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1. Introduction

Let @ # C be a closed convex subset (CCS) of a Banach space W, R be the set of real numbers,
and let the set of fixed points of S is represented by Fix(S) = {¢ € C : S¢ = ¢}. A mapping
S : C — Cis called a contraction if Y¢,w € C,de € [0, 1) such that ||S¢ — Sw|| < €l|l¢ — w|| and
for € = 1, S is called non-expansive. An indispensable generalization of contraction mappings is
given by non-expansive mappings. Non-expansive mappings are closely associated with monotonicity,
which displays numerous applications in pure and applied sciences. Unquestionably, non-expansive
mappings have a strong connection with fixed point theory. Browder [14] and Gohde [21] showed that
a non-expansive mapping on a CCS of uniformly convex Banach spaces (UCBS) [17] possesses a fixed
point. This vital fact makes the class of non-expansive mapping more significant.
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In fact, the Picard iteration method [12] converges strongly to a fixed point of a contraction mapping
in a complete metric space [11]. However, a non-expansive self-mapping may not possess a fixed point
in a complete metric space. Moreover, unlike contraction mappings, the sequence generated by Picard
iteration may fail to converge to a fixed point of a nonexpansive mapping.

Example 1.1. Let B = {0 = (01,605,---) : 6, > 0,Vm, ), 8,, = 1} be a closed and bounded subset

m=1
of (I, || - l), the Banach space of all real absolutely summable sequences. Then the nonexpansive
mapping ®© : B — B, defined by ®(6) = (0,6,, 6., ---) does not possess a fixed point.

This information motivated researchers to explore broader and more generalizes spaces and map-
pings that exhibit fixed points. In this sequel, several authors have extended non-expansive mappings
and established related fixed point results. Notably, Berinde [13] introduced the concept of weak con-
traction (also known as almost contraction).

Definition 1.1. A mapping S : C — C is called almost contraction if for some | > 0,3e € (0, 1) so that
IS(s) = Sl < ells — «ll + llls = S(Sll, Vs, € C. (1.1)

Imoru and Olantiwo [23] further extended the mapping defined in (1.1) as follows:

Definition 1.2. A mapping S : C — C is called contractive-like if there exists a strictly increasing
continuous function  : [0, 00) — [0, co) with Y(0) = 0 and € € [0, 1) so that

1S($) = Sl < ¥(lls = S + lls — «II, Vg, k € C. (1.2)

These mappings are firmly connected with monotonicity and exhibit applications in nonlinear analy-
sis, including variational inequalities, optimization, economics, engineering, computer science, equi-
librium problems, and initial value problems.

On the contrary, after identifying the fixed point, it is desirable to propose an efficient iterative
method to analyze the fixed point of the considered mapping. An effective iterative method is essen-
tial for exploring fixed points through computation and convergence analysis. Due to its significance,
several fixed point iterative methods have been proposed. Some commonly proposed iterative methods
include Mann [31], Ishikawa [24], S-iteration [1], and the Noor three-step [32] method, etc. Most fixed
point iterative methods build upon the Banach Fixed Point Theorem and have become indispensable
tools for examining mathematical models of partial differential equations (PDEs). Third order differ-
ential equations have tremendous applications in real-life problems including physics and engineering
which can be addressed using the fixed point approach, see, [25,42]. Recent developments in hybrid
methods have improved convergence rate, and making these methods crucial for efficiently studying
complex high-dimensional PDEs. Khan [27], introduced a hybrid Picard-Mann iterative method as
follows:

{§m+l = S(om), (1.3)

Pm = (1 - a’m)gm + amSCm’m € N’

where {«,,} is in (0,1). The author claimed that this hybrid scheme is independent and more efficient
than, the Picard, Mann, and Ishikawa iterations for contraction mappings. Okeke [35], put forward the
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Picard-Ishikawa hybrid scheme as follows:

Sm+l = S(pm),
Pm = (1 - am)gm + a’mS(‘-)ma (14)

Wy = (1 _ﬁm)gm +ﬁm8§m’m € N’

where {«,,} and {8,,} are in (0,1). By illustrative experiments, it was established that this hybrid method
converges faster than the Picard, Krasnoselskii, Mann, Ishikawa, Noor, Picard-Mann, and Picard-
Krasnoselskii iterative processes. Following the hybridization procedures, Gursoy and Karakaya [22]
and Srivastava [39] independently investigated the hybrid Picard-S method as follows:

Sm+1 = S(pm)’
om =1 = @)S¢y + @nSwp, (1.5)
Wy = (1 _ﬁm)gm +ﬁm8gmam € N.

The authors corroborated that their scheme is more efficient than the Picard, Mann, Ishikawa, Noor,
SP, CR, S, and several other iteration methods. They also employed the proposed scheme to explore
delay differential equations.

The semi-implicit method is an appealing tool for solving differential equations, algebraic equations
and initial value problems (IVPs) of differential equations. Several real-world physical problems can
be examined by reformulating them into the IVP of the following form:

d
& 46):6(0) = . (1.6)

du
However, it is burdensome to solve such models if the operator { is not continuous. This difficulty
can be addressed by setting up a sequence of Lipschitz functions that approximate ¢. One of the
fundamental techniques to study (1.6) is the implicit midpoint rule (IMR) in which ¢ is approximated
by the following iterative procedure:

m + m
u), (1.7)

Sm+l = Sm T K{( 5

where k > 0 is a step-size. If the self-map ¢ on R is smooth and Lipschitz continuous, then the
sequence {g,} generated by (1.7) converges to the exact solution of IVP (1.6) as k — 0, uniformly
over s € [0, §) for any fixed § > 0. Song and Pei [38] proposed a semi-implicit midpoint rule based
on the viscosity technique for approximating a common fixed point of non-expansive mappings and 2-
generalized hybrid mappings in a real Hilbert space. The authors also examined a split feasibility
problem by employing their scheme. Luo et al. [30] utilized the viscosity technique to construct the
implicit midpoint rule for non-expansive mappings. They applied their main results to determine the
fixed point of strict pseudocontractive mappings. By implementing the proposed method, variational
inequality problems in Banach spaces and equilibrium problems in Hilbert spaces were examined. Aib-
inu et al. [3] designed the IMR using a viscosity approximation method for non-expansive mappings.
The strong convergence of the proposed method was established, and the obtained results demonstrated
that scheme could be implemented to tackle a variational inequality problem. Xu et al. [45] designed
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an implicit midpoint rule for non-expansive mappings in Banach spaces and reported the weak conver-
gence of their scheme under Opial’s property. Furthermore, Xu et al. [44] suggested a class of general
semi-implicit iterative methods involving the semi-implicit rule and computational errors. They ap-
proximated common fixed points of three different nonexpansive-type operators and employed the
proposed iterative scheme to study the Stampacchia variational inequality.

Recently, Akram [4] and Filali [19] independently designed a four-step semi-implicit approximation
scheme to determine the fixed point of a contractive-like mapping and an almost contraction mapping,
respectively. The convergence analysis and stability of the proposed schemes were discussed, and the
proposed schemes implemented to explore a general quasi-variational inequality, a general variational
inequality, a nonlinear fractional differential equation, and a nonlinear integral equation.

Numerous problems in applied sciences, including linear programming, monotone inclusions,
convex optimization, and elliptic differential equations, can be examined as an equilibrium state
model (1.6) which is analogous to the inclusion problem 0 € {(s), see, Browder [15] and Chidume [16].
If 2(¢) := g(¢) — ¢, then IVP (1.6) coincides with ¢ = g(¢) — ¢ and the equilibrium point of (1.6) is
the fixed point of g, i.e., ¢ € Fix(g). This noble formulation inspired Alghamdi et al. [6] to set up the
implicit iteration method:

Sm+1 + gm)’ (18)

2
where {@,,} € (0,1) and S : X — X is a non-expansive mapping. The authors established weak
convergence result under appropriate conditions. Furthermore, viscocity implicit midpoint scheme
was developed by Xu et al. [46] to prove a strong convergence result for non-expansive mappings as
follows:

Sm+l = (1 - am)gm + amS(

m+ + m
Gt = an () + (1 = ) S(Z=), (1.9)

where, @ is contraction and § is non-expansive. In particular, the following theorem was proved.

Theorem 1.1. Let C # 0 be a CCS of a Hilbert space H. Suppose S : C — C is a nonexpansive
mapping with Fix(S) # 0 and ® : C — C is a contraction. If the sequence {a,,} complies with the
following assumptions:

(ay) hm an=0; (a2) Z ay = 00; (az) Z W1 — U] < 0.

Then the sequence {gm} mmated by (1.9 ) converges to ¢ € Fix(S) and ¢ is the solution of the following
variational inequality:
(I - w)D,¢ —w) >0,Yg € Fix(S).

Luo et al. [30] further generalized this study in uniformly smooth Banach spaces.

As discussed above, the hybridization of iterative schemes escalates the rate of convergence, and
implicit methods are significant as they play a vital role in dealing with mathematical models- including
differential equations, integral equations, boundary value problems, and related formulations which
are noteworthy for exploring real-life problems. Motivated by prior investigations and the outcomes
explained above, this study focuses on designing a Picard-S-type semi implicit mid-point scheme
involving a contractive-like mapping in Banach spaces. The convergence of the semi-implicit scheme
is proved to yield a fixed point of the contractive-like mapping, and the uniqueness of the solution
is also established. A comparative analysis is carried out by considering an illustrative example with
different initial guesses, comparing our scheme (2.1) with scheme (1.5). We prove the stability of
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the constructed scheme. Finally, we showcase the practical application of our proposed scheme and
theoretical findings by employing our methodology to explore a general nonlinear variational inequality
and a fractional diffusion equation.

2. Iterative scheme and convergence
Next, we construct a Picard-S-type semi implicit mid-point scheme (PSSIMPS) based on the

Picard-S -hybrid method (1.5). An analytical demonstration of the convergence of the proposed it-
erative method is presented. Our new method is defined as follows:

Sm+1 = S(Om),
pm=(1- a/m)S(gm erpm) + amS(%’Tw), (2.1)
W = (1= Bu)(222) + BuS(S ) m € W,

where {a,,} and {8,,} are in (0, 1).

Remark 2.1. It is worth mentioning that the semi-implicit terms in the second and third equations of
PSSIMPS (2.1) replace the corresponding terms of the hybrid Picard-S method (1.5).

Following lemma is crucial in the development of convergence result.

Lemma 2.1. [43] If the nonnegative real sequences {oi};2, and {si};2 | under the assumptions ), py =
k=1

oo and I}im Sk _ 0 satisfy the inequality:

Ok+1 < (1 = pox + .,
where p; € (0,1). Then ]}im or = 0.
Next, we manifest strong convergence of PSSIMPS (2.1).

Theorem 2.1. Suppose that ) # C C W isa CCS and S : C — C is a contractive-like mapping. If
Fix(S) # 0 and {g,};,_, is produced by the scheme (2.1), then lim g, = ¢ € Fix(S).

Proof. Assume that ¢* € Fix(S) and ¢ € S. Then from iterative scheme (2.1) and (1.2), we obtain

lom = 57l = [ = B (E522) + BuS(5 )] - 57

< (=B 25 = 6|+ 6 = S22
< (=B 5 = 67|+ s = (0D + o T -
= (=B = | a2 -
< BB g, — i o - 1
which turns into .
o ="l < _'"Tm)llgm -<"ll, (2.2)
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where,
Tn=1-=8,1-¢). (2.3)
Again it follows from the second formulation of the scheme (2.1) and (1.2) that

lom = 671l = [[[(1 = amS(Z21) + anS(“2Em)] - 6°

§m+pm ‘ 2wm+,0m .
) s a5 )

<(1- m)”S

o) S22 o)

< (1= apmudls” = Sl + o =22 - o]

+an[plls” = SO + & 2 - o7

= &1 - )| 2 n ¥ P

< e(1-a,)

N 2
which along with (2.2) yields

‘N + sa/m'

llsm — ¢l + Tmllwm ="+ Sllon =7,

llow = "1l < ——[1 = an(1 - s = 5711 (2.4)
[1 - )l

Tm
2—-¢ 2-1,
and the first relation of scheme (2.1) along with (2.4) turns into
liSm+1 = "Il = IS(om) = 7l = IS(s7) = SCom)ll
<uls” = S + ellon = 57l = ellow = 2s)

e LR (B R

Taking the assumption {a,,}, {5,} € (0,1) and € € [0, 1), we acquire 7,, € (0, 1) and hence 1 — am(l -
Tm

5 ) < 1. Thus, we achieve

2

£
2—¢

lI§me1 =7l < g = "Il = (1 = Gllsm — <7 1l, (2.6)

where,

. Q- 1
Un _W 5[1 +(1-e)—€’1>0 asee[0,1). 2.7)

2

Further, 1 -7, = > 0 and Z I, = oo. Utilizing Lemma 2.1, it follows from (2.6) that hm ll§m —

—& m= 0
¢*|| = 0. Next, we prove the uniqueness of the solution. Suppose that ¢;,¢, € C so that ¢; i ¢ and

S1,62 € Fix(S). Then
lls1 = s2ll = [IS8(s1) = S(s)I

<Yl = S(enlD + &llst — sl (2.8)
= &llg1 = &ll-
Since € € [0, 1), then (2.8) yields ||lg; — 2|l = 0. Thus, ¢ = ¢. O
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Remark 2.2. The contractive-like condition in (1.2) is much comprehensive which comprise several
other contractive conditions. If s = ls, where | > O then (1.2) reduces to (1.1). Further, if | = me,m =
ﬁ, 0 < € < 1, then the contractive condition coincides with that is due to Rhoades [37]. Moreover,
if s =0, then (1.2) becomes

IS(¢) = Sl < ell¢ — «ll, Y,k € C. (2.9)

which is considered by Gursoy and Karakaya [22] and Srivastava [39].

Under the assumptions considered in Remark 2.2, we have the convergence result for the
scheme (1.5) given in the following corollary.

Corollary 2.1. Suppose that ) + C C W isa CCS and S : C — C is a contraction mapping defined
in (2.9). If Fix(S) # 0 and {s,,}>°_, is produced by the scheme (1.5), then lim ¢, = ¢ € Fix(S).

m=1

Next, we put up the following example to set up a comparative analysis of the schemes (1.5)
and (2.1).

Example 2.1. Let S : C — C be a mapping defined by S(s) = /s> —9¢ + 54,¥¢ € C = [0,20].
Consider the sequences {a,,}, and {B,} in (0, 1) defined by a,, = (mlTl) and B,, = m with initial
guesses ¢y = 15 and ¢y = 8. The comparison of convergence and their fixed points for two initial

guesses have been presented in Figures 1 and 2.

Convergence Comparison: Algorithm 1.5 vs Algorithm 2.1
T T T

6]

[lsn+1

Figure 1. Comparative analysis of the convergence behavior of schemes (2.1), and (1.5) with
initial guess ¢y = 15.
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Convergence Comparison: Algorithm 1.5 vs Algorithm 2.1
T T T

5 6
Number of iterations

Figure 2. Comparative analysis of the convergence behavior of schemes (2.1), and (1.5) with

initial guess ¢y = 8.

Next, we establish the stability theorem for PSSIMPS (2.1).

Definition 2.1. [/2] Let {v,,} C C be an arbitrary sequence. An iterative scheme §,,.1 = W(S, ) so
that {g,,} — ¢ € Fix(S) is said to be S-stable. If for €,, = U1 —¥U(S, ¢, we have lim €, = 0 if and

only if lim v,, = ¢.

Theorem 2.2. Suppose that 0 # C C W is a CCS and the mapping S : C — C satisfies (1.2). If

§* € Fix(S), then {gy},._, produced by the scheme (2.1) is S-stable.

Proof. Let {{,,} C C be an arbitrary sequence equivalent to {¢,,}, where the sequence {g,,} is generated
by PSSIMPS (2.1). Consider the relation ¢, = E(S, ¥,,) so that {¢,,} — ¢* € Fix(S). Assume that

Vi = W1 — E(S, ¥n)l|, where {i,,,} is generated by the following relation:

Y1 = S(@m),
o = (1= @S E) 1 S,
o= (= (L) 4 g, (L) ey

(2.10)

To demonstrate the S-stability of (2.1), we set forth limv,, = 0 & lim ¢,, = ¢*. Suppose that

m—00

lim v,, = 0, and applying the triangle inequality, we achieve

Wit = "Il = Wme1 = E(S, ) + E(S, ) = 7l
< W1 = ES, ¥l + [1IE(S, ) = §7l
=V + lISme1 = 67l
=V + IS(om) = 7l
=V + I8(57) = S(@n)ll
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<V +Y(ls" = SN + ellgn — 7l

= Vi + &llgm = §7. &1
From the second relation of (2.10), we obtain
e =71 = 1 = ) S(E2 ) 4 S E2) -
< (1 -a)||S( M) e amHS("’“J’T%) .
O T A
< (1 - a[ulls” = S + 22 - |
+am[plls” = SO + o 2 - o7
< e(1 - o) ‘/””;9"’" |+ e "mw’" .
_“““Ww § 1+ S llpm = 6°ll+ =2l = 7l
which turns into
lom =7l < % g = 6l + 2 g~ 6L @.12)
I = 571 = [0 = (P 2) 4 g S(22 ) -
0 ot -
< (=B P — |+ il = St + o S - o
[%ﬁﬁb-ﬂwm LI
= L=y, — g+ = 57,
which turns into
o — 11 < W — 51l 2.13)

(2— m)

where, 7, 1s identical as defined in (2.3). Also, by the assumption of parameters, we obtain 1 — am(l -
Tm

2—1T,

) < 1 and performing the back substitution from (2.12) and (2.13), (2.11) becomes

Wi = 611 < Vi + (4 = L)l = §7l, (2.14)

where /,, is defined in (2.7). By recalling the assumption lim v,, = 0 and implementing the Lemma 2.1,

m—0o0

we obtain lim ¢,, = ¢*. On the other hand, assume that lim ¢,, = ¢*, and repeating the same proce-
m—-0oo m—0oo
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dure, we achieve

Vi = Wmat = E(S, )l
= e = 6"+ 6" = E(S, Yl
<Nt = 7N+ 1IES, ¥) = 67l
= Wms1 = §°I1 + a1 — S
< Wt = I+ (1 = L)l — §71.

The assumption lim ¢, = ¢* yields lim v,, = 0. Thus, the scheme (2.1) is S-stable. i

m—o00

3. Applications

Now, we shall implement our hybrid Picard S -type semi-implicit midpoint iterative method to in-
vestigate a general variational inequality and a fractional diffusion equation.

3.1. Variational inequality problem

Let®) # CC XbeaCCSand G : C — C be anonlinear mapping. Stampacchia [41] introduced the
variational inequality problem (VI(C, G)) which seeks an element ¢ € C so that

Mk e ), (G(s),k—¢)=0. (3.1

The obstacle problem is a fundamental example closely connected to the mathematical study of vari-
ational inequalities and free boundary problems. Obstacle problems are a special class of variational
problems arising in the calculus of variations, which minimize functionals # : X — R on infinite-
dimensional function space X. That is, find ¢, € X, such that ¥ (¢;) = r?el;? F (s), where ¢ is called a

minimizer. Such variational problems occur in physics, where the functional # which is to be mini-
mized represents physical quantities such as time or energy.

The notion of finite-dimensional VI was introduced in 1980 by Dafermos while modeling traffic net-
work equilibrium. Cottle [18] recognized that finite-dimensional VI is a subsequent expansion of the
complementarity problem. Moreover, problems encountered in everyday contexts such as economics,
management science, operations research, and engineering are based on the key concept of equilib-
rium. Approaches used to formulate, analyze and compute equilibrium problems include systems of
equations, optimization, complementarity, and fixed point theory. All these problems can be structured
within a unified model of variational inequalities.

Since its inception, variational inequality theory has experienced remarkable growth. This area of
research has been enriched by contemporary techniques and methodologies that address previously
inaccessible fundamental problems. It has become a practical and effective tool for solving math-
ematical models in interdisciplinary sciences. Simultaneously, this development has interconnected
areas of mathematics and applied sciences, including nonlinear programming, elasticity, transporta-
tion, operations research, economics, frictional contact problems, traffic equilibrium, and wireless and
wireline systems, see, [5, 20, 36,37]. Due to its versatility, the theory of variational inequality has
been expanded by researchers by advancing theoretical insights and introducing diverse computational
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techniques. The general nonlinear variational inequality GNVI(C, G, {), a significant generalization of
VI(C, G) was introduced by Noor [33] as follows: Find ¢ € C such that

(Vk € X,{(),{() € C) (G(6),{(k) = {(s)) = 0, (3.2)

where G, : X — X are nonlinear mappings. We signify the solution set of GNVI(C, G, ) by

2%C,G6,0 = {s € C:(G(5),{(k) — {(s)) = 0,k € X,{(k),{(s) € C}. If { = I then GNVI(C, G, )
reduces to VI(C, G). GNVI(C, G, {) can be structured as a general nonlinear complementarity problem
as under: Find ¢ € C so that

G(6),4() =0,4() € C,G(s) e C, (3.3)

where the dual cone C* of C is given by C* = {¢ € X : (¢, k) > 0,Vk € C}.
Now, we enumerate the following prominent definitions and results to accomplish the desired goal.

Definition 3.1. [34] A mapping G : C c X — Xis called

(i) u-inverse strongly monotone if u > 0, such that

(Y5, k € C) (G($) = G(), ¢ — k) = lG(s) = G,

(i) relaxed (t,t)-cocoercive if Ar,¢ > 0, such that

(Vs,k € C) (G(§) = GW), s — k) = (-DIIG(s) = GUI + dlls — I,

(ii) L-Lipschitzian if AL > 0, such that

(V. k € C) llGg(s) = GWII < Llls — «|.

G is non-expansive for L = 1, and contraction if L € (0, 1). Note that u-inverse strongly monotone map-
ping is i—LipSChitZial’l. The class of relaxed (7, ¢)-cocoercive is a larger class that includes the classes
of inverse strongly monotone and strongly monotone mappings. However, the converse statement is
not true in general.

Lemma 3.1. /9] Let Pc : X — C be a projection mapping. For any ¢ € X and k € C,
Pelsl=k & (k—¢,p—«k) 20,Yp e C.

Clearly, ¢ is non-expansive. Next, by utilizing Lemma 3.1, we shall set up a fixed point problem
analogous to GNVI(C, G, ).

Lemma 3.2. An element ¢* € X(C, G, () if and only if ¢* € Fix(U), where U(s*) = ¢" — {(¢¥) +
Pcli(s) — G(H)].

Proof. Suppose that ¢* € Z(C, G, {) then for all k € X, {(x), {(s*) € C, we have (G(¢™), {(k)—{(s™)) > O.
Therefore, by Lemma 3.1, we obtain Pc[{(s*) — G(s¥)] = {(s*), which yields U(¢*) = ¢*. Conversely,
suppose that ¢* € Fix(U), i.e., U(s*) = ¢*. Then, we obtain {(¢*) = Pc[l(s*) — G(¢*)]. Again, taking
Lemma 3.1 into account, we obtain (G(¢*), {(k) — {(s*)) > 0,Vk € X, {(x),{(¢*) € C. Thus, we get
¢ €X(C,6.0). o
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Now, based on the scheme (2.1) and taking advantage of Lemma 3.1, we shall re-design
PSSIMPS (2.1) to observe ¢ € C such that ¢ € Fix(S) N Z(C, G, ), where S is a contractive-like
mapping defined in (1.2) and G, { : X — X are nonlinear mappings.

Algorithm 3.1. For given ¢y € C, the sequence {g,}_, is generated by the following implicit iterative
scheme:

Smr1 = S(om — L(om) + Pcllom) — AG(om)]),

om=(1- am)S(prm) + amS(wm +pm),

o = (1= B2 4 S22
where {a,,}, {8} € (0, 1).

Theorem 3.1. Let 0 # C C X be a closed, and bounded set. Let G : C — C be a relaxed (t,1)-
cocoercive and L-Lipschizian mapping, { : C — C be n-inverse strongly monotone. If S : C —» C
satisfies (1.2) such that Fix(S) N X(C, G, {) # 0. In addition, the parameters satisfy the inequality:

1 1-
1__<TQ’ Q= V1 -2 —7L?) + 2212, 1> 0. (3.5)
n

Then {g,,} generated by (3.4) converges strongly to ¢* € Fix(S) N Z(C, G, {).

(3.4)

),meN,

Proof. Since { is p-inverse strongly monotone and hence %—Lipschitz continuous, therefore

”pm - g* - (éTPm) - ((g*))llz
= llom = §"IF = 2(L(om) = (™) pm = 7 + 11 (o) = L(SHIP
< llow = 1P = 20l (o) = LI + 1 (om) = LN (3.6)
= (”T) lom = &I = Bllow — 711
By the assumptions, observe that G is relaxed (7, t)-cocoercive and L-Lipschizian mapping, thus

llom = 6" = AG(pm) — GENIP
= llow = §"IP = 244G (om) = G(S*), pm = ) + LlIG(om) = G(SIP
< llow = §°IP + 22711G (o) — G = 2Allow — §*IP + G (om) — G(SHIP
< [1 =20 = 7L%) + 2L llpw = §*IIP = Qllow — 71
Now, we shall exhibit that ¢, — ¢* € Fix(S) N Z(C, G, ). Then ¢* = ¢* — {(¢*) + Pcll(s*) — 1G(sH)].
It follows from the first formulation of (3.4) together with (3.6) and (3.7) that
IS+t = S"I1 = IS(om = £(om) + Pecll(om) — AG(om)]) = 7|l
= IS(s™) = Slom = {lom) + Pcléon) — G
<Y(lls™ = S + ellom = Llom) + Pclllom) — AG(Pw)] = 7|l
= &llom = {om) + Pclllom) — AG(om)] (3.8)
= [s" = 4(s") + Pcld(s™) — AG(sHI
< 2¢llom — 6" = ({(om) = LD + ellom — 67 = UG(om) — G(SH)II
< (2P + Qllowm = §71I-

(3.7
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Duplicating the procedures as from (2.2)—(2.6), and combining with (3.8), we obtain

ligm+1 = "Il < (1 = ,)eP + Q)llsyn — §7l, (3.9)
. Q-8 -& . : :
where 7, = W Since € € [0,1) and by the relation (3.5), we acquire e2P + Q) < 1.
Consequently, (3.9) turns into
llgme1 = ™Il < (1 = E)llSm — 71 (3.10)

Utilizing Lemma 2.1 in (3.10), we achieve lim ||,,—<*|| = 0, i.e., {¢,} = ¢* € Fix(S)NZ(C,G,{). O

Note that one can take Lemma 3.1 into consideration to express the scheme (1.5) in the following
form.

Smi1 = S(Om = L(om) + Pcll(om) — 1G(m)]),
om = —a,)Ss, + @nSwp, (3.11)
Wn = =B2)Sm + BnSSm,m €N,
where {@,,}, {8} € (0,1) and S : C — C s a contraction mapping defined in (2.9). Next, we can utilize
the iterative scheme (3.11), to find an element ¢ € C so that ¢ € Fix(S) N Z(C, G, {).

Corollary 3.1. Let ) # C c X be a closed, and bounded set. Let G : C — C be a relaxed (t,1)-
cocoercive and L-Lipschizian mapping, { : C — C be n-inverse strongly monotone. If S : C —» C
satisfies (2.9) such that Fix(S) N X(C, G, ) # 0. In addition, the parameters satisfy the inequality:

1 1-
1__<_7@,Q:J1—ma—dh+4%aﬁ>0 (3.12)
n

Then {g,,} generated by (3.11) converges strongly to ¢* € Fix(S) N Z(C, G, {).

Example 3.1. Let C = [1, 2] with the usual norm on R and inner product {k, <) = k.g. Define G(g) =
3

2
3
c ;g,{ (c) = % and S(¢) = % + T V¢ € C. Apparently, 1 € Fix(S). Next, we corroborate that S

1
satisfies (1.2). To manifest this, consider & = 1 and a strictly continuous function  : [0, c0) — [0, c0)
with y(0) = 0, we estimate

IISgg) - S(K)II1 —é&lls — «l = ¢¥(lls — «39(§)II)
e el = Sl — el — s .2
—4k3ﬂ 4k Kl = ¥(s 2 4D

= —w(zlg -1) <0,

i.e, [|S() —S&I < yYllls — S + &ls — «|. Thus, S satisfies (1.2). Next, we shall estimate a common
element ¢* such that ¢* € Fix(S) N X(C, G, {). Now for all ¢,k € C, we find

§‘2+§‘ K2+K

(G(e) —G(K),s — k) = 5 5 , S —K)
N2
:(g5©(§+K+D,
_(c—x)? (¢ —&)*
—T(§+K)+ 5

-1
519 - GWIP + lls = «IP?,

AIMS Mathematics Volume 10, Issue 12, 30968-30989.



30981

also,
1666) - 60l = |25 - K |20k e 1] < g -
Thus, G is relaxed (%, 1)-cocoercive and 1-Lipschitz continuous.
@@ - s -0 = (5 - g = E (@ ey
Icts) - ool = [ €= )@ R

11
Thus, ({(s) — {(k),¢ — k) > EII{(g) LW e, £ is E—inverse strongly monotone. Also, for A = 1,
1-Q

1 11 1
the constants T = E,L =1,L=1andn = Efulﬁlls the relation 1 — — <
n

of Theorem 3.1,

where Q = \/1 —2A(t — TL?) + A2L2. Finally, it remains to verify that ¢* = 1 € X(C, G, ). Thus, for
¢" =1 €C, we estimate

g K ¢ 21
(G(s), {(k) - §(§)>—< ﬁ_11>_<§’ﬁ_ﬁ>

= %(K -1)>0,Vk e C.

Thus, 1 € Fix(S) N 2(C, G, {).

3.2. Fractional diffusion equation

The notion of fractional calculus was introduced by Niels Henrik Abel in 1823. The theory and
its applications were widely expanded during the 19th and 20th centuries with different definitions of
fractional derivatives and integrals introduced by various researchers. An independent foundation of
the subject was laid by Liouville in 1832. Oliver Heaviside applied the fractional differential operator in
real-life contexts to analyze electrical transmission. For substantial applications of the subject, see [2,
7,8,10,26]. Fractional derivatives are significant tools for analyzing the behavior of numerous physical
phenomena. They are particularly useful in explaining the dynamics of oxygen diffusion. Fractional
order derivatives can provide insight into the time-dependent behavior of oxygen concentration in
tissues. Oxygen diffusion within cells and tissues is a vital process in the human body. It not only
provides the energy to every cell but also has noteworthy physiological implications. Oxygen diffuses
from the blood into cells and is utilized in producing energy in the mitochondria. It is also vital for
balancing cellular metabolism.

The oxygen distribution process involves a series of diffusive and convective mechanisms. Con-
vective oxygen transport is an active circulation process necessary for aerobic respiration and energy
production in the body. Diffusion transport is the passive movement of oxygen from areas of higher
concentration to areas of lower concentration. In reality, the oxygen that diffuses into the blood from
air through the lungs has varying rates of consumption, see, [29]. Oxygen binds to haemoglobin in far
greater amounts than it dissolves in blood plasma, and oxygenated blood is pumped to the capillaries
via arteries, a process explained through haemoglobin-oxygen kinetics. The theory of energy trans-
portation was introduced by Krogh [28], which is referred to as the Krogh tissue cylinder. This model
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explains that the oxygen tension (PO2) drives the transportation of oxygen in tissues. The mathemati-
cal model, involving a differential equation to describe oxygen diffusion, was jointly presented by the
mathematician Erlang and Krogh. The solution of the model expresses oxygen tension in the tissue as
a function of spatial position within the tissue cylinder.

Herein, we are interested in implementing our hybrid Picard S-type semi-implicit mid point
scheme (2.1) to investigate the fractional diffusion model introduced by Srivastava and Rai [40]. The
fractional diffusion equation involving the concentration of oxygen E(r, z, u) and the diffusion coeffi-
cient of oxygen d is given by the following relation:

FE  OHE

aE Y om

=V -VE)-0,&u e (0,1], (3.13)

where, O(r, z, u) is the rate of consumption per volume of tissue and 2 a t{ 20 < & < 1 determines the
sub-diffusion process. The net amount of oxygen diffused into tissue is 2= /1?;:; and A is the time lag
in the concentration of oxygen = along the z-axis.

An analogous relation to Eq (3.13) is as under:

E—p
E(r,z.1) = E(r,z,0)(1 - ﬂm) +ADCME + DV - VE)) - D4O. (3.14)
Alternative formulation of (3.14) is as under:
—H
W(r,z.1) = W(r,z,0)(1 - ﬂm) + 1D S + DV - VY) — 0), (3.15)
or equivalently,
Y(r,z,1) = Q(¥,) + ) f H(s, ¥(s), O)ds, (3.16)
where, Q(¥o) = W(r,z,0)|1 - Arcmys | and H(s, ¥, ©) = 442 + (V(d - V¥) - ©).
Define the integral operator S by
S¥(r,z,1) = Q(¥,) + @ f H(s, ¥(s), O)ds, (3.17)
and ||'P|]| = sup {|¥(®)| : ¥ €7}, where J = ([0, T], R).

t€[0,T]

Proposition 3.1. Suppose that the conditions given below are fulfilled:

(a1) There exists a constant Ly > 0 so that

Vm,m el te [0, T)), |7'{(l,7T1(t), @) - 7'{(1‘, (1), @)l < L«H|7T1 — 7|;

(2) ——

l"(6)
Then, the fractional diffusion Eq (3.13) has a unique solution.

Now, we are ready to accomplish the key result of this section.
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Theorem 3.2. Suppose that the assumptions (a,)-(a) of the Proposition 3.1 hold. If the sequence
{Sm)r_, is produced by PSSIMPS (2.1) and a,, € (0, 1) satisfies 3.’y a,, = oo. Then, the fractional
diffusion model (3.13) has a unique solution ¢* and ¢,, — §*.

Proof. Suppose that {g,,}*_, is generated by (2.1) and S : ] — J is expressed as

SY(r) = QW) + @f H(s,V(s),®)ds.

We intend to show that ¢,, — ¢* as m — oo. Utilizing the assumptions (a;) and (a,) of Proposition 3.1,
it follows from (2.1) and (3.17) that

lom =571l = [ = B (E52) + BuS(5)] - 6°
< (=) 52 = |+ S0 = S5
m m * m(t) Wl(t) *
< =[5 =6+ B sup [S(#575) - S5

S+ W, §m(S)+wm(S)
= s oer g [ (),

(\Po)—@ f W(s,g“,@)ds‘

Sm + Wi s“m(S) + Wp(S)
<(1-B) o+ P s fﬂ( ), 0)
a5 6. —
- H(s, g, ®)‘ds
Smt wm s ﬁmL‘H ft Q‘m(S) + wm(s) «
<=8 - + su —— ) =<S"(s)|ds
P T@ s (=====) |
SmtWn LT ||(Sm + Wi .
< (1=, — o+ B )-
I'(¢)
- [1 —ﬁm(l _ ” _
I'(¢)
wm & *
= 7[”911 - < ” + ”wm - ¢ ”],
which implies that
w Ed
lwn =7l < 7 |I§m s, (3.18)
where, @,, = 1 = B,(1 —v)and v = r(f) Again, from the second formulation of the scheme (2.1),

AIMS Mathematics Volume 10, Issue 12, 30968-30989.



30984

(3.17) and employing the assumption of Proposition 3.1, we acquire

lom =67l = [[1 = @ S(2E") + anS(SE2)] - 6

2
(E0) | ()] -

< (1 -a,) sup ‘S —g'"(t) * ) (t)| + @, sup ‘S —wm(t) +pm(t))]
1€[0 T] 2 1€[0,T] 2

<(1- am)HS

- ')

<(1-a,) sup 'Q(‘PO) 15 f H(s, M) ©)ds

teOT] 2

—Q(‘Po)—@ f (H(s,g‘*,G))ds‘

+ @y, SUp |Q(‘Po)+r(§)f7{( M) ©)ds

t€[0,T] 2

Q( o)—@foﬂ(s,g*,@)ds‘

(1 -a,) ' Sm(S) + pu(s) )
= ['(¢) tes[l(;lg)“] 'f 7-{(S’(f)’ 0®) - H(s, ¢ ,@))‘ds

m wm(S)+pm(S)
il [ o (=) 0 -0l

o A= anly sup f ‘(gm(s)+pm(S))_g*(s)|ds
te[0,7]

F(f)
wm(S) + Pm(S) .
* F(é:) el OT]f ‘ ~° (S)‘ds

< (l_a'm)L?lTH §m+pm)_ * _
') ')
< (1 - am)L‘HT mLWT

* L 3
&) llgm — Il + T lwm, = 7|l + 2F(§)Hpm sl

(1 -ay,)v VT . .
< ——lsm — " lgm + =llom = §*I.
< e =s7ll+ 2(2 — )||§ - <l 2II;O sl

a’mlﬂ{TH Wy +pm) .

After simplification, it becomes

o = 671l < 5~—[1 = au(1 - )ilsin = <7 (3.19)

2—vy 2 — 1wy,

Finally, the first relation of (2.1) along with (3.17) and the assumptions (a;) and (a;) of the Proposition
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3.1, relation (3.19) yields

lsm+1 = s*1l = [IS(om) — 71l
< sup |S(p)(1) = s* (@)

t€[0,T]

< sup 'Q(‘PO) + — fﬂ(s Pm(8), O)ds

te[0,T] r(é:)
- Q¥ H 0)d
() - F@f (5,5, ©)ds|
1 (3.20)
su 7—{(S’pm(s)’ ®) - 7‘[(S’ g*’ ®) ds
F(f) 07 'r@) f
o su lom(s) = 671
F(f) 07 f g
<lpw(s) =<7l
2
<5 l-an(t-5=2 )i =<
Assumption (a,) guarantees that v < 1 and hence (3.20) turns into
* wm *
lsmer = 67l < 1= (1 - 2_wm)]ucm—g I (3.21)
By induction, we obtain
smer = "l < ligo = 6”1 ﬁ [1- a1 - 522, (322)
o 2 -w,
Recalling the fact 1 — s < e~ forall 0 < s < 1, we acquire
lsmer = "Il < ligo = ¢*II | | &7 Zimoee, (3.23)
u=0
Taking the limit m — oo, we obtain lim ||g,, — ¢*|| = 0. O

4. Concluding remarks

A hybrid Picard S -type semi-implicit midpoint iterative algorithm is developed and utilized to ap-
proximate the fixed point of a contractive-like mapping under suitable assumptions. A convergence
theorem and the stability of the constructed method are presented. A comparative analysis is carried
out by considering an illustrative example with different initial guesses, comparing our scheme (2.1)
with scheme (1.5) which proves more efficient than many existing iterative schemes. Furthermore,
a general variational inequality is studied. The proposed scheme is employed to examine a general
variational inequality, and the newly constructed method is implemented to approximate the common
element, which is the fixed point of a contractive-like mapping and the solution to a general varia-
tional inequality. In addition, a fractional diffusion equation is explored by utilizing our scheme (2.1).
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The approximation of fixed points of generalized mappings-including enriched non-expansive map-
pings, Suzuki’s generalized non-expansive mappings, asymptotically non-expansive mappings and to-
tally asymptotically non-expansive mappings by implementing the hybrid Picard S -type semi-implicit
midpoint iterative algorithm constitutes potential directions for future research.
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