Research article

Study on the exponential stability of stochastic functional differential equations with random impulses

  • Published: 26 December 2025
  • MSC : 34A37, 34D23, 60H10

  • This paper investigates the pth moment exponential stability of stochastic functional differential equations (SFDEs) with random impulses. By employing the Razumikhin-type method in combination with mathematical induction, we derive an exponential stability criterion for the considered system. In addition, we elucidate the intermediate mechanisms through which impulsive disturbances affect system stability, thereby extending and generalizing existing results in the literature. Finally, two numerical examples are presented to confirm the correctness and validity of the theoretical findings.

    Citation: Dongdong Gao, Maosheng Ye. Study on the exponential stability of stochastic functional differential equations with random impulses[J]. AIMS Mathematics, 2025, 10(12): 30623-30636. doi: 10.3934/math.20251342

    Related Papers:

  • This paper investigates the pth moment exponential stability of stochastic functional differential equations (SFDEs) with random impulses. By employing the Razumikhin-type method in combination with mathematical induction, we derive an exponential stability criterion for the considered system. In addition, we elucidate the intermediate mechanisms through which impulsive disturbances affect system stability, thereby extending and generalizing existing results in the literature. Finally, two numerical examples are presented to confirm the correctness and validity of the theoretical findings.



    加载中


    [1] J. Yan, J. Shen, Impulsive Stabilization of functional differential equations by Lyapunov-Razumikhin functions, Nonlinear Anal.-Theor. Meth. Appl., 37 (1999), 245–255. https://doi.org/10.1016/S0362-546X(98)00045-5 doi: 10.1016/S0362-546X(98)00045-5
    [2] Z. Luo, J. Shen, New Razumikhin type theorems for impulsive functional differential equations, Appl. Math. Comput., 125 (2002), 375–386. https://doi.org/10.1016/S0096-3003(00)00139-9 doi: 10.1016/S0096-3003(00)00139-9
    [3] A. Teel, A. Subbaraman, A. Sferlazza, Stability analysis for stochastic hybrid systems: A survey, Automatica, 50 (2014), 2435–2456. https://doi.org/10.1016/j.automatica.2014.08.006 doi: 10.1016/j.automatica.2014.08.006
    [4] H. Zhang, J. Duan, Y. Wang, Z. Gao, Bipartite fixed-time output consensus of heterogeneous linear multiagent systems, IEEE T. Cybernetics, 51 (2021), 548–557. https://doi.org/10.1109/TCYB.2019.2936009 doi: 10.1109/TCYB.2019.2936009
    [5] H. Zhang, W. Li, J. Zhang, Y. Wang, J. Sun, Fully distributed dynamic event-triggered bipartite formation tracking for multiagent systems with multiple nonautonomous leaders, IEEE T. Neur. Net. Lear. Syst., 34 (2023), 7453–7466. https://doi.org/10.1109/TNNLS.2022.3143867 doi: 10.1109/TNNLS.2022.3143867
    [6] G. Ling, X. Liu, Z. Guan, M. Ge, Y. Tong, Input-to-state stability for switched stochastic nonlinear systems with mode-dependent random impulses, Inform. Sci., 596 (2022), 588–607. https://doi.org/10.1016/j.ins.2022.03.034 doi: 10.1016/j.ins.2022.03.034
    [7] X. Dai, J. Jiao, Q. Quan, Z. Zhou, Dynamics of a stochastic prey Cpredator eco-epidemiological system with distributed delay and impulsive perturbations, Math. Comput. Simul., 240 (2026), 153–176. https://doi.org/10.1016/j.matcom.2025.07.002 doi: 10.1016/j.matcom.2025.07.002
    [8] V. Lakshmikantham, D. Bainov, P. Simeonov, Theory of Impulsive Differential Equations, Singapore: World Scientific, 1989. https://doi.org/10.1142/0906
    [9] J. Zou, D. Luo, M. Li, The existence and averaging principle for stochastic fractional differential equations with impulses, Math. Meth. Appl. Sci., 46 (2023), 6857–6874. https://doi.org/10.1002/mma.8945 doi: 10.1002/mma.8945
    [10] Q. Wen, J. Wang, D. O'Regan, Stability analysis of second order impulsive differential equations, Qual. Theor. Dyn. Syst., 21 (2012), 85. https://doi.org/10.1007/s12346-022-00587-w doi: 10.1007/s12346-022-00587-w
    [11] H. Zhang, J. Zhang, Y. Cai, S. Sun, J. Sun, Leader-following consensus for a class of nonlinear multiagent systems under event-triggered and edge-event triggered mechanisms, IEEE T. Cybernetics, 52 (2022), 7643–7654. https://doi.org/10.1109/TCYB.2020.3035907 doi: 10.1109/TCYB.2020.3035907
    [12] X. He, J. Qiu, X. Li, J. Cao, A brief survey on stability and stabilization of impulsive systems with delayed impulses, Discrete Cont. Dyn. Syst.-S, 15 (2022), 1797–1821. https://doi.org/10.3934/dcdss.2022080 doi: 10.3934/dcdss.2022080
    [13] S. Liu, A. Tanwani, Impulsive switching signals with functional inequalities: Stability analysis using hybrid systems framework, Automatica, 171 (2025), 111928. https://doi.org/10.1016/j.automatica.2024.111928 doi: 10.1016/j.automatica.2024.111928
    [14] M. Rhaima, Ulam-Hyers stability for an impulsive Caputo CHadamard fractional neutral stochastic differential equations with infinite delay, Math. Comput. Simul., 210 (2023), 281–295. https://doi.org/10.1016/j.matcom.2023.03.020 doi: 10.1016/j.matcom.2023.03.020
    [15] K. Tran, P. Ngoc, Novel criteria for exponential stability in mean square of stochastic delay differential equations with Markovian switching, European J. Control, 79 (2024), 101074. https://doi.org/10.1016/j.ejcon.2024.101074 doi: 10.1016/j.ejcon.2024.101074
    [16] D. Kuang, D. Gao, J. Li, Input-to-state stability of impulsive stochastic systems with state-dependent impulses and regime-switching, Int. J. Rob. Nonlinear Control, 34 (2024), 10091–10104. https://doi.org/10.1002/rnc.7507 doi: 10.1002/rnc.7507
    [17] H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays, Stat. Prob. Lett., 80 (2010), 50–56. https://doi.org/10.1016/j.spl.2009.09.011 doi: 10.1016/j.spl.2009.09.011
    [18] D. Gao, J. Li, Existence and mean-square exponential stability of mild solutions for impulsive stochastic partial differential equations with noncompact semigroup, J. Math. Anal. Appl., 484 (2019), 123717. https://doi.org/10.1016/j.jmaa.2019.123717 doi: 10.1016/j.jmaa.2019.123717
    [19] S. Xiao, H. Chen, Existence and exponential stability of impulsive stochastic partial differential equations, J. Math. Phy., 58 (2017), 032710. https://doi.org/10.1063/1.4976727 doi: 10.1063/1.4976727
    [20] Y. Kao, Q. Zhu, W. Qi, Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching, Appl. Math. Comput., 271 (2015), 795–804. https://doi.org/10.1016/j.amc.2015.09.063 doi: 10.1016/j.amc.2015.09.063
    [21] F. Huang, J. Li, Exponential ultimate boundedness and stability of impulsive stochastic functional differential equations, Int. J. Control, 96 (2021), 568–576. https://doi.org/10.1080/00207179.2021.2005259 doi: 10.1080/00207179.2021.2005259
    [22] F. Huang, J. Li, Exponential ultimate boundedness and stability of stochastic differential equations with impulese, Asian J. Control, 25 (2022), 88–100. https://doi.org/10.1002/asjc.2786 doi: 10.1002/asjc.2786
    [23] Y. Guo, Q. Zhu, F. Wang, Stability analysis of impulsive stochastic functional differential equations, Commun. Nonlinear Sci. Numer. Simul., 82 (2020), 105013. https://doi.org/10.1016/j.cnsns.2019.105013 doi: 10.1016/j.cnsns.2019.105013
    [24] W. Li, X. Qi, M. Pan, W. Wang, Razumikhin-type theorems on exponential stability of stochastic functional differential equations on networks, Neurocomputing, 131 (2014), 278–285. https://doi.org/10.1016/j.neucom.2013.10.017 doi: 10.1016/j.neucom.2013.10.017
    [25] S. Peng, Y. Zhang, Razumikhin-type theorems on $p$th moment exponential stability of impulsive stochastic delay differential equations, IEEE T. Automatic Control, 55 (2010), 1917–1922. https://doi.org/10.1109/TAC.2010.2049775 doi: 10.1109/TAC.2010.2049775
    [26] W. Cao, Q. Zhu, Razumikhin-type theorem for $p$th exponential stability of impulsive stochastic functional differential equations based on vector Lyapunov function, Nonlinear Analy.-Hybr. Sys., 39 (2021), 100983. https://doi.org/10.1016/j.nahs.2020.100983 doi: 10.1016/j.nahs.2020.100983
    [27] G. Yu, W. Yang, L. Xu, H. Chen, Y. Zhao, $P$th moment and almost sure exponential stability of impulsive neutral stochastic functional differential equations with Markovian switching, Int. J. Sys. Sci., 49 (2018), 1164–1177. https://doi.org/10.1080/00207721.2018.1441467 doi: 10.1080/00207721.2018.1441467
    [28] L. Shu, X. Shu, Q. Zhu, F. Xu, Existence and exponential stability of mild solutions for second-order neutral stochastic functional differential equation with random impulses, J. Appl. Anal. Comput., 11 (2021), 59–80. https://doi.org/10.11948/20190089 doi: 10.11948/20190089
    [29] W. Zhang, L. Feng, Z. Wu, J. Park, Stability criteria of random delay differential systems subject to random impulses, Int. J. Rob. Nonlinear Control, 31 (2021), 6681–6698. https://doi.org/10.1002/rnc.5632 doi: 10.1002/rnc.5632
    [30] Y. Tang, X. Wu, P. Shi, F. Qian, Input-to-state stability for nonlinear syatems with stochastic impulses, Automatica, 113 (2020), 108766. https://doi.org/10.1016/j.automatica.2019.108766 doi: 10.1016/j.automatica.2019.108766
    [31] W. Hu, Q. Zhu, Moment exponential stability of stochastic nonlinear delay systems with impulse effects at random times, Int. J. Rob. Nonlinear Control, 29 (2018), 3809–3820. https://doi.org/10.1002/rnc.4031 doi: 10.1002/rnc.4031
    [32] W. Hu, Q. Zhu, Exponential stability of stochastic differential equations with impulse effects at random times, Asian J. Control, 22 (2020), 779–787. https://doi.org/10.1002/asjc.1937 doi: 10.1002/asjc.1937
    [33] R. Khasminskii, Stochastic stability of differential equation, Berlin, Heidelberg: Springer-Verlag, 2012. https://doi.org/10.1007/978-3-642-23280-0
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(164) PDF downloads(11) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog