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1. Introduction

The convergence in distribution of a sequence of random variables does not necessarily imply the
convergence of moments. For example, consider a sequence of independent and identically distributed
random variables {Xn, n ≥ 1}with common mean µ and variance σ2. The Central Limit Theorem (CLT)
states that the standardized partial sums{∑n

i=1 Xi − nµ
√

nσ
, n ≥ 1

}
converge in distribution to the standard normal distribution N(0, 1) as n tends to infinity. However, the

third moment sequence
{
E

(∑n
i=1 Xi−nµ
√

nσ

)3
, n ≥ 1

}
does not necessarily converge to 0, the third moment

of N(0, 1). In fact, if the third moment of Xi does not exist, then for any given positive integer n, the
standardized partial sum

∑n
i=1 Xi−nµ
√

nσ lacks moments of order m ≥ 3. On the other hand, all moments of

order m ≥ 3 exist for N(0, 1). Therefore, the convergence in distribution of
∑n

i=1 Xi−nµ
√

nσ to N(0, 1) does
not guarantee the corresponding moment convergence. The convergence of multidimensional random
vectors sequence also exhibits similar behavior.
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In the application area of parameter estimation, we mainly focus on two types of CLTs: the
‘convergence in distribution version’ and the ‘convergence in moments version’. As direct applications,
these two versions serve ‘parameter interval estimation’ and ‘point estimation analysis’, respectively.

The property of moment convergence in statistical estimators is crucial for parameter point
estimation analysis. When the low-order moments of a population do not exist, we refer to it as
an ‘ultra-heavy-tailed distribution’. Under such circumstances, traditional moment-based estimation
methods generally fail for parameter estimation of the distribution. Furthermore, in the context of ultra-
heavy-tailed populations, small-sample methods often yield too few data points to satisfy convergence
requirements, making it difficult to obtain accurate and reliable parameter estimates for ultra-heavy-
tailed distributions from small samples.

However, in large-sample scenarios, although the ‘maximum likelihood estimation’ (MLE) is
theoretically optimal with desirable asymptotic properties (such as consistency and efficiency), MLE
for ultra-heavy-tailed populations frequently lacks closed-form solutions. Moreover, numerical
computation of MLE is often computationally intensive and may fail to converge due to the irregularity
of the likelihood function. Thus, many researchers have focused on developing alternative methods to
MLE to address the limitations of traditional approaches. For instance, Chernozhukov and Hansen [1]
incorporated quantile conditions into the ‘Generalized Method of Moments framework (Quantile-based
GMM)’. Since quantiles are less sensitive to extreme values and exhibit robustness in ultra-heavy-
tailed distributions, ‘sample quantile methods’ have emerged as an important alternative for parameter
estimation. It is noteworthy that the asymptotic theory of sample quantiles (order statistics) has also
been extensively studied for mixture distributions, which frequently arise in practical scenarios such as
modeling wind speed or river discharge [2].

This paper analyzes the moment convergence properties of sample quantiles and references the
following three theorems from the literature:

Theorem 1.1. (see [3]) For a population X distributed according to a continuous probability density
function (pd f ) f (x) with respect to Lebesgue measure, let p and r be two numbers satisfying 0 < p ≤
r < 1 and xp and xr be respectively the p-quantile and r-quantile of X satisfying f (xp) f (xr) > 0. Let
(X1, . . . , Xn) be a random sample derived from X and Xi:n be the i-th sample order statistic. If there are
constants ω > 0 and v ∈ (−∞,∞) such that the cumulative distribution function (cd f ) F(x) of ωX + v
has an inverse function G(x) which possesses a continuous third-order derivative function G′′′(x) in
the interval (0, 1) satisfying

|G′′′(x)| ≤ Kx−A(1 − x)−A,

for some given constants K > 0, A ≥ 0 and all x ∈ (0, 1), then:
(1) we have, as n→ ∞,

lim
n→∞

E

 f
(
xp

) (
Xi:n − xp

)
√

p(1 − p)/n


2

= lim
n→∞

E

 f (xr)
(
X j:n − xr

)
√

r(1 − r)/n


2

= 1

provided i/n = p + o
(
n−1/2

)
and j/n = r + o

(
n−1/2

)
;

(2) the correlation coefficient corr
(
Xi:n, X j:n

)
between Xi:n and X j:n satisfies

lim
n→∞

corr
(
Xi:n, X j:n

)
=

√
p(1 − r)
r(1 − p)

,
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provided i/n = p + o(1) and j/n = r + o(1) as n→ ∞.

Theorem 1.2. (see [4]) Let the pd f f (x) (with respect to Lebesgue measure) of a population X have a
bounded derivative of order m. Given a sample (X1, . . . , Xn) and p ∈ (0, 1), let xp be the p-quantile of
X satisfying f (xp) > 0. Assume the following two conditions hold:

(i) The cd f F(x) of X has an inverse function G(x), and there exists constants B > 0 and Q ≥ 0 such
that

|G(x)| ≤ B · x−Q(1 − x)−Q

holds for all x ∈ (0, 1).

(ii) i/n = p + O(n−1) and ai:n = xp + O(n−1).

Then, as n→ +∞, we must have

E

 f (xp)(Xi:n − ai:n)√
p(1 − p)/n

m

= EZm + O(n−1/2), (1.1)

where Z is a standard normal random variable.

Theorem 1.3. (see [5] and [6]) Assume (X1, ..., Xn) to be a sample from a population with a cd f F(x)
having positive derivatives f (xpi) at xpis where 0 < p1 < ... < pm < 1. Then, as n → ∞, the joint
distribution of

√
n[(Qn,p1 ,Qn,p2 , ...,Qn,pm) − (xp1 , xp2 , ..., xpm)]

converges in distribution to the multi-normal distribution Nm(0,D) where D is the m × m symmetric
matrix with (i, j)th element being pi(1 − p j)/( f (xpi) f (xp j)), 1 ≤ i ≤ j ≤ m. Here Qn,p denotes the
p-quantile of the sample (X1, ..., Xn).

Note: As a direct conclusion of the above three Theorems 1.1–1.3, we see that under conditions
of Theorem 1.1, after respect standardizations, two distinct sample quantiles will jointly converge in
distribution to a bivariate normal distribution. This convergence also holds in terms of some (suitable
order of) moments. Therefore, for any linear function of these two sample quantiles, the moments will
be equivalent to the corresponding moments of the associated normal distribution.

However, some scholars (see [7]) have implicitly assumed that when the population expectation
does not exist, the expectation of sample order statistics also does not exist. Yet, the conclusion of
Theorem 1.2 demonstrates that the expectation of sample p-quantiles generally exists given sufficiently
large sample size, even for ultra-heavy-tailed distributions like the Cauchy distribution. This provides
new perspectives and approaches for parameter estimation under ultra-heavy-tailed distributions.
Particularly, when traditional methods like moment estimation and maximum likelihood estimation
face challenges, using sample quantiles for parameter estimation becomes a viable alternative.

Interestingly, some scholars have gone to the other extreme – they directly apply distributional
convergence of random sequences to moment convergence. For instance, in large samples, they
approximate the moments of standardized sample quantiles directly with the corresponding moments of
the standard normal distribution without providing sufficient conditions or theoretical justification. As
was pointed out in [3], this stems from some scholars’ non-rigorous use of Taylor expansion formulas,
neglecting that even when a function has derivatives of all orders, its Taylor series expansion may not
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converge to the original function itself. They loosely approximate functions with partial sums of Taylor
series without rigorous analysis of whether the error terms are infinitesimal (see [8] for an example).

To address these issues, reference [3] presents rigorous arguments showing that as long as the
cd f satisfies what we will define as the universal condition (which almost all continuous populations
satisfy), the standardized sample quantiles will generally converge in moments to the corresponding
moments of the standard normal distribution. As an application, [3] developed a quick unbiased
estimator with efficiency exceeding 98% for the location parameter of Cauchy distributions. Here,
this paper explores the estimation of the scale parameter for Cauchy distributions. Before proceeding,
we give the universal definition for continuous populations as follows:

Definition 1.1. A population X is said to possess universality (or to be universal) if its cd f F(x) has a
third-order differentiable inverse function G(x), and there exist constants K > 0 and A ≥ 0 such that
the inequation

|G′′′(x)| ≤ K · x−A(1 − x)−A (1.2)

holds for all x ∈ (0, 1).

As verified in [4], commonly encountered continuous populations, including the Cauchy
distribution with no finite expectation, generally satisfy the above universality condition. For further
discussion, here we present the following three theorems:

Theorem 1.4. If a population X satisfies universality, then for any given constants ω , 0 and v, the
population ωX + v also satisfies universality.

Theorem 1.5. If the pd f of a population X that satisfies universality is an even function, then the
population |X| also possesses universality.

Theorem 1.6. If the pd f f (y) of a population Y that satisfies the universality condition has bounded
derivatives up to some given order m ≥ 2, and if yp denotes the p-quantile of Y, assuming f (yp) f (yr) >
0 for 0 < p ≤ r < 1, then for the sample (Y1,Y2, . . . ,Yn) with p-quantile Qn,p, as the sample size
n→ +∞,

EQn,p = yp + O(n−1),Var
(
Qn,p

)
∼

p(1 − p)

n f
(
yp

)2 ,Var
(
Qn,r

)
∼

r(1 − r)
n f (yr)2 , (1.3)

and the asymptotic correlation coefficient is given by

corr
(
Qn,p,Qn,r

)
→

√
p(1 − r)
r(1 − p)

, n→ +∞. (1.4)

The Cauchy distribution, as a fundamental model with quintessential heavy-tailed characteristics,
has significant applications across numerous scientific disciplines. In physics (often referred to as the
Lorentz distribution), it describes resonance line shapes and provides the mathematical foundation
for bidirectional reflectance distribution function (BRDF) modeling, enhancing the accuracy of
optical property simulations for materials [9]. In financial econometrics, its variants (such as
skewed truncated Cauchy distributions) effectively capture extreme fluctuations and complex statistical
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features in exchange rate data [10]. Additionally, in communications and information theory, the
Cauchy distribution is employed to characterize impulsive noise and analyze certain channel capacity
problems [11, 12].

However, its heavy-tailed nature (where even the mean and variance do not exist) poses fundamental
challenges for parameter estimation. For the Cauchy distribution, moment-based estimation methods
are entirely ineffective. Although maximum likelihood estimation (MLE) possesses asymptotic
optimality [5], its numerical implementation faces well-documented difficulties: the likelihood
equation may have multiple solutions, causing numerical algorithms to be sensitive to initial values and
prone to converging to local optima or failing to converge altogether [13,14]. Even when convergence
is achieved, MLE may lack robustness against outliers in finite samples.

To address these challenges, researchers have developed a range of alternative estimation
methods, primarily focused on improving robustness and computational feasibility: Quantile-based
(L-estimation) methods: These construct estimators using linear combinations of sample quantiles.
Such methods are inherently robust and, for the Cauchy distribution, can achieve asymptotic relative
efficiency (ARE) between 82% and 98%, while remaining computationally efficient [15–17]. Robust
M-estimation: For example, Huber’s M-estimation provides resistance to outliers while maintaining a
certain level of ARE (e.g., 90%) [11, 18]. Bayesian methods: Posterior inference via Markov chain
Monte Carlo (MCMC) techniques can effectively handle multimodal likelihood functions, though
at higher computational costs [19]. One-step corrected estimation: Starting from a robust initial
estimate (e.g., the median), a single Newton-Raphson iteration is performed to balance high asymptotic
efficiency with computational simplicity. Its theoretical properties (e.g., Bahadur efficiency) have been
extensively studied [20].

Despite the variety of methods, a core optimization problem remains unresolved when estimating
the scale parameter of the Cauchy distribution: how to optimally select and weight multiple sample
quantiles to construct an estimator with minimal asymptotic variance (i.e., highest efficiency). Existing
approaches often fail to achieve the theoretical upper bound of efficiency. This is precisely the
motivation for our study. Theorem 1.6 shows that, even under universal conditions, the sample
quantiles from a super-heavy-tailed population still possess the property of moment convergence.
This provides a crucial theoretical foundation for rigorously analyzing and optimizing the asymptotic
variance of linear combinations of quantiles. It thus enables us to theoretically derive a near-optimal
weighted quantile estimator for the scale parameter of the Cauchy distribution.

As a direct application of our theoretical framework, Section 3 of this paper focuses on estimating
the scale parameter of the Cauchy distribution. Through rigorous theoretical analysis and extensive
simulations, we demonstrate that the proposed method achieves both high computational efficiency
and estimation efficacy exceeding 99% (as measured by asymptotic relative efficiency).

1.1. Structure of the paper

The remainder of this paper is organized as follows:

• Section 2 presents the detailed proofs of Theorems 1.4–1.6, establishing the universality condition
and moment convergence properties for sample quantiles.

• Section 3 applies these results to the Cauchy distribution:

– Subsection 3.1 introduces the Cauchy model and its statistical properties.
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– Subsection 3.2 derives a robust estimator for the scale parameter c (Theorem 1.4) under
known location parameter µ, leveraging quantile-based asymptotics.

• Section 4 validates the method through numerical simulations, efficiency comparisons (e.g., 99%
relative efficiency to MLE) and discusses extensions.

• Section 5 concludes with a summary of key contributions and potential applications.

2. Main proofs

2.1. Proof of Theorem 1.4

Proof. (i) Now that the population X satisfies universality, we assume condition (1.2) holds. Note that
for any given constant c, the quantile function of the population X + c is GX+c(x) = GX(x) + c, and thus∣∣∣G′′′X+c(x)

∣∣∣ ≤ K · x−A(1 − x)−A.

This implies that X + c also satisfies universality.
(ii) Suppose the population X satisfies universality and the inequality (1.2) holds.

• Case ω > 0 : The quantile function of ωX is GωX(x) = ωGX(x), so∣∣∣G′′′ωX(x)
∣∣∣ = ω

∣∣∣G′′′X (x)
∣∣∣ ≤ (ωK) · x−A(1 − x)−A.

Thus, ωX satisfies universality.

• Case ω < 0 : The quantile function of ωX is GωX(x) = ωGX(1 − x), and hence∣∣∣G′′′ωX(x)
∣∣∣ ≤ (−ωK) · x−A(1 − x)−A.

Therefore, ωX also satisfies universality.
From (ii), we conclude that if X satisfies universality, then ωX must also satisfy universality.

Combining (i) and (ii), we see that linear transformations of the population preserve universality. That
is, if X satisfies universality, then for any constants ω , 0 and v ∈ R, the population ωX+v also satisfies
universality. �

2.2. Proof of Theorem 1.5

Proof. For convenience, let GY denote the quantile function corresponding to the cd f FY of a random
variable Y . Under the universal condition for X, we assume there exist constants K > 0 and A ≥ 0 such
that ∣∣∣G′′′X (p)

∣∣∣ ≤ K · p−A(1 − p)−A.

By the symmetry of the population distribution F(−x) = 1 − F(x), the distribution function of |X| is
given by

F|X|(x) = P(|X| ≤ x) = 2F(x) − 1, x ≥ 0.

Its quantile function G|X|(u) satisfies F|X|
(
G|X|(u)

)
= u, which implies 2F

(
G|X|(u)

)
− 1 = u. Thus, we

obtain

G|X|(u) = GX

(
1 + u

2

)
, namely G|X|(x) = GX

(
1 + x

2

)
.
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Taking the third derivative of G|X|(x) = GX

(
1+x

2

)
, we have

G′′′|X|(x) =
1
8

G′′′X

(
1 + x

2

)
,

and hence∣∣∣G′′′|X|(x)
∣∣∣ =

1
8

∣∣∣∣∣∣G′′′X

(
1 + x

2

)∣∣∣∣∣∣ ≤ 1
8
· K

(
1 + x

2

)−A (
1 −

1 + x
2

)−A

=
22AK

8
· (1 + x)−A(1 − x)−A.

Noting that for x ∈ (0, 1), (1 + x)−A ≤ 2−A (since 1 + x ≥ 1), we derive∣∣∣G′′′|X|(x)
∣∣∣ ≤ 22AK

8
· 2−A(1 − x)−A =

K · 2A

8
(1 − x)−A ≤

K · 2A

8
x−A(1 − x)−A.

Therefore, |X| also satisfies the universal condition. �

2.3. Proof of Theorem 1.6

Proof. First, the conclusion that as n→ +∞, the limit conclusion

corr
(
Qn,p,Qn,r

)
→

√
p(1 − r)
r(1 − p)

follows directly from Theorem 1.1. Next, by the population universality, we first prove that condition
(i) of Theorem 1.2 holds. For this purpose, we will prove the proposition: For a differentiable function
G(x), if there exist constants M > 0 and D ≥ 0 such that the inequation

|G′(x)| ≤ M · x−D(1 − x)−D

holds for ∀x ∈ (0, 1), then there exists a constant L > 0 such that for ∀x ∈ (0, 1),

|G(x)| ≤ L · x−(D+1)(1 − x)−(D+1). (2.1)

In fact, since G(x)−G
(

1
2

)
=

∫ x
1
2

G′(t)dt holds for ∀x ∈ (0, 1), combined with |G′(x)| ≤ M · x−D(1− x)−D,
we have:
1) For x ∈ (0, 1/2],

|G(x)| ≤ |G(1/2)| +

∣∣∣∣∣∣
∫ x

1/2
G′(t)dt

∣∣∣∣∣∣ = |G(1/2)| +

∣∣∣∣∣∣
∫ 1/2

x
G′(t)dt

∣∣∣∣∣∣
≤ |G(1/2)| +

∫ 1/2

x
|G′(t)| dt

≤ |G(1/2)| +
∫ 1/2

x
M · t−D(1 − t)−Ddt.

Since t ≤ 1/2, we have 1 − t ≥ 1/2, thus (1 − t)−D ≤ 2D. Therefore,

|G(x)| ≤ |G(1/2)| + M
∫ 1/2

x
t−D(1 − t)−Ddt ≤ |G(1/2)| + 2DM

∫ 1/2

x
t−Ddt
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=


∣∣∣∣G (

1
2

)∣∣∣∣ + 2DM ( 1
2 )1−D

−x1−D

1−D , D , 1∣∣∣∣G (
1
2

)∣∣∣∣ + 2M(− ln 2 − ln x), D = 1
.

Clearly, as long as D ≥ 0, the conclusion limx→0+ G(x)[x(1 − x)]D+1 = 0 holds.
2) For x ∈ [1/2, 1), similarly we obtain

|G(x)| ≤ |G(1/2)| + M
∫ x

1/2
t−D(1 − t)−Ddt.

Since 1/2 ≤ t ≤ 1 implies t−D ≤ 2D, we have

|G(x)| ≤ |G(1/2)| + 2DM
∫ x

1/2
(1 − t)−Ddt = |G(1/2)| − 2DM

∫ 1−x

1/2
v−Ddv

=


∣∣∣∣G (

1
2

)∣∣∣∣ + 2DM(− ln(1 − x) − ln 2),D = 1∣∣∣∣G (
1
2

)∣∣∣∣ + 2DM ( 1
2 )1−D

−(1−x)1−D

1−D , D , 1
.

Clearly, when D ≥ 0, the conclusion limx→1−G(x)[x(1 − x)]D+1 = 0 must hold.
Combining both cases 1) and 2), we evidently obtain the conclusion

lim
x→0+

G(x)[x(1 − x)]D+1 = lim
x→1−

G(x)[x(1 − x)]D+1 = 0.

Note that the function G(x)[x(1−x)]D+1 is also continuous on (0, 1). Therefore, there exists a sufficiently
large positive constant L such that the inequality

∣∣∣G(x)[x(1 − x)]D+1
∣∣∣ ≤ L holds for ∀x ∈ (0, 1).

Equivalently the inequation
|G(x)| ≤ Lx−(D+1)(1 − x)−(D+1)

holds for ∀x ∈ (0, 1) and thus we complete the proof of the proposition (2.1).
Now, since the population universality condition is satisfied, the quantile function G(x) is three

times differentiable, and there exist constants K > 0 and A ≥ 0 such that the inequation

|G′′′(x)| ≤ K · x−A(1 − x)−A

holds for all x ∈ (0, 1). By repeatedly applying the proven proposition, we conclude that there exist
constants C1 > 0,C2 > 0, and C3 > 0 such that for all x ∈ (0, 1), the following inequalities

|G′′(x)| ≤ C1 · x−(A+1)(1 − x)−(A+1), |G′(x)| ≤ C2 · x−(A+2)(1 − x)−(A+2)

and
|G(x)| ≤ C3 · x−(A+3)(1 − x)−(A+3)

hold. Here the last inequality demonstrates that condition (i) of Theorem 1.2 is satisfied. It is evident
that the other conditions of Theorem 1.2 are also satisfied. Therefore, according to the Eq (1.1) in
Theorem 1.2, we have

E

 f
(
yp

)
(Yi:n − ai:n)√

p(1 − p)/n


m

= EZm + O
(
n−1/2

)
, (2.2)

AIMS Mathematics Volume 10, Issue 12, 30942–30967.



30950

where ai:n = yp + O
(
n−1

)
, and Yi:n is the i-th order statistic of the sample (Y1,Y2, . . . ,Yn).

As conditions also hold for 1 ≤ m ≤ 2, by taking m = 1 in Eq (2.2) we have the conclusion

E

 f
(
yp

)
(Yi:n − ai:n)√

p(1 − p)/n

 = O
(
n−1/2

)
,

which implies E (Yi:n − ai:n) = O
(
n−1

)
, namely,

EYi:n = ai:n + O
(
n−1

)
= yp + O

(
n−1

)
. (2.3)

Obviously, we can also have

EYi+1:n = ai:n + O
(
n−1

)
= yp + O

(
n−1

)
,

and accordingly

EQn,p = ai:n + O
(
n−1

)
= yp + O

(
n−1

)
. (2.4)

Moreover, the result (2.3) indicates that EYi:n can replace ai:n in Eq (2.2) and thus

E

 f
(
yp

)
(Yi:n − EYi:n)√

p(1 − p)/n


m

= EZm + O
(
n−1/2

)
.

In particular, setting m = 2 in (2.2) again yields

E

 f
(
yp

)
(Yi:n − EYi:n)√

p(1 − p)/n


2

= 1 + O
(
n−1/2

)
.

That indicates
Var (Yi:n) =

p(1 − p)

n f
(
yp

)2 + O
(
n−3/2

)
.

Clearly, replacing i with i + 1 gives

Var (Yi+1:n) =
p(1 − p)

n f
(
yp

)2 + O
(
n−3/2

)
.

Furthermore, according to Theorem 1.1 and by taking p = r and j = i + 1, we obtain

lim
n→∞

corr (Yi:n,Yi+1:n) =

√
p(1 − p)
p(1 − p)

= 1.

Accordingly, by denoting corr
(
Yi:n,Y j:n

)
= 1 + o(1), we see that

Var
(Yi:n + Yi+1:n

2

)
=

1
4

[
Var (Yi:n) + Var (Yi+1:n) + 2 corr (Yi:n,Yi+1:n)

√
Var (Yi:n) Var (Yi+1:n)

]
AIMS Mathematics Volume 10, Issue 12, 30942–30967.
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=
1
2

 p(1 − p)

n f
(
yp

)2 + O
(
n−3/2

)
+ (1 + o(1))

 p(1 − p)

n f
(
yp

)2 + O
(
n−3/2

)


=
p(1 − p)

n f
(
yp

)2 + o
(
n−1

)
∼

p(1 − p)

n f
(
yp

)2 .

In summary, regardless of whether the sample (Y1,Y2, . . . ,Yn) uses Qn,p = Yi:n or Qn,p = Yi:n+Yi+1:n
2 as

its p-quantile estimator, we have

Var
(
Qn,p

)
∼

p(1 − p)

n f
(
yp

)2 .

Obviously we also have

Var
(
Qn,r

)
∼

r(1 − r)
n f (yr)2 .

�

3. Parameter estimation for Cauchy distributions

3.1. Cauchy distribution and some relative application models

Assume a radioactive substance is placed at the unit point (0, 1) on the y-axis of the xoy plane
coordinate system. At each moment, it may emit a particle outward randomly, with the emission angle
uniformly distributed over the interval [0, 2π]. It can be proven (see, e.g., [13] Johnson et al., 1994) that
the position coordinate X where the emitted particle intersects the x-axis follows a Cauchy distribution;
Similarly, the Cauchy distribution can describe the light intensity distribution along a line beneath a
point light source; If the radioactive substance is analogized to represent the economic influence of a
major city, the distribution of its impact on surrounding areas can also be characterized by the Cauchy
distribution. Currently, the Cauchy distribution finds important applications in various fields such as
physics, signal processing, financial engineering, and biology. The Cauchy distribution serves as a
crucial complement to the normal distribution.

By writing
X ∼ f (x; µ, c) =

c
π
[
c2 + (x − µ)2] , x ∈ R, or X ∼ Cauchy(µ, c),

we denote a Cauchy distribution with µ being the location parameter and c > 0 being the scale
parameter, particularly, the standard Cauchy distribution has a pd f f (x; 0, 1) = 1

π(1+x2) .
In addition to the nonexistence of mean, the Cauchy distribution possesses the following properties:

(i) Scale invariance:

X ∼ Cauchy(µ, c) =⇒ aX + b ∼ Cauchy(aµ + b, |a|c), a , 0.

(ii) Closure property: If X1 ∼ Cauchy(µ1, c1) and X2 ∼ Cauchy(µ2, c2) are independent, then:

X1 + X2 ∼ Cauchy(µ1 + µ2, c1 + c2).

Consequently, when a population follows a Cauchy distribution, the corresponding sample mean
converges in distribution to the population distribution itself rather than to any constant.
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3.2. Scale estimation for Cauchy distribution Cauchy(µ, c) when µ is known

Since [3] has already established estimation methods for the location parameter of Cauchy
distributions, this paper focuses on developing efficient estimators for the scale parameter c.

Given that X ∼ Cauchy(µ, c) implies X − µ ∼ Cauchy(0, c), we can, without loss of generality,
restrict our analysis to the case where µ = 0. Thus, we consider X ∼ Cauchy(0, c), where c > 0 is the
unknown scale parameter and have the following conclusion:

Theorem 3.1. For a Cauchy-distributed population X ∼ Cauchy(0, c), where c > 0 is the unknown
scale parameter, we construct a new sample (Y1, . . . ,Yn) = (|X1| , . . . , |Xn|) from the original sample
(X1, . . . , Xn). Let Qn,p be the p-quantile of the new sample ( Y1, . . . ,Yn ). Then, for any given p ∈ (0, 1),
the estimator

ĉn,p :=
Qn,p

tan
(

pπ
2

)
is an asymptotically unbiased estimator of c, with an equivalent variance expression

Var
(
ĉn,p

)
∼

p(1 − p)c2π2

n sin2(πp)
. (3.1)

If 0 < p ≤ r < 1, then the covariance cov
(
ĉn,p, ĉn,r

)
has an equivalent expression

cov
(
ĉn,p, ĉn,r

)
∼

c2π2 p(1 − r)
n sin(pπ) sin(rπ)

. (3.2)

Proof. For the new population Y = |X|, the p-quantile yp > 0 satisfies∫ yp

0

2c
π
(
x2 + c2)dx = p ⇒ yp = c · tan

( pπ
2

)
.

Clearly, the conditions of Theorems 1.4–1.6 are all satisfied. Therefore, by Theorem 1.6, the sample
p-quantile Qn,p of (Y1,Y2, . . . ,Yn) satisfies

EQn,p = yp + O
(
n−1

)
= c · tan

( pπ
2

)
+ O

(
n−1

)
.

Consequently,

Eĉn,p = E
Qn,p

tan
(

pπ
2

) = c + O
(
n−1

)
,

which shows that ĉn,p is an asymptotically unbiased estimator of c. Furthermore, Theorem 1.6 gives

Var
(
Qn,p

)
∼

p(1 − p)

n f
(
yp

)2 =
p(1 − p)

n

 2c

π
[
(c·tan( pπ

2 ))2
+c2

]


2 =
p(1 − p)

n
{

2
πc(sec( pπ

2 ))2

}2

=
p(1 − p)

n
(

2
πc

)2 (
cos

(
pπ
2

))4 =
π2c2

4n
p(1 − p)(
cos

(
pπ
2

))4 .
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Therefore,

Var
(
ĉn,p

)
=

Var
(
Qn,p

)
(
tan

(
pπ
2

))2 ∼
π2c2

4n
p(1 − p)(

cos
(

pπ
2

))4 (
tan

(
pπ
2

))2 =
π2c2

n
p(1 − p)

(sin (pπ))2 .

Finally, for 0 < p ≤ r < 1, we can readily obtain

cov
(
ĉn,p, ĉn,r

)
= corr(ĉn,p, ĉn,r)

√
Var(ĉn,p)Var(ĉn,r) = corr(Qn,p,Qn,r)

√
Var(ĉn,p)Var(ĉn,r)

∼

√
p(1 − r)
r(1 − p)

√
π2c2

n
p(1 − p)

(sin (pπ))2

π2c2

n
r(1 − r)

(sin (rπ))2 =
c2π2 p(1 − r)

n sin(pπ) sin(rπ)
,

and thus we complete the proof of

cov
(
ĉn,p, ĉn,r

)
∼

c2π2 p(1 − r)
n sin(pπ) sin(rπ)

.

�

Corollary 3.1. Under the conditions of Theorem 1.4, the estimator ĉn,p := Qn,p

tan( pπ
2 ) is optimal when

p = 0.5. That is, if we use the linear function of only one quantile of the new sample (Y1, . . . ,Yn) to
estimate c, then ĉn,0.5 is asymptotically optimal.

In this case of X ∼ Cauchy(0, c), we denote the asymptotically optimal unbiased estimator as

Ê1 := ĉn,0.5 =
Qn,p

tan
(

pπ
2

)
∣∣∣∣∣∣∣∣
p=0.5

= Qn,0.5 = median(Y1, . . . ,Yn) = median(|X1|, . . . , |Xn|),

where Ê1 has an asymptotic relative efficiency

CRLB

Var(Ê1)
=

2c2

n
/

c2π2

4n
=

8
π2 ≈ 0.8106.

Here, CRLB represents the asymptotic variance of the maximum likelihood estimator, or
equivalently the lower bound of the Cramér-Rao inequation.

Remark 3.1. In Corollary 3.1, although the distribution of Y is asymmetric, the asymptotic variance
p(1−p)c2π2

n sin2(πp)
of the asymptotically unbiased estimator ĉn,p constructed from its corresponding samples

reaches its minimum at p = 0.5 and is symmetric about p = 0.5 (see Appendix 1), as is displayed in
the following Figure 1. This inspires us that when constructing an asymptotically unbiased estimator
for c using a linear combination of several sample statistics ĉn,p from (Y1, . . . ,Yn), if the statistic ĉn,p is
selected, the corresponding ĉn,1−p should also be selected with equal weights. Additionally, if an odd
number of ĉn,ps is given, it must include ĉn,0.5.
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Figure 1. Symmetry & minimum of p(1−p)
(sin(πp))2 at p = 0.5.

Now we firstly try to find an optimal estimator which we denoted as Ê2 for c by using a linear
combination of two sample quantiles from the new sample. The following obtained result of Ê2 verifies
the above analysis. Ê2 should be the best estimator among the estimators formed as

E2 = ĉn,pu + ĉn,r(1 − u), 0 < p ≤ r < 1.

Noting that

Var
(
uĉn,p + (1 − u)ĉn,r

)
= u2 Var

(
ĉn,p

)
+ (1 − u)2 Var

(
ĉn,r

)
+ 2u(1 − u) cov

(
ĉn,p, ĉn,r

)
∼ u2 p(1 − p)c2π2

n sin2(πp)
+ (1 − u)2 r(1 − r)c2π2

n sin2(πr)
+ 2u(1 − u)

c2π2 p(1 − r)
n sin(pπ) sin(rπ)

=
c2π2

n

[
u2 p(1 − p)

sin2(πp)
+ (1 − u)2 r(1 − r)

sin2(πr)
+

2u(1 − u)p(1 − r)
sin(πp) sin(πr)

]
:=

c2π2

n
h(u, p, r),

to determine the value of u that minimizes the expression h(u, p, r) above, we first take the partial
derivative of h(u, p, r) with respect to u and set it to zero. Solving for u and substituting it back into the
expression h(u, p, r), we obtain:

p(1 − r)(r − p)(
r − r2) sin(πp)2 − 2p sin(πr)(1 − r) sin(πp) + p sin(πr)2(1 − p)

:= f (p, r).

Subsequently, by visualizing the objective function f (p, r) around the initial point (0.25, 0.75),
we numerically determined the minimum point (p, r) = (0.371010, 0.628990) using Maple. The
corresponding optimal u value is 0.5 , with the minimized expression h(u, p, r) yielding a value
of 0.219642 (see Appendix 2).

As we can see, the calculated results are in accordance with the previous analysis in Remark 3.1.
What is more, when using two sample quantiles to estimate c, we can also see that the asymptotically
optimal unbiased estimator

Ê2 = 0.5ĉn,0.371010 + 0.5ĉn,0.6290 = 0.5 ·
Qn,0.3710

tan
(

0.3710π
2

) + 0.5 ·
Qn,0.6290

tan
(

0.6290π
2

)
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= 0.7586Qn,0.3710 + 0.3296Qn,0.6290,

has an asymptotic variance of 0.219642c2π2

n , corresponding to an asymptotic efficiency of

CRLB

Var(Ê2)
=

2c2

n

Var(Ê2)
=

2c2

n
/

(
0.219642c2π2

n

)
= 0.92260. (3.3)

We secondly try to find an optimal estimator which we denoted as Ê7 for c by using a linear
combination of 7 sample quantiles from the new sample. Namely, Ê7 attains the minimum asymptotic
variance among estimators of the form

E7 = u
(
ĉn,p +ĉn,1−p

)
+ v

(
ĉn,q + ĉn,1−q

)
+ w

(
ĉn,r + ĉn,1−r

)
+ (1 − 2u − 2v − 2w)ĉn,0.5

= u

 Qn,p

tan
(

pπ
2

) +
Qn,1−p

tan
(

(1−p)π
2

) + v

 Qn,q

tan
(

qπ
2

) +
Qn,1−q

tan
(

(1−q)π
2

)
+ w

 Qn,r

tan
(

rπ
2

) +
Qn,1−r

tan
(

(1−r)π
2

) + (1 − 2u − 2v − 2w)
Qn,0.5

tan
(
π
4

) ,
where 0 < p ≤ q ≤ r ≤ 0.5.

For the sake of convenient utilization of Maple, we define a function

fcov(p, r) :=
c2π2 p(1 − r)

n sin(pπ) sin(rπ)
, 0 < p ≤ r < 1.

According to the conclusion (3.2), we are clear that as n→ ∞,

cov(ĉn,p, ĉn,r) ∼ fcov(p, r), 0 < p ≤ r < 1;

Moreover, for 0 < p ≤ r ≤ 0.5, since

cov(ĉn,p + ĉn,1−p, ĉn,r + ĉn,1−r) ∼ fcov(p, r) + fcov(p, 1 − r) + fcov(r, 1 − p) + fcov(1 − r, 1 − p)

=
c2π2[p(1 − r) + pr + rp + (1 − r)p]

n sin(pπ) sin(rπ)

=
2c2π2 p

n sin(pπ) sin(rπ)
, (3.4)

we define another function

mfcov(p, r) :=
2c2π2 p

n sin(pπ) sin(rπ)
, 0 < p ≤ r ≤ 0.5.

Now noting that the variance of the estimator E7 can be expressed as

Var(E7) =u2 Var
(
ĉn,p + ĉn,1−p

)
+ v2 Var

(
ĉn,q + ĉn,1−q

)
+ w2 Var

(
ĉn,r + ĉn,1−r

)
+ (1 − 2u − 2v − 2w)2 Var

(
ĉn,0.5

)
+ 2uv cov

(
ĉn,p + ĉn,1−p, ĉn,q + ĉn,1−q

)
+ 2uw cov

(
ĉn,p + ĉn,1−p, ĉn,r + ĉn,1−r

)
+ 2u(1 − 2u − 2v − 2w) cov

(
ĉn,p + ĉn,1−p, ĉn,0.5

)
+ 2vw cov

(
ĉn,q + ĉn,1−q, ĉn,r + ĉn,1−r

)
+ 2v(1 − 2u − 2v − 2w) cov

(
ĉn,q + ĉn,1−q, ĉn,0.5

)
+ 2w(1 − 2u − 2v − 2w) cov

(
ĉn,r + ĉn,1−r, ĉn,0.5

)
,
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we define the third following function fun7 for convenient use later in Maple software

Var(E7) ∼ u2 ·mfcov(p, p) + v2 ·mfcov(q, q) + w2 ·mfcov(r, r)
+(1 − 2u − 2v − 2w)2 · fcov(1/2, 1/2) + 2uv ·mfcov(p, q) + 2uw ·mfcov(p, r)
+u(1 − 2u − 2v − 2w) ·mfcov(p, 1/2) + 2vw ·mfcov(q, r)
+v(1 − 2u − 2v − 2w) ·mfcov(q, 1/2) + w(1 − 2u − 2v − 2w) ·mfcov(r, 1/2)

:=
c2π2

n
fun7. (3.5)

Through Maple optimization to minimize the asymptotic variance, we obtain

u = 0.08864913209, v = 0.1436902755,w = 0.1750267626,

p = 0.194668, q = 0.309483, r = 0.407633

and thereby derive

Ê7 =0.2808152418Qn,0.195 + 0.02798519251Qn,0.805 + 0.2719174618Qn,0.309

+ 0.07593074418Qn,0.691 + 0.2349278975Qn,0.408 + 0.1303990201Qn,0.592 + 0.1852676596Qn,0.5.

The minimum function value of fun7 can be obtained to be 0.20465990432 according to Maple
software (see Appendix 3) and accordingly the asymptotic efficiency of Ê7 can be worked out as

CRLB

Var(Ê7)
=

2c2

n

Var(Ê7)
=

2c2

n

0.20465990432 × c2π2

n

=
2

0.20465990432π2 = 0.9901420012.

As is implied by the above highly efficiency rate 0.9901420012, the estimator Ê7 has an asymptotic
variance that quite closes to the variance of the classical MLE. The estimator Ê7 proposed in this
paper can be regarded as a quick estimator for the shape parameter of the Cauchy distribution. It
clearly possesses asymptotic consistency, and its efficiency exceeding 99% demonstrates its potential
as a substitute for MLE.

For Cauchy distribution, the reference [21] provides an asymptotically unbiased estimator Q for the
shape parameter c with

Q = d ×
{∣∣∣Xi − X j

∣∣∣ ; i < j
}

(k)
= 1.2071 ×

{∣∣∣Xi − X j

∣∣∣ ; i < j
}

(k)
,

here k represents the combination number
([ n

2 ]+1
2

)
where

[
n
2

]
denotes the largest integer not exceeding

n/2. The subscript k in the expression
{∣∣∣Xi − X j

∣∣∣ : i < j
}

(k)
stands for the k-th smallest order statistic in

the set
{∣∣∣Xi − X j

∣∣∣ : i < j
}
. The text mentions that the estimator Q achieves an asymptotic efficiency

of e(Q) = 98% compared to the MLE (without rigorous proof or detailed algorithm). However,
the construction of this estimator is highly complex, and its computational implementation is not
significantly simpler than that of MLE.

Finally, as summarized in [6], the joint asymptotic distribution of different sample quantiles follows
a multivariate normal distribution. Combined with the conclusions of Theorems 1.4 and 1.5 in
references [3] and [4], it is evident that the estimator Ê7 is asymptotically normally distributed, with
moment equivalence to its corresponding normal distribution moment.
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4. Simulation study

Regardless of whether the scale parameter is known or unknown, reference [3] has already provided
estimation methods for the location parameter of the Cauchy distribution. Here, we only conduct
simulation studies for the estimation of the scale parameter, considering both cases where the location
parameter is known and unknown.

4.1. Estimating the scale parameter for Cauchy distribution with known location

Assume the true population follows X ∼ Cauchy(µ, c) = Cauchy(4, 2). Using the transformed
sample (Y1, . . . ,Yn) = (|X1 − 4| , . . . , |Xn − 4|) where n = 10000, each time we respectively apply
Ê1, Ê2 and Ê7 to estimate c and define that an experiment. We totally do 20 the same experiments
independently with the same population and form the following Figure 2 indicating the effectiveness
comparison of these estimators (see Appendix 3).

Figure 2. Comparing estimators Ê1, Ê2 and Ê7(n = 10000) in estimating c = 2.

As is displayed in Figure 2, estimator Ê7 generally performs better than either Ê1 or Ê2.

4.2. Estimating the scale parameter for Cauchy distribution with unknown location

Let mn,p denote the p-quantile of the sample ( X1, X2, . . . , Xn ), and define Rn(p) := mn,p+mn,1−p
2 .

Reference [4] demonstrates that the statistic

E5,n = − 0.0192Rn(0.0632) − 0.0747Rn(0.1347) + 0.2953Rn(0.3577)
+ 0.3799Rn(0.4199) + 0.4187Rn(0.4739)

is an unbiased estimator for the location parameter of a Cauchy-distributed population X, regardless of
whether the scale parameter is known. The variance of E5,n has an asymptotic equivalence Var

(
E5,n

)
∼

2.0314/n. Compared to the MLE, the asymptotic relative efficiency of E5,n is 2/2.0314 = 0.9845. In
large samples, E5,n exhibits high stability, with values tightly concentrated around the true location
parameter µ.

Generally, for a Cauchy distribution with unknown location µ and scale c, we can firstly estimate the
unknown µ by the observation of E5,n, then we consider the population distribution as known location
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situation, and then estimate the scale parameter c as the previous procedure of obtaining estimator Ê7,
we can finally get estimator for c which we denoted as Ê7∗.

For example, with n = 10000, the asymptotic normality of E5,n implies

P
(∣∣∣E5,n − µ

∣∣∣ ≥ 2
√

Var
(
E5,n

))
= 2(1 − Φ(2)) = 0.044,

meaning that

P
(∣∣∣E5,n − µ

∣∣∣ ≥ 2
√

2.0314/10000
)

= 0.044→ P
(∣∣∣E5,n − µ

∣∣∣ ≥ 0.029
)

= 0.044.

This implies that when using E5,10000 to estimate µ, it is highly improbable for the absolute error to
exceed 0.029 . Therefore, we approximate µ as being equal to E5,10000. Under this approximation, the
population X − E5,n ∼ Cauchy(0, c), c > 0, and the corresponding sample is transformed into

(Y1, . . . ,Yn) =
(∣∣∣X1 − E5,n

∣∣∣ , . . . , ∣∣∣Xn − E5,n

∣∣∣) .
Following the aforementioned approach, we utilize the statistic Ê7∗ constructed from (Y1, . . . ,Yn)

to estimate the scale parameter c:

Ê7∗ =0.2808152418Q∗n,0.195 + 0.02798519251Q∗n,0.805 + 0.2719174618Q∗n,0.309

+ 0.07593074418Q∗n,0.691 + 0.2349278975Q∗n,0.408

+ 0.1303990201Q∗n,0.592 + 0.1852676596Q∗n,0.5,

where Q∗n,p represents the p-quantile of the new sample
(
Y∗1 , . . . ,Y

∗
n

)
:=

(∣∣∣X1 − E5,n

∣∣∣ , . . . , ∣∣∣Xn − E5,n

∣∣∣).
Subsequently, we perform simulation studies to compare the estimation performance between two

scenarios with the actual value of the scale parameter c = 2.
As is indicated by the simulated results (Figure 3), estimator Ê7 and Ê7∗ are close to each other in

estimating the scale parameter c = 2 under the large sample size n = 10000.

Figure 3. Comparing estimators Ê7 and Ê7∗(n = 10000) in estimating c = 2.
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To examine the estimation performance with a moderately reduced sample size (n = 600), we
present two subplots Figure 4(a) and 4(b). Subplot (a) compares the results of 20 estimations using
Ê2 and Ê2∗ (where Ê2∗ is obtained by treating the sample median as the true population location
parameter and then estimating the scale parameter using two quantiles from a new sample). Subplot (b)
similarly compares 20 estimation results of Ê7 and Ê7∗, as described earlier.

The results (see Figure 4 as well as Table 1) show that as the sample size n decreases, some
discrepancies arise between Ê7 and Ê7∗, while the differences between Ê2 and Ê2∗ are more
pronounced. The superiority of Ê7 over Ê2 is evident, as is the advantage of Ê7∗ over Ê2∗.

Table 1. Squared errors of 4 estimates in 20 experiments.

(Ê2 − c)2 (Ê7 − c)2 (Ê2∗ − c)2 (Ê7∗ − c)2

1 0.03174569 0.03351053 0.04486434 0.03308145
2 0.00227712 0.00475764 0.00040686 0.00715247
3 0.01151640 0.00746694 0.01646004 0.00667703
4 0.00101425 0.00677288 0.00308368 0.00501002
5 0.00004881 0.00255630 0.00104718 0.00235408
6 0.00060215 0.00227445 0.00283797 0.00294717
7 0.00223157 0.00130517 0.00187146 0.00151906
8 0.00577856 0.00270196 0.00690803 0.00679727
9 0.01387076 0.01503183 0.01235822 0.01255513
10 0.00137906 0.00046466 0.00049879 0.00012351
11 0.01774646 0.01161823 0.01594170 0.01203941
12 0.00207789 0.00130980 0.00438729 0.00048977
13 0.01405944 0.00289688 0.01366790 0.00375828
14 0.03302616 0.04562693 0.03122447 0.04538348
15 0.01132997 0.00589189 0.01053595 0.00635019
16 0.00919226 0.00578929 0.00461350 0.00615215
17 0.00083791 0.00294791 0.00017231 0.00274508
18 0.05214600 0.02398681 0.04773047 0.02531572
19 0.00168733 0.00224212 0.00065236 0.00214939
20 0.00642312 0.00542582 0.00185151 0.00631507

Average 0.01094955 0.00922890 0.01105570 0.00944579
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Figure 4. Comparing estimators Ê2, Ê2∗, Ê7 and Ê7∗(n = 600) in estimating c = 2.

5. Concluding remarks

This study has established a theoretical foundation for the moment convergence of sample quantiles
under a general universality condition, a property that holds for a wide range of continuous populations,
including the Cauchy distribution. Leveraging this theory, we have developed a novel, computationally
efficient estimator for the scale parameter of the Cauchy distribution by employing an optimal linear
combination of seven sample quantiles from the transformed variable Y = |X − µ|. Extensive
simulation experiments confirm that the proposed estimator Ê7 achieves an asymptotic relative
efficiency exceeding 99% relative to the maximum likelihood estimator (MLE), while circumventing
the computational complexities and convergence issues associated with iterative MLE algorithms.

The methodology presented offers a robust and practical alternative for parameter estimation in
ultra-heavy-tailed distributions, effectively balancing high statistical efficiency with computational
feasibility. Future research could explore the extension of this quantile-based framework to other
heavy-tailed distributions, such as the Pareto or stable families. Furthermore, investigating adaptive
methods for optimal quantile selection in finite-sample scenarios or for multivariate heavy-tailed
distributions presents a promising and challenging avenue for further work.
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A. Appendix 1

Proposition A.1. The function g(x) =
x(1−x)

sin2(πx)
defined on (0, 1) is symmetric about x = 1/2 and attains

its global minimum there.

Proof. The symmetry g(1− x) = g(x) is immediate from the definition, as substituting x 7→ 1− x leaves
the expression unchanged.

To prove that x = 1/2 is the global minimizer, we show that g(x) ≥ g(1/2) = 1/4 for all x ∈ (0, 1).
This inequality is equivalent to

4x(1 − x) − sin2(πx) ≥ 0.

Define h(x) = 4x(1 − x) − sin2(πx). Due to the symmetry of g(x), it suffices to prove h(x) ≥ 0 for
x ∈ [0, 1/2], with equality only at the endpoints. We have h(0) = 0 and h(1/2) = 0.

We analyze h′(x) = 4(1 − 2x) − π sin(2πx). At x = 0, h′(0) = 4 > 0. At x = 1/2, h′(1/2) = 0.
The second derivative h′′(x) = −8 − 2π2 cos(2πx) has exactly one zero in (0, 1/2) because cos(2πx) is
strictly decreasing there. Hence, by Rolle’s theorem, h′(x) can have at most two zeros in (0, 1/2]. Now
that h′(1/2) = 0 , we see that h′(x) can have at most one zero in (0, 1/2).

Since h′(1/2) = 0 and h′′(1/2) > 0, h′(x) is increasing at x = 1/2, so h′(x) < 0 immediately left
of 1/2. Given h′(0) > 0 and h′(x) < 0 near 1/2−, by the Intermediate Value Theorem h′(x) has at least
one zero in (0, 1/2). Thus h′(x) has exactly one zero x1 ∈ (0, 1/2) and one zero at x = 1/2.

Therefore, h′(x) > 0 on (0, x1), h′(x) < 0 on (x1, 1/2). This implies h(x) increases on [0, x1] and
decreases on [x1, 1/2]. Since h(0) = h(1/2) = 0, it follows that h(x) > 0 for x ∈ (0, 1/2). �

B. Appendix 2

Maple DAids in obtaining the best linear combination of two new sample quantiles for estimating
the scale parameter c:

restart :

h := (u, p, r)→ u2 ·

(
p(1 − p)
sin2(πp)

)
+ (1 − u)2 ·

(
r(1 − r)
sin2(πr)

)
+ 2u(1 − u) ·

p(1 − r)
sin(πp) sin(πr)

,
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u := solve
(
∂

∂u
(h(u, p, r)) = 0, u

)
: simplify(h(u, p, r))

−
p(−1 + r)(p − r)(

r2 − r
)

sin2(πp) − 2p sin(πr)(−1 + r) sin(πp) + sin2(πr)p(−1 + p)
,

f :=(p, r)→ −
p(−1 + r)(−r + p)(

r2 − r
)

sin(πp)2 − 2 sin(πr)p(−1 + r) sin(πp) + p sin(πr)2(−1 + p)
:

with (Optimization):

# Find the numerical minimum near (0.25, 0.75) with constraints 0 < p < r < 1

result := Minimize ( f (p, r), {p 6 0.2, r 6 p + 0.01, r ≤ 0.8}, initialpoint
= {p = 0.25, r = 0.75}) :

# Extract the minimum point and value

min _p := rhs(result[2][1]); min _r := rhs(result[2][2]); min_value := result[1];
p := min _p; r := min _r; eval(u) #the last step to calculate weightu,
min _p = 0.371009648203599,
min _r = 0.628990351796402,
min_value = 0.219641801446212925,
u = 0.500000000214519.

C. Appendix 3

Maple Aids in obtaining the best linear combination of 7 new sample quantiles for estimating the
scale parameter c

restart: f cov := (p, r)→
c2 · π2 · p · (1 − r)

n · sin(pπ) · sin(rπ)
: m f coV := (p, r)→

2c2 · π2 · p
n · sin(pπ) · sin(rπ)

:

VarE 7 := simplify
(
u2 · m f cov(p, p) + v2 · m f cov(q, q) + w2 · m f cov(r, r) + (1 − 2u − 2v

− 2w)2 · f cov
(
1
2
,

1
2

)
+ 2uv · m f cov(p, q) + 2uw · m f cov(p, r) + u · (1 − 2u − 2v

·(1 − 2u − 2v − 2w) · m f cov
(
r,

1
2

))
: fun 7 := simplify

( n
c2 · π2 · VarE 7

)
:

u := −
1

2
(
2p csc(pπ)2 − 4p csc(pπ) + 1

) (4p csc(pπ) csc(qπ)v + 4p csc(pπ) csc(rπ)w

−4qv csc(qπ) − 4rw csc(rπ) − 4p csc(pπ)v−4p csc(pπ)w + 2p csc(pπ) + 2v + 2w−1
)
,

v := solve
(
∂

∂v
( fun 7) = 0, v

)
; fun 7 := simplify( fun 7) :

AIMS Mathematics Volume 10, Issue 12, 30942–30967.



30964

v :=−
(
4p2 csc(pπ)2 csc(qπ) csc(rπ)w−4p csc(pπ)2 csc(qπ)q csc(rπ)w

−4p2 csc(pπ)2 csc(qπ)w + 4p csc(pπ)2 csc(qπ)qw − 4 csc(rπ) csc(pπ)2 p2w

+4 csc(rπ) csc(pπ)2 prw + 4p csc(pπ) csc(qπ)q csc(rπ)w − 4p csc(pπ) csc(qπ) csc(rπ)wr

+2p2 csc(pπ)2 csc(qπ) − 2p csc(pπ)2 csc(qπ)q + 4 csc(pπ)2 p2w − 4p csc(pπ) csc(qπ)qw

−4 csc(rπ) csc(pπ)prw + 4 csc(qπ)q csc(rπ)wr − 2 csc(pπ)2 p2 − 2 csc(pπ)2 pw

+2p csc(pπ) csc(qπ)q + 2p csc(pπ) csc(qπ)w + 2p csc(pπ) csc(rπ)w

−2 csc(qπ)q csc(rπ)w + p csc(pπ)2 − p csc(pπ) csc(qπ))/
(
2
(
2p2 csc(pπ)2 csc(qπ)2

−2p csc(pπ)2 csc(qπ)2q − 4p2 csc(pπ)2 csc(qπ) + 4p csc(pπ)2 csc(qπ)q + 2 csc(pπ)2 p2

−4p csc(pπ) csc(qπ)q + 2 csc(qπ)2q2 − p csc(pπ)2 + 2p csc(pπ) csc(qπ) − csc(qπ)2q
))
,

w := solve
(
∂

∂w
( fun7 ) = 0,w

)
; fun7 := simplify( fun7 ) :

w :=
(
sin(rπ)p

(
2 sin(rπ)pq − 2 sin(rπ)q2 − 2p sin(qπ)r + 2q sin(qπ)r − sin(rπ)p + sin(rπ)q

+p sin(qπ) − q sin(qπ) − 2pq + 2pr + 2q2 − 2qr
))
/
(
2
(
2 sin(rπ)2 p2q − 2 sin(rπ)2 pq2

+ sin(rπ)2 pq − 2pq2 + 2p2q + 2rpq + 2pq sin(pπ) sin(qπ) + q sin(pπ)2r + p sin(qπ)2r

+2q2 sin(pπ)2r − 2q sin(pπ)2r2 + 2p2 sin(qπ)2r−2p sin(qπ)2r2 + 4p sin(pπ) sin(qπ)r2

−2p sin(pπ) sin(qπ)r + 4 sin(rπ)pq sin(qπ)r + 2 sin(rπ)p2 sin(qπ) − 4 sin(rπ)p2q + 4 sin(rπ)p2r

+4 sin(rπ)pq2 − 4p sin(pπ) sin(qπ)qr − 2 sin(rπ)pq sin(qπ) − 4 sin(rπ)pqr−4 sin(rπ)p2 sin(qπ)r

−2rp2 − sin(rπ)2 p2 − q2 sin(pπ)2 − p2 sin(qπ)2
))
,

divisions := 10 : minval := 0. : maxval := 0.5 : step := (maxval − minval)/divisions :

gridpoints := [seq(i ∗ step + minval, i = 0..divisions)] : minvalue := in f inity : minpoint := [0, 0, 0] :

for p_val in grid_points do
for q_val in grid_points do
for r_val in grid_points do
if 0 < p_val and p_val < q_val and q_val < r_val and r_val < 0.5 then

current_value := eval(fun7, [p = p_val, q = q_val, r = r_val]):
if type(current_value, numeric) then

if current_value < min_value then
min_value := current_value;
min_point := [p_val, q_val, r_val]:

end if;
end if;

end if;
end do; end do; end do;

with(Optimization):
epsilon := 0.00001:
constraints := {epsilon <= p, r <= 0.5 - epsilon,
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p + epsilon <= q, q + epsilon <= r}:
fun7_num := unapply(fun7, [p, q, r]):
verification := NLPSolve(fun7_num(p, q, r), constraints,

initialpoint = [p = min_point[1], q = min_point[2], r = min_point[3]],
method = sqp):

if type(verification, list) and 2 < nops(verification) then
opt_value := verification[1]:
opt_point := verification[2]:
p_opt := eval(p, opt_point):
q_opt := eval(q, opt_point):
r_opt := eval(r, opt_point):
printf("\nOptimization verification results:\n"):
printf("Minimum point: [p = %.6f, q = %.6f, r = %.6f]\n",

p_opt, q_opt, r_opt):
printf("Minimum function value: %.15f \n", opt_value):

else
printf("\nOptimization verification failed"):

end if;

opt_value := 0.204659904317932712
opt_point := [p = 0.194667583229499, q = 0.309482928923083, r = 0.407633277770656]
p_opt := 0.194667583229499
q_opt := 0.309482928923083
r_opt := 0.407633277770656
Optimizationveri f icationresults :
Minimumpoint : [p = 0.194668, q = 0.309483, r = 0.407633]
Minimum f unctionvalue : 0.204659904317933

AIMS Mathematics Volume 10, Issue 12, 30942–30967.
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restart : p := 0.194668 : q := 0.309483 : r := 0.407633 :

w :=
(
sin(rπ)p

(
8 sin(pπ) sin(qπ)pqr − 4p2r + 2 sin(rπ)p2 + 4pqr − sin(pπ)2 sin(rπ)q − 2 sin(qπ)p2

+ sin(pπ)2 sin(qπ)q + 2 sin(pπ)2 sin(rπ)q2 + 2 sin(pπ)2qr + sin(pπ)2 sin(rπ)p − sin(pπ)2 sin(qπ)p

− 2 sin(pπ)2 pr + 2 cos(pπ)2 sin(rπ)pq + 2 sin(pπ)2 sin(qπ)pr + 8 sin(pπ) sin(rπ)p2q

− 8 sin(pπ) sin(rπ)pq2 + 4 sin(pπ) sin(rπ)pq − 8 sin(pπ)pqr − 4 sin(qπ)pqr − 4 sin(pπ) sin(rπ)p2

+ 8 sin(pπ)p2r − 4 sin(rπ)p2q + 4 sin(rπ)pq2 + 4 sin(qπ)p2r − 4 sin(rπ)pq + 2 sin(qπ)pq

− 2 sin(pπ)2 sin(qπ)qr + 4 sin(qπ) sin(pπ)p2 + 2 sin(pπ)2 pq − 8 sin(pπ)p2q + 8 sin(pπ)pq2

+4p2q − 4pq2 − 2 sin(pπ)2q2 − 8 sin(pπ) sin(qπ)p2r − 4 sin(pπ) sin(qπ)pq
))
/
(
2
(
4 sin(qπ)2 p3

− 2 sin(pπ)2 sin(rπ) sin(qπ)p2 + 4 sin(pπ)2 sin(rπ)p2q − 4 sin(pπ)2 sin(rπ)p2r − 4 sin(pπ)2 sin(rπ)pq2

+ 8 sin(pπ) sin(rπ) sin(qπ)p3 − 16 sin(pπ) sin(rπ)p3q + 16 sin(pπ) sin(rπ)p3r

+ 16 sin(pπ) sin(rπ)p2q2 + 8 sin(qπ) sin(rπ)p3r + 4 sin(qπ) sin(rπ)p2q + 8 sin(rπ)p2qr

+ 4 cos(rπ)2 p3q − 4 sin(pπ)2 sin(rπ) sin(qπ)pqr + 16 sin(pπ) sin(rπ) sin(qπ)p2qr − 4p2qr

− 4 sin(qπ) sin(rπ)p3 + 8 sin(rπ)p3q − 8 sin(rπ)p3r − 8 sin(rπ)p2q2 + 4 sin(rπ)2 cos(pπ)2 p2q

− 2 sin(qπ) sin(pπ)3 pq + 8 sin(qπ) sin(pπ)2 p2q − 4 sin(qπ) sin(pπ)p2q − 4 sin(pπ)3 pq2

+ 6 sin(pπ)2 pq2 + sin(pπ)4q2 − sin(rπ)2 sin(pπ)2 pq + 4 sin(rπ)2 sin(pπ)p2q + 2 sin(rπ)2 cos(qπ)2 p3

+ sin(rπ)2 sin(pπ)2 p2 − 4 sin(rπ)2 sin(pπ)p3 + 8 sin(rπ)2 p2q2 − 6 sin(rπ)2 p2q

+ 16 sin(pπ)p3q − 16 sin(pπ)p2q2 − 8p3q + 2 cos(qπ)2 sin(pπ)2 p2r − 8 cos(qπ)2 sin(pπ)p3r

− 4p sin(pπ)3r2 sin(qπ) + 8p sin(pπ)3rq2 − 8p sin(pπ)3r2q + 2 sin(pπ)2 sin(qπ)2 pr2

+ 16 sin(pπ)2 sin(qπ)p2r2 − 8 sin(pπ) sin(qπ)2 p2r2 + 2p sin(pπ)3r sin(qπ) + 4p sin(pπ)3rq

− sin(pπ)2 sin(qπ)2 pr − 4 sin(pπ)2 pq2r + 4 sin(pπ)2 pqr2 + 4 sin(pπ) sin(qπ)2 p2r

− 8 sin(pπ) sin(qπ)p2r2 + 4 sin(pπ) sin(qπ)p2r + 4 cos(rπ)2 cos(pπ)2 p2q2 + 4 cos(rπ)2 sin(pπ)2 p2q2

− 2 cos(rπ)2 sin(pπ)2 p2q − 2 cos(rπ)2 sin(pπ)2 pq2 − 8 sin(qπ) sin(pπ)2 p2r − 4 sin(pπ)2 pqr

+ 8 sin(pπ)p2qr + 4p sin(pπ)3r sin(qπ)q − 16 sin(pπ)2 sin(qπ)p2qr + 8 sin(pπ) sin(qπ)p2qr

− 8 sin(pπ) cos(rπ)2 p3q + 8 sin(pπ) cos(rπ)2 p2q2 − 2 cos(rπ)2 sin(qπ)2 p3 − 2q2 sin(pπ)4r

+ 2q sin(pπ)4r2 + 4 cos2(qπ)2 p3r − q sin(pπ)4r + sin(pπ)2 sin(qπ)2 p2 − 4 sin(pπ) sin(qπ)2 p3

+ 4 sin(qπ)2 p2r2 − 2 sin(qπ)2 p2r + 4 sin(pπ)2 sin(rπ) sin(qπ)p2r − 16 sin(pπ) sin(rπ) sin(qπ)p3r

+ 2 sin(pπ)2 sin(rπ) sin(qπ)pq + 4 sin(pπ)2 sin(rπ)pqr − 8 sin(pπ) sin(rπ) sin(qπ)p2q

− 16 sin(pπ) sin(rπ)p2qr −8 sin(qπ) sin(rπ)p2qr
))
,

w := 0.1750266863.
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v :=
(
4 csc(qπ)w csc(rπ)q sin(pπ)2r − 2 csc(qπ)w csc(rπ)q sin(pπ)2 + 4 csc(qπ)w csc(rπ)p sin(pπ)q

− 4 csc(qπ)prw sin(pπ) csc(rπ) + 4 csc(qπ)p2w csc(rπ) − 4 csc(qπ)w csc(rπ)pq

− 4prw sin(pπ) csc(rπ) − 4 csc(qπ)wp sin(pπ)q + 2 sin(pπ)pw csc(rπ) − 4p2w csc(rπ) + 4prw csc(rπ)
+ 2 csc(qπ)p sin(pπ)q + 2 csc(qπ) sin(pπ)pw−4 csc(qπ)p2w + 4 csc(qπ)wpq − csc(qπ)p sin(pπ)

+ 2 csc(qπ)p2 − 2 csc(qπ)pq +4p2w−2p2 − 2pw + p
)
/
(
2
(
−2 csc(qπ)2 sin(pπ)2q2

+ csc(qπ)2q sin(pπ)2 + 2p2 cot(qπ)2 − 4 csc(qπ)2 p2 + 2 csc(qπ)2 pq + 4 csc(qπ)p sin(pπ)q
− 2 csc(qπ)p sin(pπ) + 4 csc(qπ)p2 − 4 csc(qπ)pq + p)),

v := 0.1436903088,

u := −
1

2
(
2p csc(pπ)2 − 4p csc(pπ) + 1

) (4p csc(pπ) csc(rπ)w + 4p csc(pπ) csc(qπ)v

−4rw csc(rπ) − 4qv csc(qπ) − 4p csc(pπ)v − 4p csc(pπ)w + 2p csc(pπ) + 2v + 2w − 1) ,

u := 0.08864913264,

1 − 2u − 2v − 2w,

0.1852677445.
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