

---

**Research article**

## Geometric applications for meromorphic functions involving $q$ -linear operators

**Ekram E. Ali<sup>1,2,\*</sup>, Rabha M. El-Ashwah<sup>3</sup> and Abeer M. Albalahi<sup>1</sup>**

<sup>1</sup> Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il 81451, Saudi Arabia

<sup>2</sup> Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said 42521, Egypt

<sup>3</sup> Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt

\* **Correspondence:** Email: e.ahmad@uoh.edu.sa.

**Abstract:** This paper investigated the  $q$ -analogue of the multiplier-Ruscheweyh operator acting on meromorphic analytic functions, denoted by  $\mathfrak{D}_{q,\varepsilon}^r(\zeta, \varrho)$ . By applying tools from  $q$ -calculus together with the principle of subordination, we developed several analytical results that deepened the understanding of geometric function theory (GFT) in the setting of meromorphic functions. The study focused on constructing new subclasses of meromorphic univalent functions associated with the operator  $\mathfrak{D}_{q,\varepsilon}^r(\zeta, \varrho)$ , characterized by  $q$ -starlikeness,  $q$ -convexity, and related geometric classes. Various inclusion relationships, differential inequalities, and integral preservation properties were examined to establish the structural behavior of these families of functions. The findings generalized and unified several existing results in the literature concerning different operators and extended their applications to broader contexts within meromorphic function theory with  $q$ -calculus operator.

**Keywords:** analytic function; meromorphic function;  $q$ -difference operator;  $q$ -analogue multiplier Catas operator;  $q$ -analogue of Ruscheweyh operator

**Mathematics Subject Classification:** 26A33, 30C45, 30C50, 30C80

---

### 1. Introduction

Numerous fields of mathematics and science including complex analysis, hypergeometric series, particle physics, and most importantly geometric function theory (GFT), have found extensive uses for the idea of  $q$ -calculus operators. Ismail and his associates' introduction of the idea of  $q$ -starlike functions in 1990 [1] was a significant turning point in this direction and signaled the start of a new field of study in GFT.

Jackson [2,3] established the foundation for  $q$ -analogues of classical operators by introducing the  $q$ -differential and  $q$ -integral operators and proving their applicability to the study of geometric functions.

Symmetric quantum (or  $q$ -) calculus applies  $q$ -calculus concepts to define new families of multivalent functions in GFT, which studies the geometric properties of analytic functions. This approach uses symmetric quantum difference operators to generate new subclasses of functions with properties like  $q$ -starlikeness and  $q$ -convexity. Research in this area focuses on using these operators to establish necessary and sufficient conditions for function classes, explore properties like compactness and coefficient bounds, and generalize existing results in GFT for both analytic functions.  $q$ -difference equations are an important aspect of mathematical analysis, particularly in the field known as GFT. Quantum calculus is frequently used in mathematical disciplines because of its numerous possible applications in basic hypergeometric functions [4], orthogonal polynomials [5, 6], combinatorics [7], and number theory [8]. Several fundamental ideas in  $q$ -calculus [9, 10] demonstrate how it is integrated into mathematical ideas. Srivastava's 1989 [11, chapter 25, P. 329] offered the appropriate foundation for integrating the concepts of  $q$ -calculus into GFT. Several researchers have studied different  $q$ -calculus applications for subclasses of analytic functions (see [12–17]).

We say  $\mathfrak{f}$  and  $\mathfrak{l}$ , are analytic functions and are subordinated, then the result is  $\mathfrak{f} \prec \mathfrak{l}$ , which is defined as

$$\mathfrak{f}(\tau) = \mathfrak{l}(\chi(\tau)),$$

where  $\chi(\tau)$  is the Schwartz function in  $\mathbb{U}$  (see [18, 19]).

Let  $\Sigma$  be the class of meromorphic analytic functions in punctured unit disk

$$\mathbb{U}^* = \mathbb{U} \setminus \{0\} = \{\tau : \tau \in \mathbb{C} \text{ and } 0 < |\tau| < 1\},$$

with:

$$\mathfrak{f}(\tau) = \frac{1}{\tau} + \sum_{\kappa=1}^{\infty} a_{\kappa} \tau^{\kappa}. \quad (1.1)$$

Let ST, CV, K and  $\mathfrak{Q}$  represent the corresponding subclasses from the univalent class  $\Sigma$  that are starlike, convex, close-to-convex, and quasi-convex functions.

For  $\mathfrak{f}$  given by (1.1) and  $\mathfrak{h}$  given by

$$\mathfrak{h}(\tau) = \frac{1}{\tau} + \sum_{\kappa=1}^{\infty} b_{\kappa} \tau^{\kappa}, \quad \tau \in \mathbb{U}^*,$$

the well-known *convolution product* is

$$(\mathfrak{f} * \mathfrak{h})(\tau) := (\mathfrak{h} * \mathfrak{f})(\tau) = \frac{1}{\tau} + \sum_{\kappa=1}^{\infty} a_{\kappa} b_{\kappa} \tau^{\kappa} =: (\mathfrak{h} * \mathfrak{f})(\tau).$$

A meromorphic function  $\mathfrak{f} \in \Sigma$  in  $\mathbb{U}^*$  is a meromorphically starlike function of order  $\alpha$  ( $0 \leq \alpha < 1$ ) if

$$-Re \left\{ \frac{\tau \mathfrak{f}'(\tau)}{\mathfrak{f}(\tau)} \right\} > \alpha \quad (\tau \in \mathbb{U}^*). \quad (1.2)$$

Meromorphic convex functions  $\mathfrak{f} \in \Sigma$  in  $\mathbb{U}^*$  is a meromorphically convex function of order  $\alpha$  ( $0 \leq \alpha < 1$ ) if

$$-Re \left[ 1 + \frac{\tau \mathfrak{f}''(\tau)}{\mathfrak{f}'(\tau)} \right] > \alpha, \quad \tau \in \mathbb{U}^*.$$

These classes' foundational concepts began in 1959 when Cluin [20] investigated meromorphic schlicht functions. Meromorphic starlike functions were defined by Pommerenke [21] in 1963. A meromorphic convex function was introduced by Miller [22] in 1970. He also looked at certain generalized coefficient problems and other helpful properties of meromorphic convex functions.

**Definition 1.** [2, 3] The  $q$ -derivative, or the *Jackson derivative* of a function  $f$  is defined by

$$\begin{aligned} D_q f(\tau) := d_q f(\tau) &= \frac{f(q\tau) - f(\tau)}{(q-1)\tau} \\ &= -\frac{1}{q\tau^2} + \sum_{\kappa=1}^{\infty} [\kappa]_q a_{\kappa} \tau^{\kappa-1} \quad (q \in (0, 1), \tau \in \mathbb{U}^*), \end{aligned}$$

where

$$\begin{aligned} [\kappa]_q &= \begin{cases} \sum_{j=0}^{\kappa-1} q^j = 1 + q + q^2 + \dots + q^{\kappa-1}, & \kappa \in \mathbb{N} = \{1, 2, 3, \dots\}, \\ 0, & \kappa = 0, \end{cases} \\ [\kappa]_q! &= \begin{cases} [\kappa]_q [\kappa-1]_q \dots [2]_q [1]_q, & \kappa = 1, 2, 3, \dots, \\ 1, & \kappa = 0, \end{cases} \end{aligned}$$

and

$$\lim_{q \rightarrow 1^-} d_q f(\tau) = f'(\tau).$$

The  $q$ -difference operator is subject to the following basic laws:

$$\begin{aligned} d_q (c\varpi_1(\tau) \pm d\varpi_2(\tau)) &= c d_q \varpi_1(\tau) \pm d d_q \varpi_2(\tau), \\ d_q (\varpi_1(\tau) \varpi_2(\tau)) &= \varpi_1(q\tau) d_q (\varpi_2(\tau)) + \varpi_2(\tau) d_q (\varpi_1(\tau)), \\ d_q \left( \frac{\varpi_1(\tau)}{\varpi_2(\tau)} \right) &= \frac{d_q (\varpi_1(\tau)) \varpi_2(\tau) - \varpi_1(\tau) d_q (\varpi_2(\tau))}{\varpi_2(q\tau) \varpi_2(\tau)}, \quad \varpi_2(q\tau) \varpi_2(\tau) \neq 0, \\ d_q (\log \varpi_1(\tau)) &= \frac{\ln q}{q-1} \frac{d_q (\varpi_1(\tau))}{\varpi_1(\tau)}, \end{aligned}$$

where  $\varpi_1, \varpi_2$  are analytic functions and  $c$  and  $d$  are real or complex constants.

Also, Jackson [2] introduced the  $q$ -integral as

$$\int_0^{\tau} f(\tau) d_q \tau = (1-q)\tau \sum_{n=0}^{\infty} q^n f(q^n \tau), \quad (1.3)$$

we note that

$$\int_0^{\tau} f(\tau) d_q \tau = \int_0^{\tau} \tau^n d_q \tau = \frac{1}{[n+1]_q} \tau^{n+1} \quad (n \neq -1),$$

and

$$\lim_{q \rightarrow 1^-} \int_0^{\tau} f(\tau) d_q \tau = \lim_{q \rightarrow 1^-} \frac{1}{[n+1]_q} \tau^{n+1} = \frac{1}{n+1} \tau^{n+1} = \int_0^{\tau} f(\tau) d\tau,$$

where  $\int_0^{\tau} f(\tau) d\tau$  denotes the ordinary integral.

For  $\varepsilon > -1$ , define the meromorphic  $q$ -analogue of Ruscheweyh operator  $\mathfrak{R}_q^\varepsilon: \Sigma \rightarrow \Sigma$  by Hadmard product (convolution)

$$\mathfrak{R}_q^\varepsilon f(\tau) = f(\tau) * \phi(q, \varepsilon + 1; \tau) = \frac{1}{\tau} + \sum_{\kappa=1}^{\infty} \frac{[\kappa + \varepsilon + 1]_q}{[\varepsilon]_q! [\kappa + 1]_q!} a_\kappa \tau^\kappa, \quad (\varepsilon \geq 0, 0 < q < 1),$$

where

$$\phi(q, \varepsilon; \tau) = \frac{1}{\tau} + \sum_{\kappa=1}^{\infty} \frac{[\kappa + \varepsilon + 1]_q}{[\varepsilon]_q! [\kappa + 1]_q!} \tau^\kappa,$$

was introduced and studied by Ahmad and Arif [23].

The  $q$ -analogue of the Ruscheweyh operator is a natural extension of the classical Ruscheweyh derivative obtained by replacing ordinary derivatives and convolutions with their  $q$ -calculus counterparts.

This is precisely the  $q$ -extension of the meromorphic Ruscheweyh operator; it reduces to the classical case as  $q \rightarrow 1^-$ :

$$\lim_{q \rightarrow 1^-} \phi(q, \varepsilon + 1; \xi) = \frac{1}{\xi(1 - \xi)^{\varepsilon+1}}, \quad \lim_{q \rightarrow 1^-} (\mathfrak{R}_q^\varepsilon f) = f * \frac{1}{\xi(1 - \xi)^{\varepsilon+1}}.$$

Useful identities include

$$\mathfrak{R}_q^0 f = f, \quad \mathfrak{R}_q^1 f - [2]_q \mathfrak{R}_q^0 f(q\tau) = \tau D_q f(\tau),$$

and, for  $m \in \mathbb{N}$ ,

$$\mathfrak{R}_q^m f(\tau) = \frac{\tau^{-1}}{[m]_q!} D_q(\tau^{m+1} f(\tau)).$$

For  $f(\tau) \in \Sigma$ ,  $r \in \mathbb{N}_0$ ,  $\varrho, \varkappa \geq 0$ ,  $0 < q < 1$  let:

$$\begin{aligned} \mathfrak{D}_{\varrho, \varkappa}^{0, q} f(\tau) &=: \mathfrak{D}_{\varrho, \varkappa}^q f(\tau) = f(\tau), \\ \mathfrak{D}_{\varrho, \varkappa}^{1, q} f(\tau) &= (1 - \varkappa) f(\tau) + \frac{\varkappa}{[\varrho]_q \tau^\varrho} \mathfrak{D}_q \left( \tau^{\varrho+1} f(\tau) \right) \\ &= \frac{1}{\tau} + \sum_{\kappa=1}^{\infty} \left( \frac{[\varrho]_q + \varkappa([\kappa + \varrho + 1]_q - [\varrho]_q)}{[\varrho]_q} \right) a_\kappa \tau^\kappa, \\ &\dots \\ \mathfrak{D}_{\varrho, \varkappa}^{r, q} f(\tau) &= (1 - \varkappa) \mathfrak{D}_{\varrho, \varkappa}^{r-1, q} f(\tau) + \frac{\varkappa}{[\varrho]_q \tau^\varrho} \mathfrak{D}_q \left( \tau^{\varrho+1} \mathfrak{D}_{\varrho, \varkappa}^{r-1, q} f(\tau) \right), \quad r \geq 1, \end{aligned}$$

and

$$\mathfrak{D}_{\varrho, \varkappa}^{r, q} f(\tau) = \frac{1}{\tau} + \sum_{\kappa=1}^{\infty} \left( \frac{[\varrho]_q + \varkappa([\kappa + \varrho + 1]_q - [\varrho]_q)}{[\varrho]_q} \right)^r a_\kappa \tau^\kappa, \quad (r \in \mathbb{N}_0, \varrho, \varkappa \geq 0, 0 < q < 1). \quad (1.4)$$

Setting

$$f_{q, \varkappa, \varrho}^r(\tau) = \frac{1}{\tau} + \sum_{\kappa=1}^{\infty} \left( \frac{[\varrho]_q + \varkappa([\kappa + \varrho + 1]_q - [\varrho]_q)}{[\varrho]_q} \right)^r \tau^\kappa.$$

Now we define a new function  $f_{q,\varkappa,\varrho}^{r,\varepsilon}(\tau)$  in terms of the Hadamard product (or convolution) by

$$\tilde{f}_{q,\varkappa,\varrho}^r(\tau) * \tilde{f}_{q,\varkappa,\varrho}^{r,\varepsilon}(\tau) = \frac{1}{\tau} + \sum_{\kappa=1}^{\infty} \frac{[\kappa+\varepsilon+1]_q!}{[\varepsilon]_q![\kappa+1]_q!} \tau^\kappa.$$

Next, we provide the operator

$$\mathfrak{D}_{\varepsilon,q}^r(\varkappa, \varrho) f(\tau) : \Sigma \rightarrow \Sigma,$$

which is primarily inspired by the  $q$ -analogue of the Ruscheweyh operator and the  $q$ -analogue multiplier defined by

$$\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \tilde{f}(\tau) = \tilde{f}_{q,\varkappa,\varrho}^{r,\varepsilon}(\tau) * \tilde{f}(\tau), \quad (1.5)$$

where  $r \in \mathbb{N}_0, \varrho, \varkappa, \varepsilon \geq 0, 0 < q < 1$ . For  $\tilde{f} \in \Sigma$ ; and (1.5) then

$$\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \tilde{f}(\tau) = \frac{1}{\tau} + \sum_{\kappa=1}^{\infty} \left( \frac{[\varrho]_q}{[\varrho]_q + \varkappa([\kappa+\varrho+1]_q - [\varrho]_q)} \right)^r \frac{[\kappa+\varepsilon+1]_q!}{[\varepsilon]_q![\kappa+1]_q!} a_\kappa \tau^\kappa. \quad (1.6)$$

By using (1.6) we get

$$\varkappa q^{\varrho+1} \tau \partial_q (\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \tilde{f}(\tau)) = [\varrho]_q \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \tilde{f}(\tau) - (\varkappa q^\varrho + [\varrho]_q) \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \tilde{f}(\tau), \quad \varkappa > 0, \quad (1.7)$$

$$q^{\varepsilon+2} \tau \mathfrak{d}_q (\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \tilde{f}(\tau)) = [\varepsilon+1]_q \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \tilde{f}(\tau) - [\varepsilon+2]_q \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \tilde{f}(\tau). \quad (1.8)$$

We note that:

(i) If  $r = 0$  and  $q \rightarrow 1^-$  we obtain  $\mathfrak{R}^\varepsilon f(\tau)$  is Rüsscheweyh differential operator [24];

(ii) If we set  $\varepsilon = 0$  and  $q \rightarrow 1^-$  we get  $\mathfrak{D}_r(x, \varrho) \tilde{f}(\tau)$ . It was introduced by Bulboaca et al [25] and El-Ashwah [26] with  $(p = 1)$ .

We also see:

$$(i) \mathfrak{D}_{\varepsilon,q}^r(1, \varrho) \tilde{f}(\tau) = \mathfrak{D}_{\varepsilon,q}^r(\varrho) \tilde{f}(\tau),$$

$$\tilde{f}(\tau) \in \Sigma : \mathfrak{D}_{\varepsilon,q}^r(\varrho) \tilde{f}(\tau) = \frac{1}{\tau} + \sum_{\kappa=2}^{\infty} \left( \frac{[\varrho]_q}{[\kappa+\varrho+1]_q} \right)^r \frac{[\kappa+\varepsilon+1]_q!}{[\varepsilon]_q![\kappa+1]_q!} a_\kappa \tau^\kappa,$$

$$r \in \mathbb{N}_0, \varepsilon \geq 0, 0 < q < 1, \tau \in \mathbb{U}^*.$$

$$(ii) \mathfrak{D}_{\varepsilon,q}^r(1, 1) \tilde{f}(\tau) = \mathfrak{D}_{\varepsilon,q}^r \tilde{f}(\tau),$$

$$\tilde{f}(\tau) \in \Sigma : \mathfrak{D}_{\varepsilon,q}^r \tilde{f}(\tau) = \frac{1}{\tau} + \sum_{\kappa=2}^{\infty} \left( \frac{1}{[\kappa+2]_q} \right)^r \frac{[\kappa+\varepsilon+1]_q!}{[\varepsilon]_q![\kappa+1]_q!} a_\kappa \tau^\kappa,$$

$$r \in \mathbb{N}_0, \varrho > 0, \varepsilon \geq 0, 0 < q < 1, \tau \in \mathbb{U}^*.$$

$$(iii) \mathfrak{D}_{\varepsilon,q}^r(\varkappa, 1) \tilde{f}(\tau) = \mathfrak{D}_{\varepsilon,q}^r(\varkappa) \tilde{f}(\tau),$$

$$\tilde{f}(\tau) \in \Sigma : \mathfrak{D}_{\varepsilon,q}^r(\varkappa) \tilde{f}(\tau) = \frac{1}{\tau} + \sum_{\kappa=2}^{\infty} \left( \frac{1}{1 + \varkappa([\kappa+2]_q - 1)} \right)^r \frac{[\kappa+\varepsilon+1]_q!}{[\varepsilon]_q![\kappa+1]_q!} a_\kappa \tau^\kappa,$$

$$r \in \mathbb{N}_0, \varkappa > 0, \varepsilon \geq 0, 0 < q < 1, \tau \in \mathbb{U}^*.$$

Let  $\Phi$  be the class of analytic and univalent convex functions  $\varphi$ , with  $\varphi(0) = 1$ , and  $Re\varphi(\tau) > 0$  in  $\mathbb{U}$ .

**Definition 2.**  $\mathfrak{f} \in \Sigma$  is definitely in the class  $ST_q(\varphi)$  if it satisfies

$$-\frac{q\tau \mathfrak{d}_q(\mathfrak{f}(\tau))}{\mathfrak{f}(\tau)} < \varphi(\tau),$$

where  $\mathfrak{d}_q$  is the  $q$ -difference operator.

Analogously,  $\mathfrak{f} \in \Sigma$  is definitely in the class  $CV_q(\varphi)$  if

$$-q\tau \mathfrak{d}_q(\mathfrak{f}(\tau)) \in ST_q(\varphi). \quad (1.9)$$

For  $q \rightarrow 1^-$  we obtain a class of starlike meromorphic functions (see [21]), and a class of convex meromorphic functions (see [22]).

By using the operators defined above, we determine the next part.

**Definition 3.** Suppose that  $\mathfrak{f} \in \Sigma$ ,  $r \in \mathbb{N}_0$ , and  $\varkappa, \varrho > 0$ ,  $\varepsilon \geq 0$ ,  $0 < q < 1$ . Then

$$\mathfrak{f} \in ST_{\varepsilon, q}^r(\varkappa, \varrho)(\varphi) \Leftrightarrow \mathfrak{D}_{q, \varepsilon}^r(\varkappa, \varrho)\mathfrak{f}(\tau) \in ST_q(\varphi),$$

and

$$\mathfrak{f} \in CV_{\varepsilon, q}^r(\varkappa, \varrho)(\varphi) \Leftrightarrow \mathfrak{D}_{q, \varepsilon}^r(\varkappa, \varrho)\mathfrak{f}(\tau) \in CV_q(\varphi). \quad (1.10)$$

It is known that

$$\mathfrak{f} \in CV_{q, \varepsilon}^r(\varkappa, \varrho)(\varphi) \Leftrightarrow -q\tau(\mathfrak{d}_q \mathfrak{f}) \in ST_{q, \varepsilon}^r(\varkappa, \varrho)(\varphi). \quad (1.11)$$

**Definition 4.**  $\mathfrak{f} \in \Sigma$ ,  $\varphi \in \Phi$ , and  $q \in (0, 1)$ . Then  $\mathfrak{f} \in K_q(\varphi)$  if

$$-\frac{q\tau \mathfrak{d}_q \mathfrak{f}(\tau)}{g(\tau)} < \varphi(\tau),$$

for some  $g \in ST_q(\psi)$ ,  $\psi \in \Phi$ .

For  $q \rightarrow 1^-$  we obtain a class of close to convex meromorphic functions (see [27]).

Like the previously described classes, we define

$$\mathfrak{f} \in K_{q, \varepsilon}^r(\varkappa, \varrho)(\varphi) \Leftrightarrow \mathfrak{D}_{q, \varepsilon}^r(\varkappa, \varrho)\mathfrak{f}(\tau) \in K_q(\varphi),$$

and

$$\mathfrak{f} \in \mathfrak{Q}_{\varepsilon, q}^r(\varkappa, \varrho)(\psi) \Leftrightarrow \mathfrak{D}_{q, \varepsilon}^r(\varkappa, \varrho)\mathfrak{f}(\tau) \in \mathfrak{Q}_q(\psi).$$

It is known that

$$\mathfrak{f} \in \mathfrak{Q}_{\varepsilon, q}^r(\varkappa, \varrho)(\psi) \Leftrightarrow -q\tau \mathfrak{d}_q \mathfrak{f}(\tau) \in K_{q, \varepsilon}^r(\varkappa, \varrho)(\varphi).$$

**Definition 5.**  $\mathfrak{f} \in \Sigma$ ,  $\varphi \in \Phi$ , and  $q \in (0, 1)$ . Then  $\mathfrak{f} \in ST_{q, \varepsilon}^r(\varkappa, \varrho)(\varphi)$  if

$$-\frac{q\tau \mathfrak{d}_q \mathfrak{D}_{q, \varepsilon}^r(\varkappa, \varrho)\mathfrak{f}(\tau)}{\mathfrak{D}_{q, \varepsilon}^r(\varkappa, \varrho)\mathfrak{f}(\tau)} < \varphi(\tau),$$

and  $\mathfrak{f} \in \Sigma$ ,  $\varphi \in \Phi$ , and  $q \in (0, 1)$ . Then  $\mathfrak{f} \in K_{\varepsilon, q}^r(\varkappa, \varrho)(\varphi)$  if

$$-\frac{q\tau \mathfrak{d}_q \mathfrak{D}_{q, \varepsilon}^r(\varkappa, \varrho)\mathfrak{f}(\tau)}{\mathfrak{D}_{q, \varepsilon}^r(\varkappa, \varrho)g(\tau)} < \varphi(\tau),$$

for some  $g \in ST_{q, \varepsilon}^r(\varkappa, \varrho)(\varphi)$  with  $r \in \mathbb{N}_0$ ,  $\varkappa, \varrho \geq 0$ ,  $0 < q < 1$ .

**Remark 1.** (i)

$$\begin{aligned} \text{ST}_{q,\varepsilon}^r\left(\frac{1+(1-2\alpha)\tau}{1-\tau}\right) &= \text{ST}_{q,\varepsilon}^r(\alpha) \\ &= \left\{ \mathfrak{f} \in \Sigma : \operatorname{Re} \left( -\frac{q\tau \mathfrak{d}_q \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)} \right) > \alpha; 0 \leq \alpha < 1, \tau \in \mathbb{U} \right\}, \end{aligned}$$

and

$$\begin{aligned} \text{CV}_{q,\varepsilon}^r\left(\frac{1+(1-2\alpha)\tau}{1-\tau}\right) &= \text{CV}_{q,\varepsilon}^r(\alpha) \\ &= \left\{ \mathfrak{f} \in \Sigma : \operatorname{Re} \left( -\frac{q\tau \mathfrak{d}_q (\tau \mathfrak{d}_q \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau))}{\mathfrak{d}_q \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)} \right) > \alpha, 0 \leq \alpha < 1, \tau \in \mathbb{U} \right\}, \end{aligned}$$

the subclasses related to meromorphic  $q$ -starlike and  $q$ -convex respectively;

(ii)

$$\begin{aligned} \lim_{q \rightarrow 1^-} \text{ST}_{q,0}^0\left(\frac{1+(1-2\alpha)\tau}{1-\tau}\right) &= \text{ST}(\alpha) \\ &= \left\{ \mathfrak{f} \in \Sigma : \operatorname{Re} \left( -\frac{\tau \mathfrak{f}'(\tau)}{\mathfrak{f}(\tau)} \right) > \alpha; 0 \leq \alpha < 1, \tau \in \mathbb{U} \right\}, \end{aligned}$$

and

$$\begin{aligned} \lim_{q \rightarrow 1^-} \text{CV}_{q,0}^0\left(\frac{1+(1-2\alpha)\tau}{1-\tau}\right) &= \text{CV}(\alpha) \\ &= \left\{ \mathfrak{f} \in \Sigma : \operatorname{Re} \left( -1 - \frac{\tau \mathfrak{f}''(\tau)}{\mathfrak{f}'(\tau)} \right) > \alpha, 0 \leq \alpha < 1, \tau \in \mathbb{U} \right\}, \end{aligned}$$

were investigated by Kaczmarski [28];

(iii)

$$\lim_{q \rightarrow 1^-} \text{ST}_{q,0}^0(1, -1) = \text{ST},$$

and

$$\lim_{q \rightarrow 1^-} \text{CV}_{q,0}^0(1, -1) = \text{CV},$$

which are well-known classes of starlike and convex meromorphic functions, respectively; see the researches [20, 21].

## 2. Main results

To illustrate our conclusions, the following lemma is necessary:

**Lemma 1.** [29] Considering  $\gamma$  and  $\delta$  are complex numbers with  $\gamma \neq 0$ , and let  $\mathfrak{h}(\tau)$  be regular in  $\mathbb{U}$  with

$$\mathfrak{h}(0) = 1 \quad \text{and} \quad \operatorname{Re}\{\gamma \mathfrak{h}(\tau) + \delta\} > 0.$$

If

$$\omega(\tau) = 1 + \omega_1\tau + \omega_2\tau^2 + \dots$$

is analytic in  $\mathbb{U}$ , then

$$\omega(\tau) + \frac{\tau \mathfrak{d}_q \omega(\tau)}{\gamma \omega(\tau) + \delta} < \hbar(\tau),$$

then  $\omega(\tau) < \hbar(\tau)$ .

**Lemma 2.** [30] Let  $\pi(\tau)$  be convex in  $\mathbb{U}$  with  $\pi(0) = 1$  and let

$$Y : \mathbb{U} \rightarrow \mathbb{C},$$

with

$$\operatorname{Re}(Y(\tau)) > 0,$$

in  $\mathbb{U}$ . If

$$y(\tau) = 1 + y_1\tau + y_2\tau^2 \dots,$$

is analytic in  $\mathbb{U}$ , then

$$y(\tau) + Y(\tau) \cdot \tau \mathfrak{d}_q y(\tau) < \pi(\tau),$$

implies that  $y(\tau) < \pi(\tau)$ .

**Theorem 1.** Assume that  $\varphi(\tau)$  is a regular and convex univalent function with

$$\varphi(0) = 1 \quad \text{and} \quad \operatorname{Re}(\varphi(\tau)) > 0,$$

for  $\tau \in \mathbb{U}$ . Then, for  $r \in \mathbb{N}_0$ , and  $\varrho, \varepsilon \geq 0, \kappa > 0, 0 < q < 1$  with

$$\operatorname{Re} \left\{ -\frac{1}{q} \varphi + \frac{\eta_q}{q} \right\} > 0,$$

and

$$\operatorname{ST}_{q,\varepsilon+1}^r(\kappa, \varrho)(\varphi) \subset \operatorname{ST}_{q,\varepsilon}^r(\kappa, \varrho)(\varphi) \subset \operatorname{ST}_{q,\varepsilon}^{r+1}(\kappa, \varrho)(\varphi).$$

*Proof.* Let  $\mathfrak{f} \in \operatorname{ST}_{q,\varepsilon}^r(\kappa, \varrho)(\varphi)$  satisfying

$$\frac{-q\tau \mathfrak{d}_q (\mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho)\mathfrak{f}(\tau))}{\mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho)\mathfrak{f}(\tau)} < \varphi(\tau),$$

consider

$$\omega(\tau) = \frac{-q\tau \mathfrak{d}_q (\mathfrak{D}_{q,\varepsilon}^{r+1}(\kappa, \varrho)\mathfrak{f}(\tau))}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\kappa, \varrho)\mathfrak{f}(\tau)}, \quad (2.1)$$

where  $\omega(\tau)$  is analytic in  $\mathbb{U}$ ,  $\omega(0) = 1$ .

From (1.7) we have

$$-\frac{q\tau \mathfrak{d}_q (\mathfrak{D}_{q,\varepsilon}^{r+1}(\kappa, \varrho)\mathfrak{f}(\tau))}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\kappa, \varrho)\mathfrak{f}(\tau)} = -\frac{[\varrho]_q}{\kappa q^\varrho} \frac{\mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho)\mathfrak{f}(\tau)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\kappa, \varrho)\mathfrak{f}(\tau)} + \left(1 + \frac{[\varrho]_q}{\kappa q^\varrho}\right), \quad \kappa > 0,$$

by using (2.1) we obtain

$$-\frac{[\varrho]_q}{\varkappa q^\varrho} \frac{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau)} = \omega(\tau) - \left(1 + \frac{[\varrho]_q}{\varkappa q^\varrho}\right). \quad (2.2)$$

On  $q$ -logarithmic differentiation of (2.2), we have

$$\frac{-q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)} = \omega(\tau) + \frac{\tau \mathfrak{d}_q \omega(\tau)}{\frac{-1}{q} \omega(\tau) + \frac{\eta_q}{q}}, \quad (2.3)$$

where

$$\eta_q = \left(1 + \frac{[\varrho]_q}{\varkappa q^\varrho}\right).$$

Since  $\mathfrak{f} \in \text{ST}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi)$ , from (2.3) we have

$$\omega(\tau) + \frac{\tau \mathfrak{d}_q \omega(\tau)}{\frac{-1}{q} \omega(\tau) + \frac{\eta_q}{q}} < \varphi(\tau).$$

From Lemma 1, we get  $\omega(\tau) < \varphi(\tau)$ . Consequently,

$$-\frac{q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau)} < \varphi(\tau),$$

then  $\mathfrak{f} \in \text{ST}_{q,\varepsilon}^{r+1}(\varkappa, \varrho)(\varphi)$ . To prove the first part, let  $\mathfrak{f} \in \text{ST}_{q,\varepsilon+1}^r(\varkappa, \varrho)(\varphi)$  and set

$$\chi(\tau) = \frac{-q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)}, \quad (2.4)$$

where  $\chi$  is analytic in  $\mathbb{U}$ ,  $\chi(0) = 1$ .

From (1.8) we have

$$\frac{-q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)} = -\frac{[\varepsilon+1]_q}{q^{\varepsilon+1}} \frac{\mathfrak{D}_{\varepsilon+1,q}^r(\varkappa, \varrho) \mathfrak{f}(\tau)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)} + \frac{[\varepsilon+2]_q}{q^{\varepsilon+1}},$$

by using (2.4) and  $q$ -logarithmic differentiation we obtain

$$\frac{-q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)} < \varphi,$$

with

$$\text{Re} \left\{ -\frac{1}{q} \varphi + \frac{[\varepsilon+2]_q}{q^{\varepsilon+2}} \right\} > 0.$$

The proof is now finished.  $\square$

**Theorem 2.** *Let  $\varphi(\tau)$  be regular and convex univalent function with*

$$\varphi(0) = 1 \quad \text{and} \quad \text{Re}(\varphi(\tau)) > 0,$$

for  $\tau \in \mathbb{U}$ . Then, for  $r \in \mathbb{N}_0$  and  $\varrho, \varepsilon \geq 0, \kappa > 0, 0 < q < 1$ , with

$$Re \left\{ -\frac{1}{q} \varphi + \frac{\eta_q}{q} \right\} > 0,$$

and

$$Re \left\{ -\frac{1}{q} \varphi + \frac{[\varepsilon + 2]_q}{q^{\varepsilon+2}} \right\} > 0,$$

and

$$CV_{q,\varepsilon+1}^r(\kappa, \varrho)(\varphi) \subset CV_{q,\varepsilon}^r(\kappa, \varrho)(\varphi) \subset CV_{q,\varepsilon}^{r+1}(\kappa, \varrho)(\varphi).$$

*Proof.* Let  $CV_{q,\varepsilon}^r(\kappa, \varrho)(\varphi)$ . Applying (1.11), we show that

$$\begin{aligned} \mathfrak{f} \in CV_{q,\varepsilon}^r(\kappa, \varrho)(\varphi) &\Leftrightarrow \mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho)\mathfrak{f}(\tau) \in CV_q(\varphi) \\ &\Leftrightarrow -q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho)\mathfrak{f}(\tau) \right) \in ST_q(\varphi) \\ &\Leftrightarrow -q\tau(\mathfrak{d}_q \mathfrak{f}) \in ST_{q,\varepsilon}^r(\kappa, \varrho)(\varphi) \\ &\Leftrightarrow -q\tau(\mathfrak{d}_q \mathfrak{f}) \in ST_{q,\varepsilon}^{r+1}(\kappa, \varrho)(\varphi) \\ &\Leftrightarrow -q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\kappa, \varrho)\mathfrak{f}(\tau) \right) \in ST_q(\varphi) \\ &\Leftrightarrow \mathfrak{D}_{q,\varepsilon}^{r+1}(\kappa, \varrho)(-q\tau(\mathfrak{d}_q \mathfrak{f})) \in ST_q(\varphi) \\ &\Leftrightarrow \mathfrak{D}_{q,\varepsilon}^{r+1}(\kappa, \varrho)\mathfrak{f}(\tau) \in CV_q(\varphi) \\ &\Leftrightarrow \mathfrak{f} \in CV_{q,\varepsilon}^{r+1}(\kappa, \varrho)(\varphi). \end{aligned}$$

We can use arguments like the ones mentioned above to illustrate the first part.

The proof is now finished.  $\square$

**Example 1.** We can expand the inclusions according to using Theorems 1 and 2

(i)

$$\begin{aligned} ST_{q,\varepsilon+m}^r(\kappa, \varrho)(\varphi) &\subset ST_{q,\varepsilon+m-1}^r(\kappa, \varrho)(\varphi) \subset \dots \subset ST_{q,\varepsilon}^r(\kappa, \varrho)(\varphi), \\ CV_{q,\varepsilon+m}^r(\kappa, \varrho)(\varphi) &\subset CV_{q,\varepsilon+m-1}^r(\kappa, \varrho)(\varphi) \subset \dots \subset CV_{q,\varepsilon}^r(\kappa, \varrho)(\varphi); \end{aligned}$$

(ii)

$$\begin{aligned} ST_{q,\varepsilon}^r(\kappa, \varrho)(\varphi) &\subset ST_{q,\varepsilon}^{r+1}(\kappa, \varrho)(\varphi) \subset \dots \subset ST_{q,\varepsilon}^{r+s}(\kappa, \varrho)(\varphi), \\ CV_{q,\varepsilon}^r(\kappa, \varrho)(\varphi) &\subset CV_{q,\varepsilon}^{r+1}(\kappa, \varrho)(\varphi) \subset \dots \subset CV_{q,\varepsilon}^{r+s}(\kappa, \varrho)(\varphi). \end{aligned}$$

**Corollary 1.** Suppose that  $r \in \mathbb{N}_0$  and  $\varrho, \kappa, \varepsilon \geq 0, 0 < q < 1$ . Then, for

$$\varphi(\tau) = \frac{1 + (1 - 2\alpha)\tau}{1 - \tau}, \quad \eta_q > \frac{\alpha}{q},$$

and

$$\frac{[\varepsilon + 2]_q}{q^{\varepsilon+1}} > \alpha,$$

we obtain

$$\begin{aligned} \text{ST}_{q,\varepsilon+1}^r(\varkappa, \varrho) \left( \frac{1 + (1 - 2\alpha)\tau}{1 - \tau} \right) &\subset \text{ST}_{q,\varepsilon}^r(\varkappa, \varrho) \left( \frac{1 + (1 - 2\alpha)\tau}{1 - \tau} \right) \\ &\subset \text{ST}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \left( \frac{1 + (1 - 2\alpha)\tau}{1 - \tau} \right), \\ \text{CV}_{q,\varepsilon+1}^r(\varkappa, \varrho) \left( \frac{1 + (1 - 2\alpha)\tau}{1 - \tau} \right) &\subset \text{CV}_{q,\varepsilon}^r(\varkappa, \varrho) \left( \frac{1 + (1 - 2\alpha)\tau}{1 - \tau} \right) \\ &\subset \text{CV}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \left( \frac{1 + (1 - 2\alpha)\tau}{1 - \tau} \right), \end{aligned}$$

respectively.

**Example 2.** Suppose that  $r \in \mathbb{N}_0$  and  $\varrho, \varkappa, \varepsilon \geq 0, 0 < q < 1$ . For

$$\varphi(\tau) = \frac{1}{1 - q\tau},$$

we obtain

$$\begin{aligned} \text{ST}_{q,\varepsilon+1}^r(\varkappa, \varrho) \left( \frac{1}{1 - q\tau} \right) &\subset \text{ST}_{q,\varepsilon}^r(\varkappa, \varrho) \left( \frac{1}{1 - q\tau} \right) \subset \text{ST}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \left( \frac{1}{1 - q\tau} \right), \\ \text{CV}_{q,\varepsilon+1}^r(\varkappa, \varrho) \left( \frac{1}{1 - q\tau} \right) &\subset \text{CV}_{q,\varepsilon}^r(\varkappa, \varrho) \left( \frac{1}{1 - q\tau} \right) \subset \text{CV}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \left( \frac{1}{1 - q\tau} \right). \end{aligned}$$

The following conclusions can be shown by using the same arguments as before.

**Theorem 3.** Consider  $\varphi(\tau)$  be regular and convex univalent function with

$$\varphi(0) = 1 \quad \text{and} \quad \text{Re}(\varphi(\tau)) > 0,$$

for  $\tau \in \mathbb{U}$ . Then for  $r \in \mathbb{N}_0$  and  $\varrho, \varepsilon \geq 0, \varkappa > 0, 0 < q < 1$ , with

$$\text{Re} \left( \frac{1}{\frac{-1}{q}\psi(\tau) + \zeta_q} \right) > 0,$$

and

$$\text{K}_{q,\varepsilon+1}^r(\varkappa, \varrho)(\varphi) \subset \text{K}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi) \subset \text{K}_{q,\varepsilon}^{r+1}(\varkappa, \varrho)(\varphi).$$

*Proof.* Let  $\mathfrak{f} \in \text{K}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi)$ . Then, by definition, There is  $\mathfrak{g} \in \text{ST}_{q,\varepsilon}^r(\varkappa, \varrho)(\psi)$  satisfying

$$-\frac{q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{g}(\tau)} < \varphi(\tau). \quad (2.5)$$

Consider

$$-\frac{q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{g}(\tau)} = \mathfrak{p}(\tau), \quad (2.6)$$

where  $p(\tau)$  is regular in  $\mathbb{U}$  with  $p(0) = 1$ ,

$$-q\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau) \right) = p(\tau) \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau),$$

by using (1.7) we have

$$-\frac{[\varrho]_q}{\varkappa q^\varrho} \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) + \left( 1 + \frac{[\varrho]_q}{\varkappa q^\varrho} \right) \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau) = p(\tau) \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau).$$

On  $q$ -differentiating with respect to  $\tau$ , and dividing by  $\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) g(\tau)$  we get

$$\begin{aligned} & -\frac{[\varrho]_q}{\varkappa q^{\varrho+1}} \frac{q\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) g(\tau)} + \left( \frac{1}{q} + \frac{[\varrho]_q}{\varkappa q^{\varrho+1}} \right) \frac{q\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) g(\tau)} \\ & = \frac{\tau d_q p(\tau) \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau) \right) + p(\tau) \tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) g(\tau)}, \end{aligned}$$

using simple calculation we obtain

$$-\frac{[\varrho]_q}{\varkappa q^{\varrho+1}} \frac{q\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) g(\tau)} = \frac{\frac{\tau d_q p(\tau) \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau) \right) + p(\tau) \tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau) \right) - \left( \frac{1}{q} + \frac{[\varrho]_q}{\varkappa q^{\varrho+1}} \right) q\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau)}}{\frac{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) g(\tau)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau)}}.$$

Applying identity (1.7) we have

$$\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau) \right) = \frac{[\varrho]_q}{\varkappa q^{\varrho+1}} \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) g(\tau) - \left( \frac{1}{q} + \frac{[\varrho]_q}{\varkappa q^{\varrho+1}} \right) \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau),$$

then

$$\frac{-q\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) g(\tau)} = \frac{-\frac{q\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau)} - \zeta_q \frac{q\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau)}}{\frac{\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau)} + \zeta_q}, \quad (2.7)$$

where

$$\zeta_q = \left( \frac{1}{q} + \frac{[\varrho]_q}{\varkappa q^{\varrho+1}} \right).$$

On  $q$ -differentiation of (2.6), we have

$$-\frac{q\tau d_q \left( \tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \mathfrak{f}(\tau) \right) \right)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau)} = -p(\tau) \frac{\psi(\tau)}{q} + \tau d_q p(\tau), \quad (2.8)$$

where

$$\frac{-1}{q} \psi(\tau) = \frac{\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) g(\tau)}.$$

From (2.7) and (2.8), we get

$$-\frac{q\tau d_q \left( \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) \right)}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) g(\tau)} = p(\tau) + \frac{\tau d_q p(\tau)}{\frac{-1}{q} \psi(\tau) + \zeta_q}. \quad (2.9)$$

Consequently, from (2.5)

$$p(\tau) + \frac{\tau \mathfrak{d}_q p(\tau)}{\frac{-1}{q} \psi(\tau) + \zeta_q} \prec \varphi(\tau). \quad (2.10)$$

Since  $g \in ST_{q,\varepsilon}^r(\kappa, \tau)(\psi)$ , by Theorem 1, we conclude

$$g \in ST_{q,\varepsilon}^{r+1}(\kappa, \tau)(\psi),$$

since

$$Re\left(\frac{1}{\frac{-1}{q} \psi(\tau) + \zeta_q}\right) > 0,$$

in  $\mathbb{U}$ . Lemma 2 now produces the intended result.

To prove the first part, let  $f \in ST_{q,\varepsilon+1}^r(\kappa, \varrho)(\varphi)$  and set

$$\chi(\tau) = -\frac{q\tau \mathfrak{d}_q (\mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho) f(\tau))}{\mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho) g(\tau)},$$

where  $\chi$  is analytic in  $\mathbb{U}$ ,  $\chi(0) = 1$ .

$$-q\tau \mathfrak{d}_q (\mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho) f(\tau)) = \chi(\tau) \mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho) g(\tau),$$

by using (1.8)

$$-\frac{[\varepsilon+1]_q}{q^{\varepsilon+1}} \mathfrak{D}_{\varepsilon+1,q}^r(\kappa, \varrho) f(\tau) + \frac{[\varepsilon+2]_q}{q^{\varepsilon+1}} \mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho) f(\tau) = \chi(\tau) \mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho) g(\tau).$$

On  $q$ -differentiating with respect to  $\tau$ , dividing by  $\mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho) g(\tau)$ , and using simple calculation it follows that

$$-\frac{q\tau \mathfrak{d}_q (\mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho) f(\tau))}{\mathfrak{D}_{q,\varepsilon}^r(\kappa, \varrho) g(\tau)} \prec \varphi(\tau),$$

with

$$Re\left(\frac{1}{\frac{-1}{q} \psi(\tau) + \frac{[\varepsilon+2]_q}{q^{\varepsilon+2}}}\right) > 0.$$

The proof is complete.  $\square$

**Theorem 4.** Let  $\varphi(\tau)$  is analytic and convex univalent function with

$$\varphi(0) = 1 \quad \text{and} \quad Re(\varphi(\tau)) > 0,$$

for  $\tau \in \mathbb{U}$ . Then for  $r \in \mathbb{N}_0$  and  $\varrho, \varepsilon \geq 0, \kappa > 0, 0 < q < 1$ , with

$$Re\left(\frac{1}{\frac{-1}{q} \psi(\tau) + \zeta_q}\right) > 0,$$

and

$$Re\left(\frac{1}{\frac{-1}{q} \psi(\tau) + \frac{[\varepsilon+2]_q}{q^{\varepsilon+2}}}\right) > 0,$$

and

$$\mathfrak{Q}_{q,\varepsilon+1}^r(\kappa, \varrho)(\varphi) \subset \mathfrak{Q}_{q,\varepsilon}^r(\kappa, \varrho)(\varphi) \subset \mathfrak{Q}_{q,\varepsilon}^{r+1}(\kappa, \varrho)(\varphi).$$

*Proof.* Let  $\mathfrak{f} \in \mathfrak{Q}_{q,\varepsilon}^r(\varkappa, \tau)(\varphi)$ . We have

$$\begin{aligned}
\mathfrak{f} \in \mathfrak{Q}_{q,\rho}^r(\varkappa, \varrho)(\varphi) &\Leftrightarrow \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho)\mathfrak{f}(\tau) \in \mathfrak{Q}_q(\varphi) \\
&\Leftrightarrow -q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho)\mathfrak{f}(\tau) \right) \in K_q(\varphi) \\
&\Leftrightarrow -q\tau (\mathfrak{d}_q \mathfrak{f}) \in K_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi) \\
&\Leftrightarrow -q\tau (\mathfrak{d}_q \mathfrak{f}) \in K_{q,\varepsilon}^{r+1}(\varkappa, \varrho)(\varphi) \\
&\Leftrightarrow -q\tau \mathfrak{d}_q \left( \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho)\mathfrak{f}(\tau) \right) \in K_q(\varphi) \\
&\Leftrightarrow \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho)(-q\tau (\mathfrak{d}_q \mathfrak{f})) \in K_q(\varphi) \\
&\Leftrightarrow \mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho)\mathfrak{f}(\tau) \in \mathfrak{Q}_q(\varphi) \\
&\Leftrightarrow \mathfrak{f} \in \mathfrak{Q}_{q,\rho}^{r+1}(\varkappa, \varrho)(\varphi).
\end{aligned}$$

To demonstrate the first section, we can use arguments similar to the ones listed above.

The proof is now complete.  $\square$

**Remark 2.** Based on Theorems 3 and 4, we can infer the following inclusion relations:

$$\begin{aligned}
K_{q,\varepsilon+m}^r(\varkappa, \varrho)(\varphi) &\subset K_{q,\varepsilon+m-1}^r(\varkappa, \varrho)(\varphi) \subset \dots \subset K_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi), \\
K_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi) &\subset K_{q,\varepsilon}^{r+1}(\varkappa, \varrho)(\varphi) \subset \dots \subset K_{q,\varepsilon}^{r+m}(\varkappa, \varrho)(\varphi),
\end{aligned}$$

and

$$\begin{aligned}
\mathfrak{Q}_{q,\varepsilon+n}^r(\varkappa, \varrho)(\varphi) &\subset \mathfrak{Q}_{q,\varepsilon+n-1}^r(\varkappa, \varrho)(\varphi) \subset \dots \subset \mathfrak{Q}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi), \\
\mathfrak{Q}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi) &\subset \mathfrak{Q}_{q,\varepsilon}^{r+1}(\varkappa, \varrho)(\varphi) \subset \dots \subset \mathfrak{Q}_{q,\varepsilon}^{r+n}(\varkappa, \varrho)(\varphi), \quad (m, n \in \mathbb{N}).
\end{aligned}$$

The same reasoning as before can be used to demonstrate the following conclusions.

### 3. Invariance of the classes under $q$ -Bernardi integral operator

Bernardi  $q$ -meromorphic refers to a class of complex functions that are both meromorphic (analytic except for poles) and exhibit  $q$ -analogue properties, often studied in the context of  $q$ -difference equations or  $q$ -integral operators like the generalized  $q$ -Bernardi integral operator. Researchers use these operators to define and study new subclasses of these functions, such as meromorphic  $q$ -starlike and  $q$ -convex functions, and examine their coefficient estimates, inclusion properties, and other analytical characteristics.

The  $q$ -Bernardi integral operator generalizes the classical Bernardi operator into the framework of  $q$ -calculus, acting as a linear coefficient multiplier operator on analytic functions, with wide applications in  $q$ -versions of GFT.

For a function  $\mathfrak{f} \in \Sigma$ , we denote by  $\mathfrak{I}_{\rho,q}$  the  $q$ -Bernardi integral operator  $\mathfrak{I}_{\rho,q}$  defined by (see the researches [14, 31, 32])

$$\mathfrak{I}_q(\tau) = \mathfrak{I}_{\rho,q}[\mathfrak{f}(\tau)] = \frac{[\rho]_q}{\tau^{\rho+1}} \int_0^\tau t^\rho \mathfrak{f}(t) d_q t \quad (\rho \in \mathbb{N}). \quad (3.1)$$

For  $q \rightarrow 1^-$  we have

$$\tilde{\mathfrak{F}}(\tau) = \mathfrak{I}_\rho[\mathfrak{f}(\tau)] = \frac{\rho}{\tau^{\rho+1}} \int_0^\tau t^\rho \mathfrak{f}(t) dt \quad (\rho \in \mathbb{N}),$$

which are defined in [33].

The  $q$ -Bernardi integral operator  $\mathfrak{I}_{\rho,q}: \Sigma \rightarrow \Sigma$ , defined in (3.1), satisfies the following relationship:

$$q^{\rho+1} \tau \mathfrak{d}_q \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \tilde{\mathfrak{F}}_q(\tau) = [\rho]_q \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau) - [\rho+1]_q \mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \tilde{\mathfrak{F}}_q(\tau). \quad (3.2)$$

The following result is now stated and demonstrated.

**Theorem 5.** *If  $\mathfrak{f} \in \Sigma$  defined by (1.1) is in the function class  $ST_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi)$ , and*

$$Re\left\{\frac{-1}{q}\varphi + \frac{[\rho+1]_q}{q^{\rho+1}}\right\} > 0,$$

*then  $\tilde{\mathfrak{F}}_q(\tau)$  defined by (3.1) also belongs to the class  $ST_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi)$ .*

*Proof.* Let  $\mathfrak{f} \in ST_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi)$ , we put

$$\omega(\tau) = -\frac{q\tau \mathfrak{d}_q(\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \tilde{\mathfrak{F}}_q(\tau))}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \tilde{\mathfrak{F}}_q(\tau)}, \quad (3.3)$$

where  $\omega(\tau)$  is analytic in  $\mathbb{U}$  with  $\omega(0) = 1$ .

From (3.2), we show that

$$\omega(\tau) = -\frac{[\rho]_q}{q^\rho} \frac{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \tilde{\mathfrak{F}}_q(\tau)} + \frac{[\rho+1]_q}{q^\rho}.$$

On  $q$ -logarithmic differentiation, we get

$$-\frac{q\tau \mathfrak{d}_q(\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau))}{\mathfrak{D}_{q,\varepsilon}^r(\varkappa, \varrho) \mathfrak{f}(\tau)} = \omega(\tau) + \frac{\tau \mathfrak{d}_q \omega(\tau)}{\frac{-1}{q} \omega(\tau) + \frac{[\rho+1]_q}{q^{\rho+1}}}. \quad (3.4)$$

Since  $\mathfrak{f} \in ST_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi)$ , we can revise (3.4) as

$$\omega(\tau) + \frac{\tau \mathfrak{d}_q \omega(\tau)}{\frac{-1}{q} \omega(\tau) + \frac{[\rho+1]_q}{q^{\rho+1}}} < \varphi(\tau).$$

Using Lemma 1, we get

$$\frac{-1}{q} \omega(\tau) < \varphi(\tau).$$

Consequently

$$\frac{-q\tau \mathfrak{d}_q(\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \tilde{\mathfrak{F}}_q(\tau))}{\mathfrak{D}_{q,\varepsilon}^{r+1}(\varkappa, \varrho) \tilde{\mathfrak{F}}_q(\tau)} < \varphi(\tau).$$

Hence

$$\tilde{\mathfrak{F}}_q(\tau) \in ST_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi).$$

□

The conclusion that follows can be demonstrated using arguments that are similar to those in Theorem 5.

**Theorem 6.** *Assume that*

$$\mathfrak{f} \in \text{CV}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi).$$

*Then*

$$\mathfrak{F}_q(\tau) \in \text{CV}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi),$$

where  $\mathfrak{F}_q(\tau)$  be defined by (3.1) with

$$\text{Re}\left\{\frac{-1}{q}\varphi + \frac{[\rho+1]_q}{q^{\rho+1}}\right\} > 0.$$

**Theorem 7.** *Let  $\mathfrak{f} \in \text{K}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi)$ ,  $\varphi(0) = 1$ , and*

$$\text{Re}\left(\frac{1}{\frac{-1}{q}\mathfrak{p}_1(\tau) + \frac{[\rho+1]_q}{q^{\rho+1}}}\right) > 0.$$

*Then*

$$\mathfrak{F}_q(\tau) \in \text{K}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi),$$

where  $\mathfrak{F}_q(\tau)$  is called  $q$ -Bernardi integral operator defined in (3.1).

*Proof.* Consider

$$\mathfrak{f} \in \text{K}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi).$$

Then we want to show that

$$\mathfrak{F}_q(\tau) \in \text{K}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi),$$

where  $\mathfrak{F}_q(\tau)$  defined in (3.1), for  $\mathfrak{g} \in \text{ST}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi)$

$$\mathfrak{g}_q(\tau) = \frac{[\rho]_q}{\tau^{\rho+1}} \int_0^\tau t^\rho \mathfrak{g}(t) \mathfrak{d}_q t \in \text{ST}_{q,\varepsilon}^r(\varkappa, \varrho)(\varphi). \quad (3.5)$$

Consider

$$-\frac{q\tau \mathfrak{d}_q \mathfrak{F}_q(\tau)}{\mathfrak{g}_q(\tau)} = \mathfrak{p}(\tau), \quad (3.6)$$

where  $\mathfrak{p}(\tau)$  is regular in  $\mathbb{U}$  with  $\mathfrak{p}(0) = 1$ .

Similarly, from (3.2), we've

$$q^{\rho+1} \tau \mathfrak{d}_q \mathfrak{g}_q(\tau) = [\rho]_q \mathfrak{g}(\tau) - [\rho+1]_q \mathfrak{g}_q(\tau). \quad (3.7)$$

From (3.2) and (3.7), we obtain

$$\frac{\mathfrak{d}_q \mathfrak{f}(\tau)}{\mathfrak{g}(\tau)} = \frac{\mathfrak{d}_q(\tau \mathfrak{d}_q \mathfrak{F}_q \mathfrak{f}(\tau)) + \frac{[\rho+1]_q}{q^{\rho+1}} \mathfrak{d}_q(\mathfrak{F}_q \mathfrak{f}(\tau))}{\tau \mathfrak{d}_q \mathfrak{g}_q(\tau) + \frac{[\rho+1]_q}{q^{\rho+1}} \mathfrak{g}_q(\tau)},$$

equivalently

$$\frac{-q\tau d_q f(\tau)}{g(\tau)} = \frac{\frac{-q\tau d_q(\tau d_q \mathfrak{F}_q f(\tau))}{g_q(\tau)} - \frac{[\rho+1]_q}{q^{\rho+1}} \frac{q\tau d_q(\mathfrak{F}_q f(\tau))}{g_q(\tau)}}{\frac{\tau d_q g_q(\tau)}{g_q(\tau)} + \frac{[\rho+1]_q}{q^{\rho+1}}}. \quad (3.8)$$

On  $q$ -differentiation of (3.6) and simple calculation implies

$$\frac{-q\tau d_q(\tau d_q \mathfrak{F}_q f(\tau))}{g_q(\tau)} = -p(\tau) \cdot \frac{p_1(\tau)}{q} + \tau d_q p(\tau), \quad (3.9)$$

where

$$\frac{-1}{q} p_1(\tau) = \frac{\tau d_q g_q(\tau)}{g_q(\tau)}.$$

Substituting (3.9) in (3.8), we obtain

$$\frac{-q\tau d_q f(\tau)}{g(\tau)} = p(\tau) + \frac{\tau d_q p(\tau)}{\frac{-1}{q} p_1(\tau) + \frac{[\rho+1]_q}{q^{\rho+1}}}. \quad (3.10)$$

Since  $f \in K_q(\varphi)$ , we can rewrite (3.10) as

$$p(\tau) + \frac{\tau d_q p(\tau)}{\frac{-1}{q} p_1(\tau) + \frac{[\rho+1]_q}{q^{\rho+1}}} < \varphi(\tau).$$

From (3.5), we determine that

$$Re\left(\frac{-1}{q} p_1(\tau)\right) > 0,$$

in  $\mathbb{U}$  indicates

$$Re\left(\frac{1}{\frac{-1}{q} p_1(\tau) + \frac{[\rho+1]_q}{q^{\rho+1}}}\right) > 0,$$

in  $\mathbb{U}$ . Using Lemma 2, hence  $\mathfrak{F}_q(\tau) \in K_q(\varphi)$ .  $\square$

The same arguments are used to support the following theorem.

**Theorem 8.** *Let*

$$f \in \mathfrak{Q}_{q,\rho}^r(\varkappa, \varrho)(\varphi).$$

*Then*

$$\mathfrak{F}_q f(\tau) \in \mathfrak{Q}_{q,\rho}^r(\varkappa, \varrho)(\varphi),$$

where  $\mathfrak{F}_q f(\tau)$  be defined by (3.1) with

$$Re\left(\frac{1}{\frac{-1}{q} p_1(\tau) + \frac{[\rho+1]_q}{q^{\rho+1}}}\right) > 0.$$

## 4. Conclusions

This work introduces novel classes of analytic normalized functions in the unit disk  $\mathbb{U}$  and establishes new results in the theory of meromorphic functions. By employing the concept of a  $q$ -difference operator, we defined the  $q$ -analogue multiplier-Ruscheweyh operator  $\mathfrak{D}_{q,\varepsilon}^r(\zeta, \varrho)$  to explore various subclasses of meromorphic functions. Using this operator, several new subclasses were introduced and systematically analyzed. For these classes, we investigated inclusion relations and demonstrated the integral preservation property, highlighting the operator's utility in geometric function theory.

The framework developed here provides a foundation for further research in several directions. Future work could focus on:

- Extending the study to more generalized  $q$ -operators or hybrid operators combining  $q$ -calculus with other fractional or integral operators.
- Exploring applications in related areas, such as multivalent meromorphic functions, as well as potential connections with complex dynamical systems.

Overall, this study lays the groundwork for a broad spectrum of investigations into  $q$ -analogues of classical operators and their applications in geometric function theory.

## Author contributions

Ekram E. Ali: conceptualization, writing—original draft and editing, formal analysis, supervision, funding acquisition; Rabha M. El-Ashwah: conceptualization, writing—original draft and editing, formal analysis, supervision; Abeer M. Albalahi: conceptualization, writing—original draft and editing, formal analysis. All authors have read and approved the final version of the manuscript for publication.

## Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

## Acknowledgments

The authors are grateful to the reviewer for the valuable advices, comments and suggestions, that help us to improve the quality of the manuscript.

## Conflict of interest

The authors declare no conflicts of interest.

## References

1. M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, *Complex Var. Theory Appl.*, **14** (1990), 77–84.

2. F. H. Jackson, On  $q$ -functions and a certain difference operator, *Trans. Roy. Soc. Edinburgh*, **4** (1908), 253–281.
3. F. H. Jackson, On  $q$ -definite integrals, *Quart. J. Pure Appl. Math.*, **41** (1910), 193–203.
4. H. Exton,  *$q$ -hypergeometric functions and applications*, Hestead Press, 1983.
5. M. E. H. Ismail, P. Simeonov,  $q$ -difference operators for orthogonal polynomials, *J. Comput. Appl. Math.*, **233**(2009), 749–761. <https://doi.org/10.1016/j.cam.2009.02.044>
6. S. M. Zagorodnyuk, On a family of hypergeometric Sobolev orthogonal polynomials on the unit circle, *Constr. Math. Anal.*, **3** (2020), 75–84. <https://doi.org/10.33205/cma.690236>
7. E. Frenkel, E. Mukhin, Combinatorics of  $q$ -characters of finite-dimensional representations of quantum affine algebras, *Commun. Math. Phys.*, **216** (2001), 23–57.
8. H. M. Srivastava, A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics, *Symmetry*, **13** (2021), 2294. <https://doi.org/10.3390/sym13122294>
9. A. Aral, V. Gupta, R. P. Agarwal, *Applications of  $q$ -calculus in operator theory*, Springer Science Business Media, 2013.
10. M. Annaby, Z. S. Mansour,  *$q$ -fractional calculus and equations*, Springer, 2012. <https://doi.org/10.1007/978-3-642-30898-7>
11. H. M. Srivastava, Univalent functions, fractional calculus and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, *Univalent functions, fractional calculus, and their applications*, Halsted Press, 1989.
12. E. E. Ali, M. Vivas-Cortez, R. M. El-Ashwah, New results about fuzzy  $\gamma$ -convex functions connected with the  $q$ -analogue multiplier-Noor integral operator, *AIMS Math.*, **9** (2024), 5451–5465. <https://doi.org/10.3934/math.2024263>
13. E. E. Ali, G. I. Oros, R. M. El-Ashwah, W. Y. Kota, A. M. Albalahi, Geometric properties connected with a certain multiplier integral  $q$ -analogue operator, *Symmetry*, **16** (2024), 863. <https://doi.org/10.3390/sym16070863>
14. E. E. Ali, H. M. Srivastava, A. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the  $q$ -derivatives of the  $q$ -binomials, *Mathematics*, **11** (2023), 2496. <https://doi.org/10.3390/math11112496>
15. E. E. Ali, R. M. El-Ashwah, A. M. Albalahi, R. Sidaoui, M. Ennaceur, M. Vivas-Cortez, Convolution results with subclasses of  $p$ -valent meromorphic function connected with  $q$ -difference operator, *Mathematics*, **12** (2024), 3548. <https://doi.org/10.3390/math12223548>
16. W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional  $q$ -calculus operator, *Math. Bohem.*, **148** (2023), 131–148. <https://doi.org/10.21136/MB.2022.0047-21>
17. E. E. Ali, H. M. Srivastava, A. M. Albalahi, Subclasses of  $p$ -valent  $k$ -uniformly convex and starlike functions defined by the  $q$ -derivative operator, *Mathematics*, **11** (2023), 2578. <https://doi.org/10.3390/math11112578>
18. S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, *Mich. Math. J.*, **28** (1981), 157–172. <https://doi.org/10.1307/mmj/1029002507>

19. S. S. Miller, P. T. Mocanu, *Differential subordinations: theory and applications*, CRC Press, 2000. <https://doi.org/10.1201/9781482289817>

20. J. Clunie, On meromorphic Schlicht functions, *J. London Math. Soc.*, **34** (1959), 215–216. <https://doi.org/10.1112/jlms/s1-34.2.215>

21. C. Pommerenke, On meromorphic starlike functions, *Pac. J. Math.*, **13** (1963), 221–235.

22. J. E. Miller, Convex meromorphic mappings and related functions, *Proc. Amer. Math. Soc.*, **25** (1970), 220–228. <https://doi.org/10.2307/2037197>

23. B. Ahmad, M. Arif, New subfamily of meromorphic convex functions in circular domain involving  $q$ -operator, *Int. J. Anal. Appl.* **16** (2018), 75–82. <https://doi.org/10.28924/2291-8639-16-2018-75>

24. S. Ruscheweyh, Neighborhoods of univalent functions, *Proc. Amer. Math. Soc.*, **81** (1981), 521–527. <https://doi.org/10.2307/2044151>

25. T. Bulboaca, M. K. Aouf, R. M. El-Ashwah, Convolution properties for subclasses of meromorphic univalent functions of complex order, *Filomat*, **26** (2012), 153–163. <https://doi.org/10.2298/FIL1201153B>

26. R. M. El-Ashwah, Argument properties for  $p$ -valent meromorphic functions defined by differintegral operator, *Asia. Bull. Math.*, **42** (2018), 359–365.

27. M. Nunokawa, On properties of close-to-convex meromorphic functions, *Proc. Jpn. Acad.*, **46** (1970), 577–580.

28. J. Kaczmarski, On the coefficients of some classes of starlike functions, *Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.*, **17** (1969), 495–501.

29. H. Shamsan, S. Latha, On generalized bounded Mocanu variation related to  $q$ -derivative and conic regions, *Ann. Pure Appl. Math.*, **17** (2018), 67–83. <https://doi.org/10.22457/apam.v17n1a8>

30. D. Breaz, A. A. Alahmari, L. I. Cotîrlă, S. A. Shah, On generalizations of the close-to-convex functions associated with  $q$ -Srivastava-Attiya operator, *Mathematics*, **11** (2023), 2022. <https://doi.org/10.3390/math11092022>

31. K. I. Noor, S. Riaz, M. A. Noor, On  $q$ -Bernardi integral operator, *TWMS J. Pure Appl. Math.*, **8** (2017), 3–11.

32. H. M. Srivastava, S. H. Hadi, M. Darus, Some subclasses of  $p$ -valent  $g$ -uniformly type  $q$ -starlike and  $q$ -convex functions defined by using a certain generalized  $q$ -Bernardi integral operator, *Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A*, **117** (2023), 50.

33. M. K. Aouf, On certain classes of meromorphic univalent functions, *Math. Jpn.*, **5** (1988), 725–732.



AIMS Press

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>)