In this paper, a backstepping-based impulsive correction control is proposed to solve the position control problem of the electro-hydraulic servo system (EHSS), where the input-to-state stability (ISS) of the error system is illustrated. A simplified mathematical model of the EHSS is developed, and a backstepping technique is adopted to develop the novel controller. A relationship between the impulsive control gain and the impulsive sequence is established. Compared with the existing results, the proposed controller can significantly reduce the control consumption. Finally, a numerical simulation is conducted to show the effectiveness of the theoretical results.
Citation: Wei Li, Mingzhong Li, Jian Liu, Guofa Wang, Yuhao Qi, Wei Wang, Yongming Li, Shuai Liu. Input-to-state stability of the electro-hydraulic servo system with a backstepping-based impulsive correction control[J]. AIMS Mathematics, 2025, 10(12): 30927-30941. doi: 10.3934/math.20251357
In this paper, a backstepping-based impulsive correction control is proposed to solve the position control problem of the electro-hydraulic servo system (EHSS), where the input-to-state stability (ISS) of the error system is illustrated. A simplified mathematical model of the EHSS is developed, and a backstepping technique is adopted to develop the novel controller. A relationship between the impulsive control gain and the impulsive sequence is established. Compared with the existing results, the proposed controller can significantly reduce the control consumption. Finally, a numerical simulation is conducted to show the effectiveness of the theoretical results.
| [1] | A. Akers, M. Gassman, R. Smith, Hydraulic power system analysis, CRC Press, 2006. https://doi.org/10.1201/9781420014587 |
| [2] | N. D. Manring, R. C. Fales, Hydraulic control systems, John Wiley & Sons, 2019. https://doi.org/10.1002/9781119418528 |
| [3] | P. Dransfield, Hydraulic control systems–Design and analysis of their dynamics, Vol. 33, Springer, 1981. https://doi.org/10.1007/BFb0005627 |
| [4] |
J. Li, L. Kong, H. Liang, W. Li, Review of development and characteristics research on electro-hydraulic servo system. Rec. Patents Eng., 18 (2024), 140–154. https://doi.org/10.2174/1872212118666230711165517 doi: 10.2174/1872212118666230711165517
|
| [5] |
H. Ma, D. Tian, M. Li, C. Zhang, Reachable set estimation for 2-D switched nonlinear positive systems with impulsive effects and bounded disturbances described by the Roesser model, Math. Model. Control, 4 (2024), 152–162. https://doi.org/10.3934/mmc.2024014 doi: 10.3934/mmc.2024014
|
| [6] |
H. Li, N. Jin, Y. Zhang, Existence of nonoscillatory solutions for higher order nonlinear mixed neutral differential equations, Math. Model. Control, 4 (2024), 417–423. https://doi.org/10.3934/mmc.2024033 doi: 10.3934/mmc.2024033
|
| [7] |
Y. Wang, K. Lin, Exponential synchronization of fractional order fuzzy memristor neural networks with time-varying delays and impulses, Math. Model. Control, 5 (2025), 164–179. https://doi.org/10.3934/mmc.2025012 doi: 10.3934/mmc.2025012
|
| [8] |
B. Yuan, H. Li, X. Xiang, H. Zhou, Energy efficiency optimization design for cycle position servo PMSM based on operating energy consumption model, IEEE Open J. Ind. Electron. Soc., 6 (2025), 591–602. https://doi.org/10.1109/OJIES.2025.3555606 doi: 10.1109/OJIES.2025.3555606
|
| [9] |
A. A. Khater, M. Fekry, M. El-Bardini, A. M. El-Nagar, Deep reinforcement learning-based adaptive fuzzy control for electro-hydraulic servo system, Neural Comput. Appl., 37 (2025), 24607–24624. https://doi.org/10.1007/s00521-024-10741-x doi: 10.1007/s00521-024-10741-x
|
| [10] |
Z. Dong, D Bai, P. Zhang, J. Yao, Prescribed performance adaptive neural network tracking control of electro-hydraulic servo system with input delay, Appl. Math. Model., 152 (2026), 116591. https://doi.org/10.1016/j.apm.2025.116591 doi: 10.1016/j.apm.2025.116591
|
| [11] |
X. Yang, X. Zheng, Y. Chen, Position tracking control law for an electro-hydraulic servo system based on backstepping and extended differentiator, IEEE/ASME Trans. Mech., 23 (2018), 132–140. https://doi.org/10.1109/TMECH.2017.2746142 doi: 10.1109/TMECH.2017.2746142
|
| [12] |
I. Ursu, F. Ursu, F. Popescu, Backstepping design for controlling electrohydraulic servos, J. Franklin Inst., 343 (2006), 94–110. https://doi.org/10.1016/j.jfranklin.2005.09.003 doi: 10.1016/j.jfranklin.2005.09.003
|
| [13] |
C. Guan, S. Pan, Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters, Control Eng. Pract., 16 (2008), 1275–1284. https://doi.org/10.1016/j.conengprac.2008.02.002 doi: 10.1016/j.conengprac.2008.02.002
|
| [14] |
N. Kumar, K. Chaudhary, Position tracking control of nonholonomic mobile robots via $H_{\infty}$-based adaptive fractional-order sliding mode controller, Math. Model. Control, 5 (2025), 121–130. https://doi.org/10.3934/mmc.2025009 doi: 10.3934/mmc.2025009
|
| [15] | T. Yang, Impulsive control theory, Conference proceeding, Vol. 272, Springer, 2001. https://doi.org/10.1007/3-540-47710-1 |
| [16] | V. Lakshmikantham, D. D. Bainov, P. Simeonov, Theory of impulsive differential equations, Series in Modern Applied Mathematics, Vol. 6, World Scientific, 1989. https://doi.org/10.1142/0906 |
| [17] |
K. Venkatachalam, M. Sathish Kumar, P. Jayakumar, Results on non local impulsive implicit Caputo-Hadamard fractional differential equations, Math. Model. Control, 4 (2024), 286–296. https://doi.org/10.3934/mmc.2024023 doi: 10.3934/mmc.2024023
|
| [18] |
W. He, G. Chen, Q. L. Han, F. Qian, Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control, Inf. Sci., 380 (2017), 145–158. https://doi.org/10.1016/j.ins.2015.06.005 doi: 10.1016/j.ins.2015.06.005
|
| [19] |
Y. Zhao, F. Zhang, P. Huang, X. Liu, Impulsive super-twisting sliding mode control for space debris capturing via tethered space net robot, IEEE Trans. Ind. Electron., 8 (2020), 6874–6882. https://doi.org/10.1109/TIE.2019.2940002 doi: 10.1109/TIE.2019.2940002
|
| [20] |
E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Autom. Control, 34 (1989), 435–443. https://doi.org/10.1109/9.28018 doi: 10.1109/9.28018
|
| [21] |
C. Wang, J. Wang, Q. Guo, Z. Liu, C. L. P. Chen, Disturbance observer-based fixed-time event-triggered control for networked electro-hydraulic systems with input saturation, IEEE Trans. Ind. Electron., 2 (2025), 1784–1794. https://doi.org/10.1109/TIE.2024.3429638 doi: 10.1109/TIE.2024.3429638
|
| [22] |
X. Ren, Q. Guo, T. Li, D. Jiang, Y. Shi, Fault detection and tolerant control with a variable-bandwidth extended state observer for electro-hydraulic servo systems with lumped disturbance and measurement noise, ISA Trans., 162 (2025), 287–300. https://doi.org/10.1016/j.isatra.2025.04.013 doi: 10.1016/j.isatra.2025.04.013
|
| [23] |
Y. Jiang, S. Zhu, X. Liu, S. Wen, C. Mu, Input-to-state stability of delayed memristor-based inertial neural networks via non-reduced order method, Neural Networks, 178 (2024), 106545. https://doi.org/10.1016/j.neunet.2024.106545 doi: 10.1016/j.neunet.2024.106545
|
| [24] |
Y Wang, L Long, Safety-critical event-triggered control of nonlinear systems with tunable input-to-state safe barrier functions, ISA Trans., 154 (2024), 32–39. https://doi.org/10.1016/j.isatra.2024.08.030 doi: 10.1016/j.isatra.2024.08.030
|
| [25] |
J. P. Hespanha, D. Liberzon, A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735–2744. https://doi.org/10.1016/j.automatica.2008.03.021 doi: 10.1016/j.automatica.2008.03.021
|
| [26] |
S. Dashkovskiy, P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Anal., 26 (2017), 190–200. https://doi.org/10.1016/j.nahs.2017.06.004 doi: 10.1016/j.nahs.2017.06.004
|
| [27] |
S. Dashkovskiy, A. Mironchenko, Input-to-state stability of nonlinear impulsive systems, SIAM J. Control Optim., 51 (2013), 1962–1987. https://doi.org/10.1137/120881993 doi: 10.1137/120881993
|
| [28] |
D. Won, W. Kim, M. Tomizuka, Nonlinear control with high-gain extended state observer for position tracking of electro-hydraulic systems, IEEE/ASME Trans. Mech., 25 (2020), 2610–2621. https://doi.org/10.1109/TMECH.2020.2985619 doi: 10.1109/TMECH.2020.2985619
|
| [29] |
L. Liu, M. Liu, L. Wang, Q. Li, N. S. Ahmad, Design and implementation of a reference model-based disturbance observer for position control of electro-hydraulic servo systems, IEEE Access, 13 (2025), 100530–100545. https://doi.org/10.1109/ACCESS.2025.3577656 doi: 10.1109/ACCESS.2025.3577656
|
| [30] | M. Krstic, P. V. Kokotovic, I. Kanellakopoulos, Nonlinear and adaptive control design, John Wiley & Sons, Inc., 1995. |
| [31] |
W. M. Bessa, M. S. Dutra, E. Kreuzer, Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic servo-system, J. Intell. Robot. Syst., 58 (2010), 3–16. https://doi.org/10.1007/s10846-009-9342-x doi: 10.1007/s10846-009-9342-x
|
| [32] |
V. Milić, Ž. Šitum, M. Essert, Robust $\mathscr{H}_\infty$ position control synthesis of an electro-hydraulic servo system, ISA Trans., 49 (2010), 535–542. https://doi.org/10.1016/j.isatra.2010.06.004 doi: 10.1016/j.isatra.2010.06.004
|
| [33] |
Z. W. Liu, X. Yu, Z. H. Guan, B. Hu, C. Li, Pulse-modulated intermittent control in consensus of multiagent systems, IEEE Trans. Syst., Man, Cybern., Syst., 47 (2016), 783–793. https://doi.org/10.1109/tsmc.2016.2524063 doi: 10.1109/tsmc.2016.2524063
|
| [34] | B. M. Miller, E. Y. Rubinovich, Impulsive control in continuous and discrete-continuous systems, Springer Science & Business Media, 2003. https://doi.org/10.1007/978-1-4615-0095-7 |
| [35] |
W. Zhou, K. Wang, W. Zhu, Synchronization for discrete coupled fuzzy neural networks with uncertain information via observer-based impulsive control, Math. Model. Control, 4 (2024), 17–31. https://doi.org/10.3934/mmc.2024003 doi: 10.3934/mmc.2024003
|