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Abstract: In this paper, a backstepping-based impulsive correction control is proposed to solve
the position control problem of the electro-hydraulic servo system (EHSS), where the input-to-state
stability (ISS) of the error system is illustrated. A simplified mathematical model of the EHSS is
developed, and a backstepping technique is adopted to develop the novel controller. A relationship
between the impulsive control gain and the impulsive sequence is established. Compared with the
existing results, the proposed controller can significantly reduce the control consumption. Finally, a
numerical simulation is conducted to show the effectiveness of the theoretical results.
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1. Introduction

In recent years, the electro-hydraulic servo system (EHSS) has been rapidly developed in industrial
applications due to the high load capability, high flexibility, fast response, and high power-to-weight
ratio [1-4]. However, there are still many drawbacks in application, for example, the uncertain external
disturbance [5], the nonlinearity of the mathematical model [6], time delay [7], and the massive
control cost [8]. These mathematical properties bring difficulties to designing the controller. While
the application of the EHSS is becoming complex, some modern controllers have been proposed.

To address these complex nonlinearities and uncertainties, advanced control strategies have been
increasingly investigated for the EHSS. Intelligent control techniques, such as fuzzy logic control [9]
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and neural network-based control [10], have been applied due to their model-free nature and ability to
approximate complex nonlinear functions.

In addition, backstepping is also a common method for designing controllers. In [11], authors
provided a controller based on backstepping and an extended differentiator. In [12], a backstepping
method was used to design a controller for electro-hydraulic servos on Romanian military IAR 99s
to guarantee asymptotic stability of the position error. On the other hand, sliding-mode control can
perfectly resist the matched external disturbance, which makes it appropriate to adopt for the EHSS. A
sliding-mode controller was investigated in [13], where nonlinear unknown parameters was considered.
In [14], an H-based adaptive fractional-order sliding mode controller was developed for position
tracking control of nonholonomic mobile robots. However, the controllers designed in these results
are continuous, which depend on continuous feedback of the state and have much more control cost.
They can neither analyze the relationship of the state nor the external disturbance. There are many
ways for saving the control cost. Impulsive correction control is a kind of hybrid control, which
exhibits the advantages of both impulsive control and continuous control [15-17]. It has been widely
investigated in many areas [18,19]. The nonlinear system with impulses exhibits continuous dynamics
and discontinuous dynamics. However, the application of impulsive control in the EHSS still remains
unexplored.

The disturbance cannot be avoided in the real world, especially the disturbance in stochastic
phenomenon. It is critical to estimate the system state by the external disturbance. In [21], authors
investigated the disturbance of observer-based fixed-time event-triggered control for the networked
electro-hydraulic systems. A variable-bandwidth extended state observer was developed to further
estimate the disturbance in [22]. Input-to-state stability (ISS) is a concept prompted by Sontag in [20]
to characterize the effects of external inputs to the stability of control systems, which is used widely
in many areas [23,24]. If a system is ISS, then the state of the system is bounded. In terms of the
dynamics system with impulsive control, the notion of the ISS was extended to the impulsive system
in [25]. Readers are referred to [26,27] for more results on the ISS of the impulsive system. As a
useful tool, this notion is widely used in the EHSS. In [28], authors investigated the ISS property of
the electro-hydraulic system with nonlinear control and extended state observer. The position control
was achieved. The ISS was also obtained with a reference model-based disturbance observer (RMDO)
control strategy in [29]. These results show that ISS is an important notion to characterize the effects
of disturbance of the EHSS.

Inspired by the discussion above, we propose a backstepping-based impulsive correction control for
position tracking of the EHSS. The main contribution of this paper can be summarized as follows: (1)
A simplified mathematical model of the EHSS is proposed by taking full consideration of the physical
characters of the EHSS. (2) Based on the mathematical model, a backstepping-based impulsive
correction control is developed, where a relationship between impulsive control gain and the impulsive
sequence is established. Compared with the results in [12, 28], the controller in this paper has the
advantage of reducing the control cost. (3) The ISS of the EHSS with the backstepping-based impulsive
correction control is investigated. The results show that the EHSS with the proposed controller is robust
with respect to the external disturbance. A simulation of the result is provided to illustrate the effect of
the theoretical results.

The rest of this paper is organized as follows: The notion of the ISS and the mathematical model of
the EHSS are provided in Section 2. In Section 3, we explicitly introduce the design of backstepping-
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based impulsive correction control. A numerical simulation is conducted in Section 4, which shows
the effectiveness of the theoretical results. Finally, conclusions are given in Section 5.

Notation. In this paper, symbols Z,,R,R,, R" denote the set of all nonnegative integers, the set of
all real numbers, the set of all positive real numbers, and the n dimensional Euclidean space equipped
with the Euclidean norm | - |, respectively. A function @ : [0,00) — [0, o) is of class K if « is
continuous, strictly increasing, and (0) = 0. In addition, if @ is unbounded, it is of class K. A
function S8 : [0, 00) X [0, 00) — [0, 00) is of class KL if B(:, 1) € K for fixed t > 0 and S3(r, ¢) decreases
to 0 as t — O for fixed r > 0.

2. Preliminary

2.1. Input-to-state stability

In this section, some definitions and lemmas of the ISS are provided. Consider the following
nonlinear system:

x(t) = f(x(0), u(®)), t = to, x(fp) = Xo, (2.1
where x(#) € R” is the system state, f : R” X R” — R”" is a continuou function, and u(t) € R™ is the
external disturbance.

Definition 1 ([20]). System (2.1) is ISS if there functions f € KL,y € K such that for each ty >
0, xo € R" and each input u, the solution satisfies

|x(0)] < Blxol, £ = 20) + Y(|ulzy.0),
forall t > ty, where | - |; denotes the supremum norm on the interval J.

Definition 2 ([20]). A continuous positive definite function V : R" — R, is called an ISS-Lyapunov
function, if there exist functions ay,a,, a3, s € Ky such that for all x € R",u € R™, the following
conditions hold:

a1 (jx]) < V(x) < aa(lxD), (2.2)

V < —az(Ix]) + aq(lul). (2.3)
Lemma 1 ([30]). System (2.1) is ISS if it admits an 1SS-Lyapunov function.
Consider the following cascade system:
x(1) = filx,y), (2.4)
@0 = foly, w), (2.5)

where the state x, y € R”, the external disturbance u € R™, and f, f> are continuous nonlinear functions.
The initial values are defined as x(#y) = xo, y(fy) = yo. Then, the following Lemma provides a result on
the ISS character of the cascade system.

Lemma 2 ([30]). The cascade system of (2.4) and (2.5) is ISS if the subsystems (2.4) and (2.5) are
ISS, respectively.

Lemma 2 indicates that if two subsystems are ISS, then the cascade system is also ISS. The coupling
effects have been discussed in [30]. The coupling effect of the impulsive control system is completely
the same, which is the theoretical foundation of this paper.
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2.2. Mathematical model of EHSS

In this part, we will establish the mathematical model of the EHSS, which is exhibited in Figure 1.
The physical law used can be found in [2,3]. The proportional valve is considered first, which can be
described by a mass-spring-damper system.

¥, + 2Ewy, + Wy, = kw’u, (2.6)

where y, is the position of the spool valve, & is the damping ratio, & is the control gain, w is the vibration
frequency, and u is the control input voltage. For convenience, we assume that the spool valve position
can be perfectly controlled. In other words, refer to [13,31], where the position y, is in proportion to
the input u, i.e., there exists a constant 4 > 0 such that y, = Au. Although this assumption simplifies
the relationship between y, and u, it is acceptable for the stability analysis. Then, the flow of the EHSS

can be expressed by the control voltage.
f2
Q 1= Cda)/lu -P P>
Jo,

2
Oy = CqwAdu | =P,
\/p

where C, is the valve coeflicient of discharge and w is the valve orifice area gradient. The definition of
P,, P, is provided as follows:

2.7)

Pp:|Ps—P1|, ifu>0,
P, =|p1 —pal, ifu <0,

Pr:|p2_pa|9 1fu205
Pr:|Ps—P2|, ifl/t<0,

where pi, p, are the pressures, p; is the supply pressure, and p, is the tank pressure, all of which are
shown in Figure 1. In this paper, we neglect the internal and external leakages. Thus, the pressure of
the compressible fluid volumes can be expressed as

B

b A
P VoL + A1x, (O 1X1),

B (2.8)
e — P O+ Ak
P2 Voz—Ale( ) 2X1),

where f is the fluid bulk modulus, A, A, are annulus areas of the piston and rod side of the cylinder,
and Vy,, Vi, are the initial volumes of the cylinder. The part of the mechanical is expressed by the
dynamic equation

1
X = n_/l(p]Al —pzAz—bx—Cx—FL)a (29)

where m is the mass of the piston and the load, b, ¢ are parameters of the actuator and the external
load and F is the uncertain interference. With the definition x; = x, x, = X, x3 = X, it follows from
(2.7)—(2.9) that
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X1 = X,

X = X3, (2.10)
1 .

X3 =— [41” —{xy — bxs — FL] ,
m

where

Al \/Pp A2 VPr 2
{1 = ABCw + -
Vor +Aix1 Vi —Axxy P

2 2
gzzﬁ( A4 )+c.

Vor +A1x1 Vi —Ayxp

In this paper, we assume that the position, velocity, and acceleration can be monitored with feedback
by hardware. The control object is to steer the piston position x; to the reference signal x;,. We assume
that all of the signals involved in this paper are right continuous and have left limits at all times. (-)7, (:)*
denote the left-limit and right-limit operators, respectively.

" i
v,
L
Cylinder Proportional
valve

Figure 1. The diagram of the EHSS for mathematical model.

3. Main results

3.1. Design of backstepping-based control
In this section, we consider the xi, x,-system first, which is provided that
X1 = x, 3.1
Xy = X3. (3.2)

The object of the backstepping control is to design an appropriate virtual control x3,. The real state x;
can be expressed as x3 = x35 + x3., Where x3, is the error. Then, the x;, x,-system can be obtained that
Xy = X2,

. (3.3)
X2 = X3q T X3e.
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Assume the reference position signal for the EHSS is x;,. Then, the candidate Lyapunov function can

be defined as |
Vi = E(xl — X1q)%.

Differentiating it gives
Vi = — x19)(x — X10).
Then, we can choose
1 . .
Xoq = _E(Xl — X14) + X14. (3.4

Consider a new candidate Lyapunov function
1
Vo=Vi+ E(Xz - X2)"
By differentiating it, it can be obtained that
Vo = (01 = x10) (2 = K14) + (X2 = X20) (X3 = X4)
: | P "
= (01 = X1g)(0 = X1g) + (02 = 020)(x3 + S0 = K1) — Xia).

Thus, we can deduce the virtual control that

1
X34 = —E(Xz — X1q) + X140 — (X2 — X20) — (X1 — X19). (3.5)

Now, we can analyze the x;, x;-system (3.3) by choosing the following Lyapunov function:

1 1
Vi = E(xl - x10)° + E(xz — Xpq)”.

The differentiate can deduce that

V3 = (x1 — x10) (%2 — %14) + (X2 — X20) (X3, + X34 — X24)

= (X1 — X10)(X2 — X1q) + (X2 — X29)

1
(X3¢ + X34) + E(xz - X1a4) — de)]

= (x1 — x10)(x2 = X12) + (X2 = X20)X3¢ + (X2 — X24)

1
X3q + E(Xz — X1a) — 55151] .
By substituting (3.5) into it, we have
V3 = (x1 = x12)(X2 = X1a) + (X2 — X20) X3, + (X2 — X20) [—(X2 = X24) — (X1 = X14)]

1 1
< (X1 = x19) (X2 — Xig) + E(xz - x2d)2 + —xie —(x - x2d)2 — (X2 = X20)(X1 — X10)

2

1 1
< (X1 = x19) [(x2 = X10) = (2 — X20)] — E(Xz — x24) + Exie

. 1 ) 1 1
< (X1 = X1g) | (2 = X1g) — X2 — §(X1 = Xig) + X14| — E(Xz — x24) + Exﬁe

1 1 1
< _E(xl - x14)* = E(xz — X24) + Exi

1 2
<-Vi+ 5)636.

According to Lemma 1, the ISS of the error system with respect to x4, Xxo4 can be guaranteed.
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3.2. Design of impulsive correction control

In this section, let x3, denote the error between the dynamics of x; and virtual control signal x3,,
i.e., X3, = X3 — x3¢. The behaviors can be expressed as X3, = X3 — X3;. With impulsive correction, the
error system can be written as

. 1 : .
X3¢ = Z(élu —&x0 —bxy = Fr) — X34 (3.6)
The impulsive correction controller is expressed as follows:

u=" 1@m+~lm3+@d+22@—1n%&p4@, 3.7)
é(] m m nez,

where ¢ is the Dirac function and 0 < g < 1 is the impulsive control gain. Denote a class of impulsive
sequence F. A sequence of discrete time instants {f,} € F if it satisfies 0 = 7y < t; < , < ..,
lim, 1, = o0,and 0 < t,,; — 1, < 7 for all n € Z, and a positive constant 7. In this paper, we ignore
internal and external leakage and Coulomb friction, keeping only viscous damping b and stiffness c.
These two constants are used in the controller for feedback. Hence, the stability and the steady-state
error bounds will not be affected by them.

3.3. Stability analysis

Theorem 1. Error system (3.6) with the impulsive correction controller (3.7) is ISS over the class F
if there exist constants 0 < g < 1, T > 0 such that

1
29411 <o. (3.8)

T

Proof. Denote x;, as the solution of system (3.6) with initial value x3,0 = x3.(fp). Consider the

candidate Lyapunov function
1
V4 = —X%e.

2
Obviously, the Lyapunov function is positive, and there exist functions a;(x), a>(x) € K that

a1(]x3e]) < Vi < ap(|xse)).

If t = ¢,, one can deduce that
1 _ _
Vi(ty) = qu)@e(t,,) = ¢ Va(t). (3.9)
If t # t,, it holds that

1 .
D"V, = x3, [n_z(flu —&xy —bxy —Fp) - X3d]
1 )
= X3¢ [% (fzxz + bxz + mizy — Exr — bxz — FL) - 563d]

1.
< |x3e| _FL
m

1|1 . P
<Vs+-=|—F;
2 |m
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Define € = = F;. For |x3.| > |e|, we have
D'Vy<x3, =2Vit # t,n€Z,. (3.10)

If |x3.| > |e] holds on a time interval [#, '], then suppose that there exists an impulsive sequence such
thatt =<t <h <t3<..<t,=t".For [t, 1), it follows from (3.10) that

Va(0) < ETOV(1). (3.11)
For [#,, 1,), it follows from (3.9)—(3.11) that

Va(r) < V()
< qzez(t_’O)V4(to).

By induction and condition (3.8), we have

Va(t) < EVy(ty) exp [-n(t — 1o)],

where t € [',¢”), the constant 2 = ¢72"9 and n = —(21¥ + 2). According to (3.3), it holds for
¢ <t <t that
(D] < a7 (Be ™y (1x3e0])) = Bllx3eol: £ = 10). (3.12)

where S is a K L-class function. Define the ball around the origin 8 = {x3, : |x3.| < |€|}. Define f; =
inf {t > 1 : |x3.] < |el}. If {; = oo, then system (3.6) is ISS. If 7| < oo, denote 7; = inf {¢ > f{, |x3.| > |€l}.
If 7, = oo, then the system satisfies

[x3. (D] < B(x30(20)], t = t0) + |€lisy.e15 F = 1o, (3.13)

which indicates the system is also ISS. If 7| < oo, then one can obtain that |xs, ()| < |€(7;)|. Assume
the second time x3, € Bis i, = inf {¢t > 71, |x3.| < |¢|}. For #; < t < I, we have

(D)l < a7 (Be ™ ey (1xse (7))
<ap' (B May (le(d))) (3.14)

< a7 (Ea; (lelo.)) -
Define y(|€ly,,q) = max {|€|[O,t]’ a7 (B, (|E|[0ﬂ))}' [tfollows from (3.12)-3.14) that

130 < B (X301, 2 = 10) + ¥ (l€lso.1) » = to.
Thus, system (3.6) is ISS. The proof is completed. O

Theorem 2. The errors between the reference signals (X4, X4, X3q) and the full EHSS system (2.10)
with the impulsive correction controller (3.7) are 1SS if condition (3.8) holds.

Proof. The full EHSS system is composed of two subsystems, x;, x,-system (3.3) and x3-system (3.6).
With the impulsive correction controller (3.7), the error system between x3; and the state of the xs3-
system is ISS by Theorem 2. On the other hand, the errors between desired signals (x4, x54) and the
state of the xy, x,-system (3.3) are also ISS. Then, according to Lemma 2, the errors of the full cascade
system are ISS. Thus, the proof is completed. O
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Remark 1. In view of Theorem 2, the position tracking problem is solved by controller (3.7). In
controller (3.7), the continuous part plays a role that resists the dynamics of the EHSS, and the
impulsive correction part is only triggered in discrete time instants to reduces the control consumption.
Condition (3.8) establishes a relationship between the impulsive control gain and the impulsive
sequence. Compared with the existing results [12, 32] of position control for the EHSS, the controller
proposed by (3.7) only feedbacks the state x3, at the given time sequences by impulsive jump, which
reduce the control consumption and the burden of communication. Furthermore, the result of the ISS
reveals that the errors between the states and the reference signals are bounded by F;. If F; — 0 as
t — oo, then we can derive that (xy, x3, X3) — (X14, X24, X34). 1t should be noticed that the impulsive
control is an ideal control, which has to be approximated by continuous control when deployed in the
real world. Readers are referred to [19,33,34]. There are many ways to implement this ideal controller
in the real world. One can adopt a high-gain controller to approximate the performance of the Dirac
function. Besides, a class of smooth function can also be used to approximate the Dirac function 6(-).
These methods validate the feasibility of implementing the impulsive control strategy.

4. Simulation

In this section, a numerical simulation is conducted to verify the effectiveness of the proposed
backstepping-based impulsive correction control. The simulation time is set at 30 s. The control
frequency in the experiment is selected at 100 Hz. The total length of the hydraulic cylinder is / = 1.
Assume the EHSS remains stationary at the initial values of the system states x; = x, = x3 = 0, and the
hydraulic cylinder without piston and with piston are equal in length at the beginning. Then, we can
deduce that the volume Vjy; = %Al and Vi, = %Az. The rest of the parameters involved in the simulation
is provided in Table 1.

Table 1. Parameters of the EHSS in simulation.

Parameter Meaning Value Unit
A Proportionality factor 20 -

B Fluid bulk modulus 700 MPa
Cy Valve coefficient of discharge 1 -

w Valve orifice area gradient 1 m

o, Density of hydraulic oil 900 kg/m?
A Annulus areas of the piston 1.3 m?

A, Rod side of the cylinder 1.2 m?

c Viscous damping coeflicient of the load stiffness 0.1 N-s/m
b Viscous damping coeflicient of the actuator 100 N-s/m
Py Supply pressure 35000 kPa
P, Tank pressure 30000 kPa

q Impulsive control gain 0.5 -

Specifically, the parameters b, ¢ are viscous damping and stiffness, both of which are assumed to
be known in advance and may not affect the stability and the steady-state error bounds. Consider the
desired position x;; = sin(¢), which gives x;; = cos(t), ¥;y = —sin(¢), and X;; = —cos(z). In the
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simulation, the multiple disturbances are considered as F;; = 60f + 100 and F;, = sin(¢). In the
impulsive control law, we set the impulsive gain g = 0.5 and the impulsive sequence {t, : ¢, = 0.3n,n €
Z.}. Then, condition (3.8) holds. By applying Theorem 2, the errors of the EHSS and the reference
signals are ISS. Figures 2 and 3 give the results under the disturbance F;;. In Figure 2, the states x;, x3
are driven to the desired signals x,4, X34, respectively. In particular, the state x; behaves as an impulsive
jump due to impulsive correction control. On the other hand, the errors are both bounded, which means
the ISS character is also exhibited. The position of the EHSS x, the reference signal x;,, and the error

X1, are shown in Figure 3, respectively.

AIMS Mathematics
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One can find that the error is regulated to be bounded, i.e., the position error is ISS. We can also
conclude that the position of the EHSS can basically track the desired position x;; with a small error. If
the disturbance F; — 0 as t — oo, then the asymptotic stability of the error can be derived. The results
under the disturbance F;, are shown in Figures 4 and 5, both of which lead to the same conclusion.
Define the control consumption metric as J(¥) = ft ' |u(s)lds, which can be calculated to verify the
reduction of the control consumption. Finally, the theoretical results are effective.

T24
Ty

xz(m/s)

R |
0 5 10 15 20 25 30
Time(s)

_ |
0 5 10 15 20 25 30
Time(s)

Figure 4. The position and the position error of the EHSS.
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Figure S. The position and the position error of the EHSS.
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5. Conclusions

This paper investigates the ISS character of the EHSS with backstepping-based impulsive correction
control. We provide a simplified mathematical model of the EHSS, which can basically describe the
mathematical property of the EHSS. Based on the model, a backstepping-based impulsive correction
control is proposed, which can significantly reduce the control cost. A relationship between the
impulsive control gain and the impulsive sequence is established. The ISS character of the errors
between desired signals and the EHSS is also demonstrated by the Lyapunov method.

Based on the controller proposed in this paper, one can also compensate the external disturbances
by introducing disturbance observers according to [21], and it will be an interesting work. In the future,
we can also consider adopting the dynamic surface control to address the derivative explosion problem
caused by the backstepping method. We will further consider analyzing the impact of sampling and
actuation delays in practice. Another interesting topic is developing a fuzzy-based method for the
position control of the EHSS [35] and considering the uncertainties of parameters.
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