

This is precisely the q-extension of the meromorphic Ruscheweyh operator; it reduces to the
classical case as q→ 1−:

lim
q→1−

ϕ(q, ε + 1; ξ) =
1

ξ(1 − ξ)ε+1 , lim
q→1−

(ℜε
qf) = f ∗

1
ξ(1 − ξ)ε+1 .

Useful identities include

ℜ0
qf = f, ℜ1

qf − [2]qℜ0
qf(qτ) = τDqf(τ),

and, for m ∈ N,

ℜm
q f(τ) =

τ−1

[m]q!
Dq(τm+1

f(τ)).

For f(τ) ∈ Σ, r ∈ N0, ϱ, κ ≥ 0, 0 < q < 1 let:

D
0,q
ϱ,κf(τ) =: Dqϱ,κf(τ) = f(τ),

D
1,q
ϱ,κf(τ) = (1 − κ) f(τ) +

κ

[ϱ]qτϱ
Dq

(
τϱ+1
f(τ)

)
=

1
τ
+

∞∑
κ=1

([
ϱ
]
q + κ(

[
κ + ϱ + 1

]
q −

[
ϱ
]
q)[

ϱ
]
q

)
aκτκ,

. . . . . . . . .

D
r,q
ϱ,κf(τ) = (1 − κ)Dr−1,q

ϱ,κ f(τ) +
κ

[ϱ]qτϱ
Dq

(
τϱ+1
D

r−1,q
ϱ,κ f(τ)

)
, r ≥ 1,

and

D
r,q
ϱ,κf(τ) =

1
τ
+

∞∑
κ=1

([
ϱ
]
q + κ(

[
κ + ϱ + 1

]
q −

[
ϱ
]
q)[

ϱ
]
q

)r

aκτκ, (r ∈ N0, ϱ, κ ≥ 0, 0 < q < 1). (1.4)

Setting

f
r
q,κ,ϱ(τ) =

1
τ
+

∞∑
κ=1

([
ϱ
]
q + κ(

[
κ + ϱ + 1

]
q −

[
ϱ
]
q)[

ϱ
]
q

)r

τκ.
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Now we define a new function fr,ε
q,κ,ϱ(τ) in terms of the Hadamard product (or convolution) by

f
r
q,κ,ϱ(τ) ∗ fr,εq,κ,ϱ(τ) =

1
τ
+

∞∑
κ=1

[κ + ε + 1]q!
[ε]q![κ + 1]q!

τκ.

Next, we provide the operator
D

r
ε,q(κ, ϱ) f (τ) : Σ→ Σ,

which is primarily inspired by the q-analogue of the Ŕuscheweyh operator and the q-analogue
multiplier defined by

D
r
q,ε(κ, ϱ)f(τ) = fr,εq,κ,ϱ(τ) ∗ f(τ), (1.5)

where r ∈ N0, ϱ, κ, ε ≥ 0, 0 < q < 1. For f ∈ Σ; and (1.5) then

D
r
q,ε(κ, ϱ)f(τ) =

1
τ
+

∞∑
κ=1

( [
ϱ
]
q[

ϱ
]
q + κ(

[
κ + ϱ + 1

]
q −

[
ϱ
]
q)

)r [κ + ε + 1]q!
[ε]q![κ + 1]q!

aκτκ. (1.6)

By using (1.6) we get

κqϱ+1τ∂q(Dr+1
q,ε (κ, ϱ)f(τ)) =

[
ϱ
]
qD

r
q,ε(κ, ϱ)f(τ) −

(
κqϱ + [ϱ]q

)
D

r+1
q,ε (κ, ϱ)f(τ), κ > 0, (1.7)

q
ε+2τdq

(
D

r
q,ε(κ, ϱ)f(τ)

)
= [ε + 1]qDr

ε+1,q(κ, ϱ)f(τ) − [ε + 2]qDr
q,ε(κ, ϱ)f(τ). (1.8)

We note that:
(i) If r = 0 and q→ 1− we obtainℜεf(τ) is Ŕusscheweyh differential operator [24];
(ii) If we set ε = 0 and q → 1− we get Dr(x, ϱ)f(τ). It was introduced by Bulboaca et al [25] and

El-Ashwah [26] with (p = 1).
We also see:
(i) Dr

ε,q(1, ϱ)f(τ) = Dr
ε,q(ϱ)f(τ),

f(τ) ∈ Σ : Dr
ε,q(ϱ)f(τ) =

1
τ
+

∞∑
κ=2

( [
ϱ
]
q[

κ + ϱ + 1
]
q

)r [κ + ε + 1]q!
[ε]q![κ + 1]q!

aκτκ,

r ∈ N0, ε ≥ 0, 0 < q < 1, τ ∈ U∗.

(ii) Dr
ε,q(1, 1)f(τ) = Dr

ε,qf(τ),

f(τ) ∈ Σ : Dr
ε,qf(τ) =

1
τ
+

∞∑
κ=2

(
1

[κ + 2]q

)r [κ + ε + 1]q!
[ε]q![κ + 1]q!

aκτκ,

r ∈ N0, ϱ > 0, ε ≥ 0, 0 < q < 1, τ ∈ U∗.

(iii) Dr
ε,q(κ, 1)f(τ) = Dr

ε,q(κ)f(τ),

f(τ) ∈ Σ : Dr
ε,q(κ)f(τ) =

1
τ
+

∞∑
κ=2

(
1

1 + κ([κ + 2]q − 1)

)r [κ + ε + 1]q!
[ε]q![κ + 1]q!

aκτκ,

r ∈ N0, κ > 0, ε ≥ 0, 0 < q < 1, τ ∈ U∗.

Let Φ be the class of analytic and univalent convex functions φ, with φ(0) = 1, and Reφ(τ) > 0 in
U.

AIMS Mathematics Volume 10, Issue 12, 30990–31009.
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Definition 2. f ∈ Σ is definitely in the class S T q(φ) if it satisfies

−
qτdq (f(τ))
f(τ)

≺ φ(τ),

where dq is the q-difference operator.
Analogously, f ∈ Σ is definitely in the class CVq(φ) if

−qτdq (f(τ)) ∈ STq(φ). (1.9)

For q → 1− we obtain a class of starlike meromorphic functions (see [21]), and a class of convex
meromorphic functions (see [22]).

By using the operators defined above, we determine the next part.

Definition 3. Suppose that f ∈ Σ, r ∈ N0, and κ, ϱ > 0, ε ≥ 0, 0 < q < 1. Then

f ∈ STr
ε,q(κ, ϱ) (φ)⇔ Dr

q,ε(κ, ϱ)f(τ) ∈ STq (φ) ,

and
f ∈ CVr

ε,q(κ, ϱ) (φ)⇔ Dr
q,ε(κ, ϱ)f(τ) ∈ CVq (φ) . (1.10)

It is known that
f ∈ CVr

q,ε(κ, ϱ) (φ)⇔ −qτ(dqf) ∈ STr
q,ε(κ, ϱ) (φ) . (1.11)

Definition 4. f ∈ Σ, φ ∈ Φ, and q ∈ (0, 1). Then f ∈ Kq(φ) if

−
qτdqf (τ)
g (τ)

≺ φ (τ) ,

for some g ∈ STq (ψ) , ψ ∈ Φ.

For q→ 1− we obtain a class of close to convex meromorphic functions (see [27]).
Like the previously described classes, we define

f ∈ Kr
q,ε(κ, ϱ) (φ)⇔ Dr

q,ε(κ, ϱ)f(τ) ∈ Kq (φ) ,

and
f ∈ Qr

ε,q(κ, ϱ) (ψ)⇔ Dr
q,ε(κ, ϱ)f(τ) ∈ Qq (ψ) .

It is known that
f ∈ Qr

ε,q(κ, ϱ) (ψ)⇔ −qτdqf (τ) ∈ Kr
q,ε(κ, ϱ) (φ) .

Definition 5. f ∈ Σ, φ ∈ Φ, and q ∈ (0, 1). Then f ∈ STr
q,ε(κ, ϱ)(φ) if

−
qτdqD

r
q,ε(κ, ϱ)f(τ)

Dr
q,ε(κ, ϱ)f (τ)

≺ φ (τ) ,

and f ∈ Σ, φ ∈ Φ, and q ∈ (0, 1). Then f ∈ Kr
ε,q(κ, ϱ)(φ) if

−
qτdqD

r
q,ε(κ, ϱ)f(τ)

Dr
q,ε(κ, ϱ)g (τ)

≺ φ (τ) ,

for some g ∈ STr
q,ε(κ, ϱ) (φ) with r ∈ N0, κ, ϱ ≥ 0, 0 < q < 1.
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Remark 1. (i)

STr
q,ε(

1 + (1 − 2α)τ
1 − τ

) = STr
q,ε(α)

=

{
f ∈ Σ : Re

(
−
qτdqD

r
q,ε(κ, ϱ)f(τ)

Dr
q,ε(κ, ϱ)f (τ)

)
> α; 0 ≤ α < 1, τ ∈ U

}
,

and

CVr
q,ε(

1 + (1 − 2α)τ
1 − τ

) = CVr
q,ε(α)

=

f ∈ Σ : Re

−qτdq
(
τdqD

r
q,ε(κ, ϱ)f(τ)

)
dqD

r
q,ε(κ, ϱ)f (τ)

 > α, 0 ≤ α < 1, τ ∈ U

 ,
the subclasses related to meromorphic q-starlike and q-convex respectively;

(ii)

lim
q→1−

ST0
q,0(

1 + (1 − 2α)τ
1 − τ

) = ST(α)

=

{
f ∈ Σ : Re

(
−
τf
′

(τ)
f(τ)

)
> α; 0 ≤ α < 1, τ ∈ U

}
,

and

lim
q→1−

CV0
q,0(

1 + (1 − 2α)τ
1 − τ

) = CV(α)

=

{
f ∈ Σ : Re

(
−1 −

τf
′′

(τ)
f
′(τ)

)
> α, 0 ≤ α < 1, τ ∈ U

}
,

were investigated by Kaczmarski [28];
(iii)

lim
q→1−

ST0
q,0(1,−1) = ST,

and
lim
q→1−

CV0
q,0(1,−1) = CV,

which are well-known classes of starlike and convex meromorphic functions, respectively; see the
researches [20, 21].

2. Main results

To illustrate our conclusions, the following lemma is necessary:

Lemma 1. [29] Considering γ and δ are complex numbers with γ , 0, and let ℏ(τ) be regular in U
with

ℏ(0) = 1 and Re{γℏ(τ) + δ} > 0.

AIMS Mathematics Volume 10, Issue 12, 30990–31009.
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If
ω(τ) = 1 + ω1τ + ω2τ

2 + ....

is analytic in U, then

ω(τ) +
τdqω(τ)
γω(τ) + δ

≺ ℏ(τ),

then ω(τ) ≺ ℏ(τ).

Lemma 2. [30] Let π(τ) be convex in U with π(0) = 1 and let

Y : U→C,

with
Re (Y(τ)) > 0,

in U. If
y(τ) = 1 + y1τ + y2τ

2...,

is analytic in U, then
y(τ) + Y(τ).τdqy(τ) ≺ π(τ),

implies that y(τ) ≺ π(τ).

Theorem 1. Assume that φ(τ) is a regular and convex univalent function with

φ(0) = 1 and Re(φ(τ)) > 0,

for τ ∈ U. Then, for r ∈ N0, and ϱ, ε ≥ 0, κ > 0, 0 < q < 1 with

Re
{
−

1
q
φ +

ηq

q

}
> 0,

and
STr
q,ε+1(κ, ϱ) (φ) ⊂ STr

q,ε(κ, ϱ) (φ) ⊂ STr+1
q,ε (κ, ϱ) (φ) .

Proof. Let f ∈ STr
q,ε(κ, ϱ) (φ) satisfying

−qτdq
(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)f(τ)

≺ φ(τ),

consider

ω(τ) =
−qτdq

(
Dr+1
q,ε (κ, ϱ)f(τ)

)
Dr+1
q,ε (κ, ϱ)f(τ)

, (2.1)

where ω(τ) is analytic in U, ω(0) = 1.
From (1.7) we have

−
qτdq

(
Dr+1
q,ε (κ, ϱ)f(τ)

)
Dr+1
q,ε (κ, ϱ)f(τ)

= −

[
ϱ
]
q

κqϱ
Dr
q,ε(κ, ϱ)f(τ)

Dr+1
q,ε (κ, ϱ)f(τ)

+

(
1 +

[
ϱ
]
q

κqϱ

)
, κ > 0,

AIMS Mathematics Volume 10, Issue 12, 30990–31009.
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by using (2.1) we obtain

−

[
ϱ
]
q

κqϱ
Dr
q,ε(κ, ϱ)f(τ)

Dr+1
q,ε (κ, ϱ)f(τ)

= ω(τ) −
(
1 +

[
ϱ
]
q

κqϱ

)
. (2.2)

On q-logarithmic differentiation of (2.2), we have

−qτdq
(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)f(τ)

= ω(τ) +
τdqω(τ)

−1
q
ω(τ) + ηq

q

, (2.3)

where

ηq =

(
1 +

[
ϱ
]
q

κqϱ

)
.

Since f ∈ STr
q,ε(κ, ϱ) (φ), from (2.3) we have

ω(τ) +
τdqω(τ)

−1
q
ω(τ) + ηq

q

≺ φ(τ).

From Lemma 1, we get ω(τ) ≺ φ(τ). Consequently,

−
qτdq

(
Dr+1
q,ε (κ, ϱ)f(τ)

)
Dr+1
q,ε (κ, ϱ)f(τ)

≺ φ(τ),

then f ∈ STr+1
q,ε (κ, ϱ) (φ) . To prove the first part, let f ∈ STr

q,ε+1(κ, ϱ) (φ) and set

χ(τ) =
−qτdq

(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)f(τ)

, (2.4)

where χ is analytic in U, χ(0) = 1.
From (1.8) we have

−qτdq
(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)f(τ)

= −
[ε + 1]q
qε+1

Dr
ε+1,q(κ, ϱ)f(τ)

Dr
q,ε(κ, ϱ)f(τ)

+
[ε + 2]q
qε+1 ,

by using (2.4) and q-logarithmic differentiation we obtain

−qτdq
(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)f(τ)

≺ φ,

with

Re
{
−

1
q
φ +

[ε + 2]q
qε+2

}
> 0.

The proof is now finished. □

Theorem 2. Let φ(τ) be regular and convex univalent function with

φ(0) = 1 and Re(φ(τ)) > 0,
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for τ ∈ U. Then, for r ∈ N0 and ϱ, ε ≥ 0, κ > 0, 0 < q < 1, with

Re
{
−

1
q
φ +

ηq

q

}
> 0,

and

Re
{
−

1
q
φ +

[ε + 2]q
qε+2

}
> 0,

and
CVr

q,ε+1(κ, ϱ) (φ) ⊂ CVr
q,ε(κ, ϱ) (φ) ⊂ CVr+1

q,ε (κ, ϱ) (φ) .

Proof. Let CVr
q,ε(κ, ϱ) (φ). Applying (1.11), we show that

f ∈ CVr
q,ε(κ, ϱ) (φ)⇔ Dr

q,ε(κ, ϱ)f(τ) ∈ CVq (φ)

⇔ −qτdq
(
D

r
q,ε(κ, ϱ)f(τ)

)
∈ STq (φ)

⇔ −qτ(dqf) ∈ STr
q,ε(κ, ϱ) (φ)

⇔ −qτ(dqf) ∈ STr+1
q,ε (κ, ϱ) (φ)

⇔ −qτdq
(
D

r+1
q,ε (κ, ϱ)f(τ)

)
∈ STq (φ)

⇔ Dr+1
q,ε (κ, ϱ)(−qτ(dqf)) ∈ STq (φ)

⇔ Dr+1
q,ε (κ, ϱ)f(τ) ∈ CVq (φ)

⇔ f ∈ CVr+1
q,ε (κ, ϱ) (φ) .

We can use arguments like the ones mentioned above to illustrate the first part.
The proof is now finished. □

Example 1. We can expand the inclusions according to using Theorems 1 and 2
(i)

STr
q,ε+m(κ, ϱ) (φ) ⊂ STr

q,ε+m−1(κ, ϱ) (φ) ⊂ ....... ⊂ STr
q,ε(κ, ϱ) (φ) ,

CVr
q,ε+m(κ, ϱ) (φ) ⊂ CVr

q,ε+m−1(κ, ϱ) (φ) ⊂ ....... ⊂ CVr
q,ε(κ, ϱ) (φ) ;

(ii)

STr
q,ε(κ, ϱ) (φ) ⊂ STr+1

q,ε (κ, ϱ) (φ) ⊂ ....... ⊂ STr+s
q,ε (κ, ϱ) (φ) ,

CVr
q,ε(κ, ϱ) (φ) ⊂ CVr+1

q,ε (κ, ϱ) (φ) ⊂ ....... ⊂ CVr+s
q,ε (κ, ϱ) (φ) .

Corollary 1. Suppose that r ∈ N0 and ϱ, κ, ε ≥ 0, 0 < q < 1. Then, for

φ(τ) =
1 + (1 − 2α)τ

1 − τ
, ηq >

α

q

,

and
[ε + 2]q
qε+1 > α,
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we obtain

STr
q,ε+1(κ, ϱ)

(
1 + (1 − 2α)τ

1 − τ

)
⊂ STr

q,ε(κ, ϱ)
(
1 + (1 − 2α)τ

1 − τ

)
⊂ STr+1

q,ε (κ, ϱ)
(
1 + (1 − 2α)τ

1 − τ

)
,

CVr
q,ε+1(κ, ϱ)

(
1 + (1 − 2α)τ

1 − τ

)
⊂ CVr

q,ε(κ, ϱ)
(
1 + (1 − 2α)τ

1 − τ

)
⊂ CVr+1

q,ε (κ, ϱ)
(
1 + (1 − 2α)τ

1 − τ

)
,

respectively.

Example 2. Suppose that r ∈ N0 and ϱ, κ, ε ≥ 0, 0 < q < 1. For

φ(τ) =
1

1 − qτ
,

we obtain

STr
q,ε+1(κ, ϱ)

(
1

1 − qτ

)
⊂ STr

q,ε(κ, ϱ)
(

1
1 − qτ

)
⊂ STr+1

q,ε (κ, ϱ)
(

1
1 − qτ

)
,

CVr
q,ε+1(κ, ϱ)

(
1

1 − qτ

)
⊂ CVr

q,ε(κ, ϱ)
(

1
1 − qτ

)
⊂ CVr+1

q,ε (κ, ϱ)
(

1
1 − qτ

)
.

The following conclusions can be shown by using the same arguments as before.

Theorem 3. Consider φ(τ) be regular and convex univalent function with

φ(0) = 1 and Re(φ(τ)) > 0,

for τ ∈ U. Then for r ∈ N0 and ϱ,ε ≥ 0, κ > 0, 0 < q < 1, with

Re

 1
−1
q
ψ(τ) + ζq

 > 0,

and
Kr
q,ε+1(κ, ϱ) (φ) ⊂ Kr

q,ε(κ, ϱ) (φ) ⊂ Kr+1
q,ε (κ, ϱ) (φ) .

Proof. Let f ∈ Kr
q,ε(κ, ϱ) (φ). Then, by definition, There is g ∈ STr

q,ε(κ, ϱ) (ψ) satisfying

−
qτdq

(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)g(τ)

≺ φ(τ). (2.5)

Consider

−
qτdq

(
Dr+1
q,ε (κ, ϱ)f(τ)

)
Dr+1
q,ε (κ, ϱ)g(τ)

= p(τ), (2.6)
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where p(τ) is regular in U with p(0) = 1,

−qτdq
(
D

r+1
q,ε (κ, ϱ)f(τ)

)
= p(τ)Dr+1

q,ε (κ, ϱ)g(τ),

by using (1.7) we have

−

[
ϱ
]
q

κqϱ
D

r
q,ε(κ, ϱ)f(τ) +

(
1 +

[
ϱ
]
q

κqϱ

)
D

r+1
q,ε (κ, ϱ)f(τ) = p(τ)Dr+1

q,ε (κ, ϱ)g(τ).

On q-differentiating with respect to τ, and dividing by Dr
q,ε(κ, ϱ)g(τ) we get

−

[
ϱ
]
q

κqϱ+1

qτdq
(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)g(τ)

+

(
1
q
+

[
ϱ
]
q

κqϱ+1

)
qτdq

(
Dr+1
q,ε (κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)g(τ)

=
τdqp(τ)

(
Dr+1
q,ε (κ, ϱ)g(τ)

)
+ p(τ)τdq

(
Dr+1
q,ε (κ, ϱ)g(τ)

)
Dr
q,ε(κ, ϱ)g(τ)

,

using simple calculation we obtain

−

[
ϱ
]
q

κqϱ+1

qτdq
(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)g(τ)

=

τdqp(τ)(Dr+1
q,ε (κ,ϱ)g(τ))+p(τ)τdq(Dr+1

q,ε (κ,ϱ)g(τ))−
(

1
q
+

[ϱ]q
κqϱ+1

)
qτdq(Dr+1

q,ε (κ,ϱ)f(τ))
Dr+1
q,ε (κ,ϱ)g(τ)

Dr
q,ε(κ,ϱ)g(τ)
Dr+1
q,ε (κ,ϱ)g(τ)

.

Applying identity (1.7) we have

τdq
(
D

r+1
ε,q (κ, ϱ)g(τ)

)
=

[
ϱ
]
q

κqϱ+1D
r
q,ε(κ, ϱ)g(τ) −

(
1
q
+

[
ϱ
]
q

κqϱ+1

)
D

r+1
q,ε (κ, ϱ)g(τ),

then
−qτdq

(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)g(τ)

=
−
qτdq(τdq(Dr+1

q,ε (κ,ϱ)f(τ)))
Dr+1
q,ε (κ,ϱ)g(τ) − ζq

qτdq(Dr+1
q,ε (κ,ϱ)f(τ))

Dr+1
q,ε (κ,ϱ)g(τ)

τdq(Dr+1
q,ε (κ,ϱ)g(τ))

Dr+1
q,ε (κ,ϱ)g(τ) + ζq

, (2.7)

where

ζq =

(
1
q
+

[
ϱ
]
q

κqϱ+1

)
.

On q-differentiation of (2.6), we have

−
qτdq

(
τdq

(
Dr+1
q,ε (κ, ϱ)f(τ)

))
Dr+1
q,ε (κ, ϱ)g(τ)

= −p(τ)
ψ(τ)
q
+ τdqp(τ), (2.8)

where
−1
q
ψ(τ) =

τdq
(
Dr+1
q,ε (κ, ϱ)g(τ)

)
Dr+1
q,ε (κ, ϱ)g(τ)

.

From (2.7) and (2.8), we get

−
qτdq

(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)g(τ)

= p(τ) +
τdqp(τ)

−1
q
ψ(τ) + ζq

. (2.9)
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Consequently, from (2.5)

p(τ) +
τdqp(τ)

−1
q
ψ(τ) + ζq

≺ φ(τ). (2.10)

Since g ∈ STr
q,ε(κ, τ) (ψ), by Theorem 1, we conclude

g ∈ STr+1
q,ε (κ, τ) (ψ) ,

since
Re(

1
−1
q
ψ(τ) + ζq

) > 0,

in U. Lemma 2 now produces the intended result.
To prove the first part, let f ∈ STr

q,ε+1(κ, ϱ) (φ) and set

χ(τ) = −
qτdq

(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)g(τ)

,

where χ is analytic in U, χ(0) = 1.

−qτdq
(
D

r
q,ε(κ, ϱ)f(τ)

)
= χ(τ)Dr

q,ε(κ, ϱ)g(τ),

by using (1.8)

−
[ε + 1]q
qε+1 D

r
ε+1,q(κ, ϱ)f(τ) +

[ε + 2]q
qε+1 D

r
q,ε(κ, ϱ)f(τ) = χ(τ)Dr

q,ε(κ, ϱ)g(τ).

On q-differentiating with respect to τ, dividing byDr
q,ε(κ, ϱ)g(τ), and using simple calculation it follows

that

−
qτdq

(
Dr
q,ε(κ, ϱ)f(τ)

)
Dr
q,ε(κ, ϱ)g(τ)

≺ φ(τ),

with

Re

 1
−1
q
ψ(τ) + [ε+2]q

qε+2

 > 0.

The proof is complete. □

Theorem 4. Let φ(τ) is analytic and convex univalent function with

φ(0) = 1 and Re(φ(τ)) > 0,

for τ ∈ U. Then for r ∈ N0 and ϱ,ε ≥ 0, κ > 0, 0 < q < 1, with

Re(
1

−1
q
ψ(τ) + ζq

) > 0,

and

Re

 1
−1
q
ψ(τ) + [ε+2]q

qε+2

 > 0,

and
Q

r
q,ε+1(κ, ϱ) (φ) ⊂ Qr

q,ε(κ, ϱ) (φ) ⊂ Qr+1
q,ε (κ, ϱ) (φ) .
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Proof. Let f ∈ Qr
q,ε(κ, τ) (φ). We have

f ∈ Qr
q,ρ(κ, ϱ) (φ)⇔ Dr

q,ε(κ, ϱ)f(τ) ∈ Qq (φ)

⇔ −qτdq
(
D

r
q,ε(κ, ϱ)f(τ)

)
∈ Kq (φ)

⇔ −qτ(dqf) ∈ Kr
q,ε(κ, ϱ) (φ)

⇔ −qτ(dqf) ∈ Kr+1
q,ε (κ, ϱ) (φ)

⇔ −qτdq
(
D

r+1
q,ε (κ, ϱ)f(τ)

)
∈ Kq (φ)

⇔ Dr+1
q,ε (κ, ϱ)(−qτ(dqf)) ∈ Kq (φ)

⇔ Dr+1
q,ε (κ, ϱ)f(τ) ∈ Qq (φ)

⇔ f ∈ Qr+1
q,ρ (κ, ϱ) (φ) .

To demonstrate the first section, we can use arguments similar to the ones listed above.
The proof is now complete. □

Remark 2. Based on Theorems 3 and 4, we can infer the following inclusion relations:

Kr
q,ε+m(κ, ϱ) (φ) ⊂ Kr

q,ε+m−1(κ, ϱ) (φ) ⊂ ..... ⊂ Kr
q,ε(κ, ϱ) (φ) ,

Kr
q,ε(κ, ϱ) (φ) ⊂ Kr+1

q,ε (κ, ϱ) (φ) ⊂ ..... ⊂ Kr+m
q,ε (κ, ϱ) (φ) ,

and

Q
r
q,ε+n(κ, ϱ) (φ) ⊂ Qr

q,ε+n−1(κ, ϱ) (φ) ⊂ .... ⊂ Qr
q,ε(κ, ϱ) (φ) ,

Q
r
q,ε(κ, ϱ) (φ) ⊂ Qr+1

q,ε (κ, ϱ) (φ) ⊂ .... ⊂ Qr+n
q,ε (κ, ϱ) (φ) , (m, n ∈ N).

The same reasoning as before can be used to demonstrate the following conclusions.

3. Invariance of the classes under q-Bernardi integral operator

Bernardi q-meromorphic refers to a class of complex functions that are both meromorphic
(analytic except for poles) and exhibit q-analogue properties, often studied in the context of
q-difference equations or q-integral operators like the generalized q-Bernardi integral operator.
Researchers use these operators to define and study new subclasses of these functions, such as
meromorphic q-starlike and q-convex functions, and examine their coefficient estimates, inclusion
properties, and other analytical characteristics.

The q-Bernardi integral operator generalizes the classical Bernardi operator into the framework of q-
calculus, acting as a linear coefficient multiplier operator on analytic functions, with wide applications
in q-versions of GFT.

For a function f ∈ Σ, we denote by Iρ,q the q-Bernardi integral operator Iρ,q defined by (see the
researches [14, 31, 32])

Fq(τ) = Iρ,q[f(τ)] =
[ρ]q
τρ+1

∫ τ

0
tρ f(t) dqt (ρ ∈ N). (3.1)
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For q→ 1− we have

F(τ) = Iρ[f(τ)] =
ρ

τρ+1

∫ τ

0
tρ f(t) dt (ρ ∈ N),

which are defined in [33].
The q-Bernardi integral operator Iρ,q: Σ→ Σ, defined in (3.1), satisfies the following relationship:

q
ρ+1τdqD

r
q,ε(κ, ϱ)Fq(τ) = [ρ]qDr

q,ε(κ, ϱ)f(τ) − [ρ + 1]qDr
q,ε(κ, ϱ)Fq(τ). (3.2)

The following result is now stated and demonstrated.

Theorem 5. If f ∈ Σ defined by (1.1) is in the function class STr
q,ε(κ, ϱ) (φ) , and

Re{
−1
q
φ +

[ρ + 1]q
qρ+1 } > 0,

then Fq(τ) defined by (3.1) also belongs to the class STr
q,ε(κ, ϱ) (φ).

Proof. Let f ∈ STr
q,ε(κ, ϱ) (φ) , we put

ω(τ) = −
qτdq(Dr

q,ε(κ, ϱ)Fq(τ))

Dr+1
q,ε (κ, ϱ)Fq(τ)

, (3.3)

where ω(τ) is analytic in U with ω(0) = 1.
From (3.2), we show that

ω(τ) = −
[ρ]q
qρ

Dr
q,ε(κ, ϱ)f(τ)

Dr+1
q,ε (κ, ϱ)Fq(τ)

+
[ρ + 1]q
qρ

.

On q-logarithmic differentiation, we get

−
qτdq(Dr

q,ε(κ, ϱ)f(τ))
Dr
q,ε(κ, ϱ)f(τ)

= ω(τ) +
τdqω(τ)

−1
q
ω(τ) + [ρ+1]q

qρ+1

. (3.4)

Since f ∈ STr
q,ε(κ, ϱ) (φ), we can revise (3.4) as

ω(τ) +
τdqω(τ)

−1
q
ω(τ) + [ρ+1]q

qρ+1

≺ φ(τ).

Using Lemma 1, we get
−1
q
ω(τ) ≺ φ(τ).

Consequently
−qτdq(Dr+1

q,ε (κ, ϱ)Fq(τ))

Dr+1
q,ε (κ, ϱ)Fq(τ)

≺ φ(τ).

Hence
Fq(τ) ∈ STr

q,ε(κ, ϱ) (φ) .

□
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The conclusion that follows can be demonstrated using arguments that are similar to those in
Theorem 5.

Theorem 6. Assume that
f ∈ CVr

q,ε(κ, ϱ) (φ) .

Then
Fq(τ) ∈ CVr

q,ε(κ, ϱ) (φ) ,

where Fq(τ) be defined by (3.1) with

Re{
−1
q
φ +

[ρ + 1]q
qρ+1 } > 0.

Theorem 7. Let f ∈ Kr
q,ε(κ, ϱ) (φ) , φ(0) = 1, and

Re

 1
−1
q
p1(τ) + [ρ+1]q

qρ+1

 > 0.

Then
Fq(τ) ∈ Kr

q,ε(κ, ϱ) (φ) ,

where Fq(τ) is called q-Bernardi integral operator defined in (3.1).

Proof. Consider
f ∈ Kr

q,ε(κ, ϱ) (φ) .

Then we want to show that
Fq(τ) ∈ Kr

q,ε(κ, ϱ) (φ) ,

where Fq(τ) defined in (3.1), for g ∈ STr
q,ε(κ, ϱ) (φ)

gq(τ) =

[
ρ
]
q

τρ+1

∫ τ

0
tρg(t)dqt ∈ STr

q,ε(κ, ϱ) (φ) . (3.5)

Consider

−
qτdqFq(τ)
gq(τ)

= p(τ), (3.6)

where p(τ) is regular in U with p(0) = 1.
Similarly, from (3.2), we’ve

q
ρ+1τdqgq(τ) = [ρ]qg(τ) − [ρ + 1]qgq(τ). (3.7)

From (3.2) and (3.7), we obtain

dqf(τ)
g(τ)

=
dq

(
τdqFqf(τ)

)
+

[ρ+1]q
qρ+1 dq

(
Fqf(τ)

)
τdqgq(τ) + [ρ+1]q

qρ+1 gq(τ)
,
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equivalently

−qτdqf(τ)
g(τ)

=

−qτdq(τdqFqf(τ))
gq(τ) −

[ρ+1]q
qρ+1

qτdq(Fqf(τ))
gq(τ)

τdqgq(τ)
gq(τ) +

[ρ+1]q
qρ+1

. (3.8)

On q-differentiation of (3.6) and simple calculation implies

−qτdq
(
τdqFqf(τ)

)
gq(τ)

= −p(τ).
p1(τ)
q
+ τdqp(τ), (3.9)

where
−1
q
p1(τ) =

τdqgq(τ)
gq(τ)

.

Substituting (3.9) in (3.8), we obtain

−qτdqf(τ)
g(τ)

= p(τ) +
τdqp(τ)

−1
q
p1(τ) + [ρ+1]q

qρ+1

. (3.10)

Since f ∈ Kq (φ), we can rewrite (3.10) as

p(τ) +
τdqp(τ)

−1
q
p1(τ) + [ρ+1]q

qρ+1

≺ φ(τ).

From (3.5), we determine that

Re
(
−1
q
p1(τ)

)
> 0,

in U indicates

Re

 1
−1
q
p1(τ) + [ρ+1]q

qρ+1

 > 0,

in U. Using Lemma 2, hence Fq(τ) ∈ Kq (φ). □

The same arguments are used to support the following theorem.

Theorem 8. Let
f ∈ Qr

q,ρ(κ, ϱ) (φ) .

Then
Fqf(τ) ∈ Qr

q,ρ(κ, ϱ) (φ) ,

where Fqf(τ) be defined by (3.1) with

Re

 1
−1
q
p1(τ) + [ρ+1]q

qρ+1

 > 0.
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4. Conclusions

This work introduces novel classes of analytic normalized functions in the unit disk U and
establishes new results in the theory of meromorphic functions. By employing the concept of a
q-difference operator, we defined the q-analogue multiplier-Ruscheweyh operator Dr

q,ε(κ, ϱ) to explore
various subclasses of meromorphic functions. Using this operator, several new subclasses were
introduced and systematically analyzed. For these classes, we investigated inclusion relations and
demonstrated the integral preservation property, highlighting the operator’s utility in geometric
function theory.

The framework developed here provides a foundation for further research in several directions.
Future work could focus on:
• Extending the study to more generalized q-operators or hybrid operators combining q-calculus

with other fractional or integral operators.
• Exploring applications in related areas, such as multivalent meromorphic functions, as well as

potential connections with complex dynamical systems.
Overall, this study lays the groundwork for a broad spectrum of investigations into q-analogues of

classical operators and their applications in geometric function theory.
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