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Abstract: This paper investigated the g-analogue of the multiplier-Ruscheweyh operator acting on
meromorphic analytic functions, denoted by Dy . (x, 0). By applying tools from g-calculus together with
the principle of subordination, we developed several analytical results that deepened the understanding
of geometric function theory (GFT) in the setting of meromorphic functions. The study focused
on constructing new subclasses of meromorphic univalent functions associated with the operator
D, (%, 0), characterized by g-starlikeness, g-convexity, and related geometric classes. Various inclusion
relationships, differential inequalities, and integral preservation properties were examined to establish
the structural behavior of these families of functions. The findings generalized and unified several
existing results in the literature concerning different operators and extended their applications to

broader contexts within meromorphic function theory with g-calculus operator.
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1. Introduction

Numerous fields of mathematics and science including complex analysis, hypergeometric series,
particle physics, and most importantly geometric function theory (GFT), have found extensive uses
for the idea of qg-calculus operators. Ismail and his associates’ introduction of the idea of g-starlike
functions in 1990 [1] was a significant turning point in this direction and signaled the start of a new
field of study in GFT.
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Jackson [2,3] established the foundation for q-analogues of classical operators by introducing the g-
differential and g-integral operators and proving their applicability to the study of geometric functions.

Symmetric quantum (or g-) calculus applies g-calculus concepts to define new families of
multivalent functions in GFT, which studies the geometric properties of analytic functions. This
approach uses symmetric quantum difference operators to generate new subclasses of functions with
properties like g-starlikeness and g-convexity. Research in this area focuses on using these operators
to establish necessary and sufficient conditions for function classes, explore properties like
compactness and coefficient bounds, and generalize existing results in GFT for both analytic
functions. g-difference equations are an important aspect of mathematical analysis, particularly in the
field known as GFT. Quantum calculus is frequently used in mathematical disciplines because of its
numerous possible applications in basic hypergeometric functions [4], orthogonal polynomials [5, 6],
combinatorics [7], and number theory [8]. Several fundamental ideas in g-calculus [9, 10] demonstrate
how it is integrated into mathematical ideas. Srivastava’s 1989 [11, chapter 25, P. 329] offered the
appropriate foundation for integrating the concepts of g-calculus into GFT. Several researchers have
studied different g-calculus applications for subclasses of analytic functions (see [12-17]).

We say f and [, are analytic functions and are subordinated, then the result is f < I, which is defined
as

f(m) = v (1),
where y(7) is the Schwartz function in U (see [18, 19]).
Let X be the class of meromorphic analytic functions in punctured unit disk

U'=U\{0}={r:7eC and O< |71 <1},
with:

1 (o)
= -+ TE 1.1
i(n) = Z] ar (1.1)
Let ST, CV, K and Q represent the corresponding subclasses from the univalent class X that are

starlike, convex, close-to-convex, and quasi-convex functions.
For f given by (1.1) and % given by

1 o0
Wt)=—-+ ) b1, 1eU",
(1) . ; ™ o7
the well-known convolution product is
1 [se]
(fxn)(r) = =P)(1) = -+ Z a7 = (h*§)(7).
T k=1

A meromorphic function f € X in U* is a meromorphically starlike function of order (0 < @ < 1)
if

7' (1) )
—Re{ f(‘r)}>a (teU). (1.2)

Meromorphic convex functions f € X in U* is a meromorphically convex function of order a(0 <
a < 1)if
7i7(1)
(1)

—Re[1+ ]>a/,TEU*.

AIMS Mathematics Volume 10, Issue 12, 30990-31009.



30992

These classes’ foundational concepts began in 1959 when Cluin [20] investigated meromorphic
schlicht functions. Meromorphic starlike functions were defined by Pommerenke [21] in 1963. A
meromorphic convex function was introduced by Miller [22] in 1970. He also looked at certain
generalized coeflicient problems and other helpful properties of meromorphic convex functions.

Definition 1. [2,3] The g-derivative, or the Jackson derivative of a function f is defined by

._ _ flar) - 1(7)
D.f(1) 1= d,f(7) = —( Ty
qu + Z[K]anTK "(ae 0, 1), TeU,
where
Kilqk=1+q+q2+....+q’< L keN=1{1,2,3,...},
[K]q Jj=0
0, k=0,
[k, = { [{T]q ) F— 2], [11,, :(1) 2,3, ..,
and

Tim bf(r) = 1 ().
The qg-difference operator is subject to the following basic laws:

b, (cw (1) £ dw; (1)) = cdyw (7) £ ddw, (T),
D, (@ (1) @2 (7)) = @ (97) Dy (@2 (7)) + @2 (T)D, (@ (7)),
N (wl (T)) _ b (@1 (M) @y(7) — @, (7) 0 (@(7))

, @ (an)w (1) # 0,

‘ @, (7) @ (qT)@2(7)
Inq D,
2 oz, () = 1A D)

where @, @, are analytic functions and ¢ and d are real or complex constants.
Also, Jackson [2] introduced the g-integral as

f i(T)dyr = (1 - a)r Z a"f(a"7), (13)

n=0

we note that

T T 1
TTdefT”d‘r: ! n#-1),
fo (7)d, L TR L ( )

. n+l _ n+1
Jlim f i(@d,r = lim [n+ T f i,

where fOTf(T)dT denotes the ordinary integral.

and
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For & > —1, define the meromorphic g-analogue of Ruscheweyh operator R¢: £ — X by Hadmard
product (convolution)

1 <« 1],
REf(0) = () gl + 1) = 2+ )0 O r (620,0<0< 1),
k=1 ar ar

where
[k+e+1], ,

1 o0
Ho.em) =2+ Z_; ERTESINE

was introduced and studied by Ahmad and Arif [23].

The g-analogue of the Ruscheweyh operator is a natural extension of the classical Ruscheweyh
derivative obtained by replacing ordinary derivatives and convolutions with their g-calculus
counterparts.

This is precisely the g-extension of the meromorphic Ruscheweyh operator; it reduces to the
classical case as g — 17

. o e i L
limoe+ 1= s Em®RD =T

Useful identities include
%fﬁ =1, Kﬁf - [2]q%2f(q7—) = 1D,f(7),
and, form € N,

-1

R"5(7) :[;—Mqu“f(r)).

Forf(r) e X, r e Ny, 0,% > 0,0 < g < 1 let:

D295(1) =1 DLf(1) = (1),

L@ = (1= + ; z

o ()

1w (lol, +#(k+o+1], = [ol)\
;+Z( lol, )

k=1

rq _ _ r—1,q n +1~r—1,q
D0 = (1 — %) D, (1) + e D, (T£ Dyx T(T)), r>1,
and
1 & Axr(k+o+ 1], —[el))
Dg’if(r) = —+Z([Q]1 (k+o ]1 [Q]])) a1, (reNyo,x>00<qg<1). (14)
’ T o],
Setting

) 1 (Lol +x([k+o+ 1], = [elp)
0=+ (% ol ke
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Now we define a new function f, o(7) in terms of the Hadamard product (or convolution) by

[k +e+1],!
Wk + 1!

T o) T8 (1) = = + Z
Next, we provide the operator

(60 f(T) - 3,

which is primarily inspired by the ¢-analogue of the Ruscheweyh operator and the ¢-analogue
multiplier defined by

Dh(2,01(1) = 175, 0(7) = §(7), (1.5)
where r € Ny, 0,%,€ > 0,0 < q < 1. For f € Z; and (1.5) then
1 < o], " k+e+1],!
- T 1.6
060N = 2 Zl ([Q]q ru(k+o+ 1], - loly) e+ 1,1 (1.

By using (1.6) we get

#a?* 1 70,(Dy ) (4, 0)F(D) = [o], D306, 00F() = (0 + [2]o) Dy (. 0)F (D), x>0, (1.7)
a7 70, (D}, (4, 001(1)) = [ + 11, D, (%, 0)1(T) = [& + 2], D}, (%, 0)F(D). (1.8)
We note that:
(@) If r =0 and g — 1~ we obtain R*f(7) is Russcheweyh differential operator [24];

(ii) If we set e = 0 and q — 1~ we get D,(x, 0)f(r). It was introduced by Bulboaca et al [25] and
El-Ashwah [26] with (p = 1).

We also see:

(D) D1, 0)f(7) = D ,(0)(7),

. [ol, | [k+e&+1],
f(r) e £: DL (0)F(7) = —+Z(K+Q+1]) ERTERTRGE
reNg e>20,0<q<1,7teU".

(i1) D (1, Di(r) = D, 1(7),

) [k + &+ 1],!
aT,

[« +2],) [els!lx+1],!

reNpo>0,>00<qg<1,7€U"

(iii) Dy (¢, Di(7) = D ,(0)F(7),

f(r) € X1 D f(r) = —+Z(

(o)

iy 1 1 " k+e+1]!
) € B : DogGate) = 2+ Z:;A (1 Fa(lc+ 20, - 1)) el Ik + 1,0

reNg,x>0,e>0,0<qg<1,7eU".

Let ® be the class of analytic and univalent convex functions ¢, with ¢(0) = 1, and Rep(7r) > 0 in
U.
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Definition 2. f € X is definitely in the class S T,(¢) if it satisfies

_amd, (i(0)

") < (1),

where b, is the g-difference operator.
Analogously, f € X is definitely in the class CV(¢) if

=7, (f(7)) € STy(¢). (1.9)

For ¢ — 17 we obtain a class of starlike meromorphic functions (see [21]), and a class of convex
meromorphic functions (see [22]).
By using the operators defined above, we determine the next part.

Definition 3. Suppose thatf € X, r € Ny, and %,0 > 0,6 >0, 0 < g < 1. Then

f € ST, ,(%,0) (¢) © Dy .(%,0){(7) € ST (¢),

and

feCV (2,0 (p) & D (%0)7(1) € CV, (). (1.10)
It is known that

f € CV,.(%,0) () & —ar(d,f) € ST, (%, 0) (¢) . (1.11)
Definition 4. f € Z, ¢ € ®, and q € (0, 1). Then | € K, (¢) if

qrd.f (7)
—— <),
am 7

for some g € ST, (¥), ¥ € ©.

For g — 1~ we obtain a class of close to convex meromorphic functions (see [27]).
Like the previously described classes, we define

f € Ki.(%,0) () © D .(%,0)(7) € K, (9),

and
feQ (x0 W oD (x%0ir) e Q).

It is known that
feQ, (0 W) & —atd,f (1) € K| (x,0) ().

Definition 5. f € X, 9 € @, and q € (0, 1). Then f € ST (%, 0)(¢) if
7DD, (%, 0)()

Dis(2,0)f (7)
andf € X, o € ®, and q € (0, 1). Then f € K (%, 0)(¢p) if
- aTd, Dy, (%, (D)

Dis(,0)8 (1)
for some g € ST, (%, 0) (¢) with r € Ny, 2,0 20,0 < g < 1.

<),

<¢(),

AIMS Mathematics Volume 10, Issue 12, 30990-31009.



30996

Remark 1. (i)

STQ,E(%) = ST, (@)
= {f €X: Re ( a0y Dqs(%,g)f(r)) >a;, 0<a<l,te U},
D, 07 (1)
and
eV, (22 < v

S I ard, (10, D}, (%, 0)f(7)) e e
=<{feX:Re|- 5, 0004 0)1 (0) >a,0<a<l,t€e ,

the subclasses related to meromorphic q-starlike and q-convex respectively;

(i)
1+(1-2
lim STOO(’L(—“)T) ~ ST(a)
T
:{TEZ:Re(—TT(T))>a; O<ac< I,TEU},
f(7)
and
1+(1-2
lim cvoo(u) - CV(a)
q—1- T
:{fez:Re( T (T)) @ 0<a<l, TEU},
()
were investigated by Kaczmarski [28];
(iii)
lim STy (1, -1) = ST,
and

hm CVoy(1,-1) =CV,

which are well-known classes of starlike and convex meromorphic functions, respectively; see the
researches [20,21].

2. Main results

To illustrate our conclusions, the following lemma is necessary:

Lemma 1. [29] Considering y and 6 are complex numbers with vy # 0, and let h(t) be regular in U
with
h(0) =1 and Re{yh(tr)+ o6} > 0.

AIMS Mathematics Volume 10, Issue 12, 30990-31009.
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I

W@ =1+wT+ Wt +....

is analytic in U, then
™0,0(T)

W@ + Yy (T) + 0

< (1),
then w(t) < (7).

Lemma 2. [30] Let n(t) be convex in U with n(0) = 1 and let
Y : U-C,
with
Re(Y(1)) > 0,

inU. If
yr)=1+y1t+ szz...,

is analytic in U, then
(1) + Y (7). 70,3(7) < 7(7),

implies that y(t) < n(7).
Theorem 1. Assume that ¢(7) is a regular and convex univalent function with

©0)=1 and Re(p(1)) > 0,

for T € U. Then, for r € Ny, and o, > 0,2 > 0,0 < q < 1 with
1
Re {——g0+ ﬁ} > 0,
q q

and

ST ., (%,0) (¢) C ST, (%,0) (¢) C ST, (%,0) (¢).

Proof. Let{ € ST (%, 0) (¢) satisfying

—qd, (%, 0)7(7))
D;.(%,0)7()

< (1),

consider
—a7d, (D55 (%, 0)7(7))

Dye (¢, 0)i(1)

w(T) =

9

where w(7) is analytic in U, w(0) = 1.
From (1.7) we have

_quq (DGLI(%,Q)T(T)) _ o], 5., 0)i(7) (1 + [Q]q) , x>0,

= + _
Dy (¢, 0)(7) %a° DT (¢, 0)(7) %q°

(2.1

AIMS Mathematics Volume 10, Issue 12, 30990-31009.
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by using (2.1) we obtain

D (x, T
Lol DG _ o  lely 02
%q? DI (%, 0)(7) %q°
On g-logarithmic differentiation of (2.2), we have
—qTD, (D;,g(% ;of(r )) D,w(T)
y = () + Tk (2.3)
Dq,g(%’ Q)T(T) Fw(r) + r
where o]
Ny = (1 + %—qg) .
Since f € ST (%, 0) (¢), from (2.3) we have
T™,w(T)
(1) + ———- < @(7).
T(,U(T) + )
From Lemma 1, we get w(7) < ¢(7). Consequently,
qrd, (D73 (. 0)f(7))
- < (1),

Dy (¢, 0)(7)

then f € STQ“(%, 0) () . To prove the first part, let f € ST, ., ,(x, 0) (¢) and set

,E

. —q7d, (D], (2. 0)f(7)) o
0= T o) ‘

where y is analytic in U, y(0) = 1.
From (1.8) we have

—q1d, (D],06.01(0) e+ 1], Dy, (6 0F@) [ +2],

= + ,
D42, 0)(7) gt Dy (%, 0)7(7) qet!
by using (2.4) and g-logarithmic differentiation we obtain

—atd, (D, (%, )f(7))
ol
with . 6 +2]
Re {—ago + pers q} > 0.
The proof is now finished. m|

Theorem 2. Let ¢(7) be regular and convex univalent function with

©0) =1 and Re(p(r)) >0,

AIMS Mathematics Volume 10, Issue 12, 30990-31009.
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for T € U. Then, for r € Ny and o, > 0,2 > 0,0 < q < 1, with
1 qu}

Red——p+ — >0,
{ qu q

and

1 +2
Re{—ago+ le ]q} > 0,

qs+2

and
CV, 12,0 (p) C CV (x%,0) (p) C CVI (%, 0) (9).

Proof. Let CV, (x,0) (¢). Applying (1.11), we show that

f e CV; ,(%,0) (9) © D (x,0)f(r) € CV,(¢)
& —ard, (D), (¢, Q)T(T)) € ST, (¢)
& —qr(d,f) € ST, (%, 0) (¢)
& —qr(d,f) € STM(% 0) (¢)
& —atd, (D[ (4, 0)i(1)) € ST, ()

= Dr”(% 0)(—at(d,f)) € ST, (¢)
D'”(% 0)i(1) € CV, (p)
& FeCVIH(x,0) ().

We can use arguments like the ones mentioned above to illustrate the first part.
The proof is now finished.

Example 1. We can expand the inclusions according to using Theorems 1 and 2

(@)

ST, om(#,0) (9) C ST, ,,,_1(%,0) () C ... C ST, .(%,0) (¢),

CViem®,0) (@) CCV, ., (2,0 (o) C....... C CV (2,0 (¢);

(ii)

ST; .(%,0) (¢) C ST’“(% 0)(p) C ... C ST (%,0) (¢),
CV, . (x,0)(p) C CV’“(% 0)(p) C ... CCVH (%0 (¢).

Corollary 1. Suppose that r € Ny and 0,%,& > 0,0 < q < 1. Then, for

1+(1-2a0)T a
QD(T)ZI—, Mg > —»
-7

and
[e +2],
>

q8+1
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we obtain
- 1+ -2a)T . 1+ -2a)T
ST or1(%,0) (T) C ST, ,(%,0) (T)
1+(1-2
c STZ;I(%’Q)( ( Q’)T)’
’ 1-1
. I+ -2a)r . 1+ -2a)r
CVier1(%,0) (T) c CV, (%, 0) (T)
I1+(1-2
c v 0Z207)
’ 1-71
respectively.

Example 2. Suppose that r € Ny and o, %, > 0,0 < g < 1. For

1
o(t) = T
we obtain
1
r r r+1
ST, ..1(¢,0) (1 - qT) C STq,g(%,Q)(1 — qr) C ST, (%,0) (1 — qT),
r 1 r r+1 1
CVq,SH(%,Q)(1 — qr) C CVQ,E(%,Q)(1 — qr) c CV (%,Q)(1 - qr)'

The following conclusions can be shown by using the same arguments as before.

Theorem 3. Consider ¢(1) be regular and convex univalent function with
©(0) =1 and Re(p(1)) >0,

fort € U. Then forr € Ny and 0, > 0,2 > 0,0 < q < 1, with

Re ; >0
[_T]]‘I’(T) + ga]

and
K;,g+1(%’ Q) (90) - K;’g(%’ Q) (90) - K;::;l (%’ Q) (90) .

Proof. Let{ € K| .(x, 0) (¢). Then, by definition, There is g € ST, (%, 0) (/) satisfying

ard, (Dp, (4. 0i(1)
Dp.(%,0)9(7)

< (7). (2.5)

Consider
ar, (D45 64, 0)f(D)

= p(7), 2.6
Y losm (2:0)

AIMS Mathematics Volume 10, Issue 12, 30990-31009.



31001

where p(7) is regular in U with p(0) = 1,
—qd, (D[ (¢, 0)1(0)) = p(T) D} (¢, 0)a(7),

by using (1.7) we have

LQ]QDQ 00, 0f(T) + (1 + ol )DQTQ(% 0)f(7) = p(DD (%, 0)9(7).

On g-differentiating with respect to 7, and dividing by Dy (%, 0)a(7) we get

[o], a7 (D4,060f(™) (1 [o], | a0 (D (%, 0)F(D)
T xa D0n0a(0) +(_ ) (4. 0)0(0)
(™) (D4 64, 0)8(0) + 0@, (D (4, 0)a(7))
- D;o(%,0)9(7)

q %qg+l

)

using simple calculation we obtain

0, p(0) (D14 (,0)8(7) ) +p(1) 70 (D (2,0)8(7) ) - ( )arbq(n”‘ (%,0)i(1))

[Q]q quq (DSQ(%’ Q)T(T)) _ 1);;1(% 0)a(7)

xet!l D (x,08(1) 0%%:000)
D (,0)9(7)

Applying identity (1.7) we have

7o, (D7 (. 0)0(7)) = lol —D! (%,0)9(T) - ( o, )D;*:(%,g)g(ﬂ,

g+1 q,Q+1

then (o D )
_ardy (g D (,0)i(7) a1 (D (o,0)i(7)
—qTd, (333,8(%,9)“7)) ~ D (00 — 4 D (0)a(D) 2.7)
Dp(t,000() (S o) | ’ '
Dl (.0)0(7) a
where 0]
_ (1, 19
fq = (a + %qg+1).
On g-differentiation of (2.6), we have
qard D (2, 0)f(7)
a2 ) B T, 2.8)
D (2, 0)0(7) q
where
L) = 7o, (D73 (¢, 0)a(7)
—U(T .
q D (%, 0)9(T)
From (2.7) and (2.8), we get
_ard, (DQ,E(%,Q)T(T)) ~ 0,0(7) 2.9)

om0 g,

AIMS Mathematics Volume 10, Issue 12, 30990-31009.
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Consequently, from (2.5)
™0,0(7)

Zy(r) + ¢,

(%,7) (¥), by Theorem 1, we conclude

g€ ST/ H (¢, 1) (),

p(7) + o(7). (2.10)

Since g € ST

0.&

since
1

Re(——) >
71'7[’(7') + ¢
in U. Lemma 2 now produces the intended result.
To prove the first part, let f € ST, _,,(x, 0) (¢) and set

ard, (D¢, 0)(7))
Dp.(%,0)9(7)

)

X =~

where y is analytic in U, y(0) = 1.

—qd, (D] (2. 0)7(7)) = ¥() D, (%, 0)a(7)
by using (1.8)

[e+1],

2
g oyt + 22k
q

q£+ 1

D;.:(%, 01 (1) = ) (1) D 1%, 0)a(7).

On g-differentiating with respect to 7, dividing by ©; (%, 0)g(7), and using simple calculation it follows
that
ard, (D)%, 0)f(7))

D (%, 0)9(7)

1
Re [W) > 0.
=)+

The proof is complete. O

< (1),

with

Theorem 4. Let ¢(7) is analytic and convex univalent function with
©0) =1 and Re(p(r)) >0,

fort € U. Then forr € Ny and o, > 0,2 > 0,0 < q < 1, with
Re( ! ) >

e—

_71‘//(7)+{q

1
Re {—1 Ty ] > 0,
() + 22

QL 106,0) (9) € QL (x,0) () € Q1 (2, 0) (¢).

b

and

and

AIMS Mathematics Volume 10, Issue 12, 30990-31009.
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Proof. Letf € Q (%,7) (). We have

feQ (20 (9) & D, (x0)i(1) € Q(¢)
& —q1d, (D, (%, 0)f(1)) € K, (9)

& —a1(d,f) € K{ (%, 0) (¢)
c>mmeWwa

& —qrd, (D1 (2. 0)7(7)) € K, (9)

& D (e, 0)(—at(0,)) € K, (¢)

& D (. 0)i(7) € Q, ()

o fe Q! (%0 (0.

To demonstrate the first section, we can use arguments similar to the ones listed above.
The proof is now complete. m|

Remark 2. Based on Theorems 3 and 4, we can infer the following inclusion relations:

qg+m(% 0) (@) c K|, ., 1060 (p) C ... K (%,0) (¢),
r 06,0 () €K, 0) (9) C oee. CKIV"(02,0) (),

and

Qo100 () C Q4,1 (,0) (@) C o QY (%,0) (9)
QL (%,0) (p) € Q' (x,0) (p) C. Q’*”(% 0)(¢), (m,neN).

The same reasoning as before can be used to demonstrate the following conclusions.
3. Invariance of the classes under g-Bernardi integral operator

Bernardi g-meromorphic refers to a class of complex functions that are both meromorphic
(analytic except for poles) and exhibit g-analogue properties, often studied in the context of
g-difference equations or g-integral operators like the generalized g-Bernardi integral operator.
Researchers use these operators to define and study new subclasses of these functions, such as
meromorphic g-starlike and g-convex functions, and examine their coefficient estimates, inclusion
properties, and other analytical characteristics.

The g-Bernardi integral operator generalizes the classical Bernardi operator into the framework of g-
calculus, acting as a linear coefficient multiplier operator on analytic functions, with wide applications
in g-versions of GFT.

For a function f € X, we denote by 3, the g-Bernardi integral operator 3, , defined by (see the
researches [14,31,32])

Fo(r) = JKH—TEI#WDW’ (o e ). G.1)

AIMS Mathematics Volume 10, Issue 12, 30990-31009.
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For g — 1~ we have

&) = J,[F(0)] =

p T
Hfotpf(r)dt (p € N,

>

which are defined in [33].

The g-Bernardi integral operator 3, ,: X — X, defined in (3.1), satisfies the following relationship:

110, D (%, 0)F4(1) = [p] D02, 0)i(T) = [p + 11D} (2, 0)Fo (7).
The following result is now stated and demonstrated.

Theorem S. If{ € X defined by (1.1) is in the function class ST .(x, 0) (¢) , and

-1 +1
-1, el
q qp+1

then §,(7) defined by (3.1) also belongs to the class ST, (x, 0) (¢).

Ref

} >0,

Proof. Let{ € ST; .(%,0) (¢), we put

aT0a(Dy (%, 0) (7))
Dy (¢, 00T (1)

(1) = —

where w(7) is analytic in U with w(0) = 1.
From (3.2), we show that

[p]q :Dg,a(%,g)f(T) + [p+ 1]q
@ D (4, 0)F4(7) ¥ o

w(T) =—

On g-logarithmic differentiation, we get

qrda(Dy (%, 0)T(7)) TD,w(T)
- " =w(T) + .
D02, 0)7(7) L) + 2L
Since f € ST, .(%,0) (), we can revise (3.4) as
[\

-1 [p+1]q

TC{)(T) + qp+|
Using Lemma 1, we get

-1

?w(f) < (7).
Consequently

—qr,(D}H (2, 0) & (7))
r+l SO(T)
Die (%, 0)F,(7)

Hence

§o(7) € ST, (¢, 0) (¢) .

AIMS Mathematics Volume 10, Issue 12,
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The conclusion that follows can be demonstrated using arguments that are similar to those in

Theorem 5.

Theorem 6. Assume that
fe CV, (%0 (p).

Then
8q(1) € CV (%, 0) (),

where & (1) be defined by (3.1) with
-1 [o+ 1],

Re{?go + oy }>0.
Theorem 7. Let | € K{ .(%,0) (¢), ¢(0) = 1, and
1
Re . > 0.
pl( ) + l;p+l

Then
8q(1) € K{ .(%,0) (¢),

where §4(7) is called g-Bernardi integral operator defined in (3.1).

Proof. Consider
fe K .(%0) ().

Then we want to show that
8q(7) € K[ .(%,0) (¢),

where §,(7) defined in (3.1), for g € ST; (%, 0) (¢)

84(7) = Lﬂ? f ()bt € ST, . (%,0) (¢) .
T 0

Consider
QT Fo(7)

0u(0) = p(1),

where p(7) is regular in U with p(0) = 1.
Similarly, from (3.2), we’ve

qp+1qugq(T) = [P qg(T) [P + 1 ng(T)

From (3.2) and (3.7), we obtain

,i(r) _ D (D) + R ()

a(7) 0,8,(7) + Lhg (1)

qp+1

AIMS Mathematics
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equivalently
—qrdg(24af(M)  [p+1]4 070 (Fei(D)
—qrd, (1) 9,(7) )
T - ™43,(1) | [+l
8(®) @ T e

On g-differentiation of (3.6) and simple calculation implies

0 (PSIE) _ e
94(7) q
where X
ey = oD,
q 94(7)
Substituting (3.9) in (3.8), we obtain
—q7d,f(7) = p(r) + ™0,0(7)

3(7) [e+11,

L) + L

Since | € K, (¢), we can rewrite (3.10) as

0,0(7)
[p+1],

=P+

p(r) + < (7).

From (3.5), we determine that
-1
Re(—m(f)) >0,
q
in U indicates
1
Re e, > 0,

-1
?pl(T) + qp+l

in U. Using Lemma 2, hence &,(7) € K, (¢).

The same arguments are used to support the following theorem.

Theorem 8. Let
feQ (%0 (@.
Then
Taf(7) € Qi (%, 0) (),
where §,1(7) be defined by (3.1) with

1
Re e, > 0.

-1
T]pl(T) + qp+1

(3.8)

(3.9)

(3.10)

AIMS Mathematics Volume 10, Issue 12, 30990-31009.
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4. Conclusions

This work introduces novel classes of analytic normalized functions in the unit disk U and
establishes new results in the theory of meromorphic functions. By employing the concept of a
g-difference operator, we defined the g-analogue multiplier-Ruscheweyh operator D ,(x, 0) to explore
various subclasses of meromorphic functions. Using this operator, several new subclasses were
introduced and systematically analyzed. For these classes, we investigated inclusion relations and
demonstrated the integral preservation property, highlighting the operator’s utility in geometric
function theory.

The framework developed here provides a foundation for further research in several directions.
Future work could focus on:

e Extending the study to more generalized g-operators or hybrid operators combining g-calculus
with other fractional or integral operators.

e Exploring applications in related areas, such as multivalent meromorphic functions, as well as
potential connections with complex dynamical systems.

Overall, this study lays the groundwork for a broad spectrum of investigations into g-analogues of
classical operators and their applications in geometric function theory.
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