We study pairs $ \widetilde X = (X, S) $ which consist of regular surfaces $ X\subset{\mathbb{R}}^3 $ endowed with a distinguished boundary $ S $ given by $ y^2-x^s = 0 $ ($ s = 1, 2, 3 $: edge, corner, cusp). First, we give an explicit description of the logarithmic vector fields tangent to $ (g, b_s) $, $ g = z-f(x, y) $. In particular, the five fields $ E, L, G_g, G_x, G_y $ generate $ \mathrm{Der}(-\log(g, b_s)) $. This yields a concrete Kodaira–Spencer calculus and a relative $ 2 $-determinacy theorem (with a single parabolic exception). Then, we classify submersions and obtain normal forms and mini versal unfoldings for submersion germs in codimension $ \le2 $, with respect to the $ \mathcal R(\widetilde X) $-equivalence relation. Second, for height functions $ h_v(w) = \langle w, v\rangle $ we obtain sharp linear conditions on $ v\in S^2 $ that characterize the $ A_k $–contact along each boundary type. In particular, in the cuspidal case, the $ A_3/A_5 $ transition is governed by singular torsion. The resulting direction discriminant $ \mathcal{D}_s\subset S^2 $ corresponds, under the direction–parameter normalization, to a hyperplane arrangement of linear discriminant loci in the mini versal parameter spaces. Both the ambient discriminant $ \mathfrak{D}_X $ and the boundary contact discriminants are invariant under $ P $–$ \mathcal R^{+}(\widetilde X) $–equivalence.
Citation: Fawaz Alharbi. Height–plane contact along edges, corners, and cusps[J]. AIMS Mathematics, 2025, 10(12): 30594-30622. doi: 10.3934/math.20251341
We study pairs $ \widetilde X = (X, S) $ which consist of regular surfaces $ X\subset{\mathbb{R}}^3 $ endowed with a distinguished boundary $ S $ given by $ y^2-x^s = 0 $ ($ s = 1, 2, 3 $: edge, corner, cusp). First, we give an explicit description of the logarithmic vector fields tangent to $ (g, b_s) $, $ g = z-f(x, y) $. In particular, the five fields $ E, L, G_g, G_x, G_y $ generate $ \mathrm{Der}(-\log(g, b_s)) $. This yields a concrete Kodaira–Spencer calculus and a relative $ 2 $-determinacy theorem (with a single parabolic exception). Then, we classify submersions and obtain normal forms and mini versal unfoldings for submersion germs in codimension $ \le2 $, with respect to the $ \mathcal R(\widetilde X) $-equivalence relation. Second, for height functions $ h_v(w) = \langle w, v\rangle $ we obtain sharp linear conditions on $ v\in S^2 $ that characterize the $ A_k $–contact along each boundary type. In particular, in the cuspidal case, the $ A_3/A_5 $ transition is governed by singular torsion. The resulting direction discriminant $ \mathcal{D}_s\subset S^2 $ corresponds, under the direction–parameter normalization, to a hyperplane arrangement of linear discriminant loci in the mini versal parameter spaces. Both the ambient discriminant $ \mathfrak{D}_X $ and the boundary contact discriminants are invariant under $ P $–$ \mathcal R^{+}(\widetilde X) $–equivalence.
| [1] | V. M. Zakalyukin, Quasi singularities, Banach Center Publ., 82 (2008), 215–225. |
| [2] | V. M. Zakalyukin, Quasi-projections, Proc. Steklov Inst. Math., 259 (2007), 273–280. |
| [3] |
F. Alharbi, V. M. Zakalyukin, Quasi corner singularities, Proc. Steklov Inst. Math., 270 (2010), 1–14. https://doi.org/10.1134/S0081543810030016 doi: 10.1134/S0081543810030016
|
| [4] |
F. Alharbi, Quasi cusp singularities, J. Singul., 12 (2015), 1–18. http://doi.org/10.5427/jsing.2015.12a doi: 10.5427/jsing.2015.12a
|
| [5] |
F. Alharbi, Bifurcation diagrams and caustics of simple quasi border singularities, Topology Appl., 159 (2012), 38388. https://doi.org/10.1016/j.topol.2011.11.018 doi: 10.1016/j.topol.2011.11.018
|
| [6] |
T. Tsukada, Genericity of caustics and wavefronts on an $r$-corner, Asian J. Math., 14 (2010), 335–358. https://doi.org/10.4310/AJM.2010.v14.n3.a4 doi: 10.4310/AJM.2010.v14.n3.a4
|
| [7] |
F. Alharbi, Vector fields on bifurcation diagrams of quasi singularities, AIMS Math., 9 (2024), 1710–1736. https://doi.org/10.3934/math.20241710 doi: 10.3934/math.20241710
|
| [8] | F. Alharbi, R. Oset Sinha, Height functions on a cuspidal edge with a distinguished singular curve, Port. Math., in press, 2025. |
| [9] | R. Oset Sinha, F. Tari, On the flat geometry of the cuspidal edge, Osaka J. Math., 55 (2018), 393–421. |
| [10] |
R. Oset Sinha, K. Saji, On the geometry of folded cuspidal edges, Rev. Mat. Complut., 31 (2018), 627–650. https://doi.org/10.1007/s13163-018-0257-6 doi: 10.1007/s13163-018-0257-6
|
| [11] | K. Teramoto, Cuspidal edges on focal surfaces of regular surfaces with parabolic points, preprint paper, 2025. https://doi.org/10.48550/arXiv.2509.00860 |
| [12] | K. Saji, M. Umehara, K. Yamada, The geometry of fronts, Ann. Math., 169 (2009), 491–529. |
| [13] |
H. Terao, The bifurcation set and logarithmic vector fields, Math. Ann., 263 (1983), 313–321. https://doi.org/10.1007/BF01457134 doi: 10.1007/BF01457134
|
| [14] | T. Abe, Logarithmic Vector Fields and Freeness of Divisors and Arrangements, Berlin: EMS Press, 2022. |
| [15] |
F. Mofarreh, R. A. Abdel-Baky, Singularities of swept surfaces in Euclidean 3-space, AIMS Math., 9 (2024), 26049–26064. https://doi.org/10.3934/math.20241272 doi: 10.3934/math.20241272
|
| [16] |
A. A. Abdel-Salam, M. I. Elashiry, M. K. Saad, Tubular surface generated by a curve lying on a regular surface and its characterizations, AIMS Math., 9 (2024), 12170–12187. https://doi.org/10.3934/math.2024594 doi: 10.3934/math.2024594
|
| [17] |
M. Takahashi, H. Yu, On generalised framed surfaces in the Euclidean space, AIMS Math., 9 (2024), 17716–17742. https://doi.org/10.3934/math.2024861 doi: 10.3934/math.2024861
|
| [18] |
Y. Li, A. H. Alkhaldi, A. Ali, R. A. Abdel-Baky, M. K. Saad, Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space, AIMS Math., 8 (2023), 13875–13888. https://doi.org/10.3934/math.2023709 doi: 10.3934/math.2023709
|
| [19] |
W. Zhang, P. Li, D. Pei, Circular evolutes and involutes of spacelike framed curves and their duality relations in Minkowski 3-space, AIMS Math., 9 (2024), 5688–5707. https://doi.org/10.3934/math.2024276 doi: 10.3934/math.2024276
|
| [20] | K. Kodaira, D. C. Spencer, On deformations of complex analytic structures Ⅰ, Ⅱ, Ann. Math., 67 (1958), 328–466. |
| [21] | J. N. Mather, Stability of $C^\infty$ mappings. Ⅵ. The nice dimensions, Proc. Sympos. Pure Math., 27 (1975), 207–253. |
| [22] | J. Montaldi, Singularities, Bifurcations and Catastrophes, Cambridge: Cambridge University Press, 2021. |
| [23] | V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps I, Boston: Birkhäuser, 1985. |
| [24] | V. I. Arnol'd, Singularities of Caustics and Wave Fronts, Dordrecht: Kluwer Academic, 1990. |
| [25] | J. W. Bruce, P. J. Giblin, Curves and Singularities: A Geometrical Introduction to Singularity Theory, 2 Eds., Cambridge: Cambridge University Press, 1984. |
| [26] | J. W. Bruce, J. M. West, Functions on a manifold with boundary, Topology, 37 (1998), 613–623. |
| [27] | V. I. Arnol'd, Singularities of Caustics and Wave Fronts, Dordrecht: Kluwer Academic, 1990. |