Under a general condition on continuous probability distributions of some populations, this study establishes that the distributional convergence of sample quantiles implies moment convergence. As an application, we propose a quick and robust consistent estimator for the shape parameter of the Cauchy distribution under large-sample conditions. This estimator achieves over 99% efficiency relative to the maximum likelihood estimator.
Citation: Yuankang Wang. On moment convergence of sample quantiles with application to parameter estimations for Cauchy distribution[J]. AIMS Mathematics, 2025, 10(12): 30942-30967. doi: 10.3934/math.20251358
Under a general condition on continuous probability distributions of some populations, this study establishes that the distributional convergence of sample quantiles implies moment convergence. As an application, we propose a quick and robust consistent estimator for the shape parameter of the Cauchy distribution under large-sample conditions. This estimator achieves over 99% efficiency relative to the maximum likelihood estimator.
| [1] | V. Chernozhukov, C. Hansen, An IV model of quantile treatment effects, Econometrica, 73 (2005), 245–261. |
| [2] |
H. M. Barakat, M. A. Abd Elgawad, M. A. Alawady, Asymptotic order statistics of mixtures of distributions, Rocky Mountain J. Math., 50 (2020), 429–443. https://doi.org/10.1216/rmj.2020.50.429 doi: 10.1216/rmj.2020.50.429
|
| [3] |
J. Wang, F. Wang, S. Hu, On asymptotic correlation coefficient for some order statistics, AIMS Mathematics, 8 (2023), 6763–6776. http://dx.doi.org/10.3934/math.2023344 doi: 10.3934/math.2023344
|
| [4] |
J. Wang, C. Deng, J. Li, On moment convergence for some order statistics, AIMS Mathematics, 7 (2022), 17061–17079. https://doi.org/10.3934/math.2022938 doi: 10.3934/math.2022938
|
| [5] | J. Shao, Mathematical statistics, In: Springer texts in statistics, New York: Springer, 2003. https://doi.org/10.1007/b97553 |
| [6] | A. Dasgupta, Asymptotic theory of statistics and probability, In: Springer texts in statistics, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75971-5 |
| [7] |
G. Stoops, D. Barr, Moments of certain Cauchy order statistics, Amer. Statist., 25 (1971), 51–54. https://doi.org/10.1080/00031305.1971.10477307 doi: 10.1080/00031305.1971.10477307
|
| [8] | H. A. David, H. N. Nagaraja, Order statistics, John Wiley & Sons, Inc., 2003. https://doi.org/10.1002/0471722162 |
| [9] |
F. Guo, J. Zhu, L. Huang, H. Li, J. Deng, X. Zhang, et al., A modified BRDF model based on Cauchy-Lorentz distribution theory for metal and coating materials, Photonics, 10 (2023), 773. https://doi.org/10.3390/photonics10070773 doi: 10.3390/photonics10070773
|
| [10] |
S. Shah, P. J. Hazarika, S. Chakraborty, The Balakrishnan Alpha skew truncated Cauchy distribution with applications in modelling currency exchange rate, Sains Malays., 49 (2020), 2565–2571. http://dx.doi.org/10.17576/jsm-2020-4910-22 doi: 10.17576/jsm-2020-4910-22
|
| [11] |
C. Haydaroğlu, B. Gümüş, Fault detection in distribution network with the Cauchy-M estimate—RVFLN method, Energies, 16 (2022), 252. https://doi.org/10.3390/en16010252 doi: 10.3390/en16010252
|
| [12] |
S. Pang, W. Zhang, Information rates of channels with additive white Cauchy noise, IEEE Commun. Lett., 29 (2025), 115–119. https://doi.org/10.1109/LCOMM.2024.3502753 doi: 10.1109/LCOMM.2024.3502753
|
| [13] | N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, 2 Eds., John Wiley & Sons, 1994. |
| [14] |
Y. Akaoka, K. Okamura, Y. Otobe, Bahadur efficiency of the maximum likelihood estimator and one-step estimator for quasi-arithmetic means of the Cauchy distribution, Ann. Inst. Statist. Math., 74 (2022), 895–923. https://doi.org/10.1007/s10463-021-00818-y doi: 10.1007/s10463-021-00818-y
|
| [15] |
J. A. Reeds, Asymptotic number of roots of Cauchy location likelihood equations, Ann. Statist., 13 (1985), 775–784. https://doi.org/10.1214/aos/1176349554 doi: 10.1214/aos/1176349554
|
| [16] | R. Koenker, G. Bassett, Regression quantiles, Econometrica, 46 (1978), 33–50. https://doi.org/10.2307/1913643 |
| [17] | G. Shevlyakov, P. Smirnov, Robust estimation of the correlation coefficient: An attempt of survey, Aust. J. Stat., 40 (2011), 147–156. |
| [18] |
J. Zhang, A highly efficient L-estimator for the location parameter of the Cauchy distribution, Comput. Stat., 25 (2010), 97–105. https://doi.org/10.1007/s00180-009-0163-y doi: 10.1007/s00180-009-0163-y
|
| [19] |
S. Fegyverneki, A simple robust estimation for parameters of Cauchy distribution, Miskolc Math. Notes, 14 (2013), 887–892. https://doi.org/10.18514/MMN.2013.830 doi: 10.18514/MMN.2013.830
|
| [20] | L. Zhang, R. Smith, Robust M-estimation for heavy-tailed models, J. Nonparametr. Stat., 30 (2022), 567–589. |
| [21] |
P. J. Rousseeuw, C. Croux, Alternatives to the median absolute deviation, J. Amer. Statist. Assoc., 88 (1993), 1273–1283. https://doi.org/10.1080/01621459.1993.10476408 doi: 10.1080/01621459.1993.10476408
|