Research article

A multi-criteria approach to decision-making using a hybrid $ \mathfrak{M} $-polar 3-spherical $ \mathcal{Q} $-fuzzy soft sets model

  • Published: 25 December 2025
  • MSC : MSC2010, 03B52, 03E72

  • In this paper, we proposed a hybrid $ \mathfrak{M} $-polar 3-spherical $ \mathcal{Q} $-fuzzy soft set model by integrating $ \mathfrak{M} $-polar, 3-spherical, and $ \mathcal{Q} $-fuzzy soft sets. The model handles three-dimensional, $ \mathfrak{M} $-polar parametrized data. Fundamental operations such as union, intersection, complement, maximum, minimum, direct sum, direct product, and a weighted geometric aggregation operator were defined within the proposed $ \mathfrak{M} $-polar 3-spherical $ \mathcal{Q} $-fuzzy soft set framework. The new model enhanced flexibility and effectiveness in managing vagueness and uncertainty in complex decision-making problems. An application to artificial intelligence (AI) model selection and multi-criteria decision-making (MCDM) demonstrated the advantages of the proposed framework.

    Citation: Albandry Khaled Alotaibi, Kholood Mohammad Alsager. A multi-criteria approach to decision-making using a hybrid $ \mathfrak{M} $-polar 3-spherical $ \mathcal{Q} $-fuzzy soft sets model[J]. AIMS Mathematics, 2025, 10(12): 30544-30593. doi: 10.3934/math.20251340

    Related Papers:

  • In this paper, we proposed a hybrid $ \mathfrak{M} $-polar 3-spherical $ \mathcal{Q} $-fuzzy soft set model by integrating $ \mathfrak{M} $-polar, 3-spherical, and $ \mathcal{Q} $-fuzzy soft sets. The model handles three-dimensional, $ \mathfrak{M} $-polar parametrized data. Fundamental operations such as union, intersection, complement, maximum, minimum, direct sum, direct product, and a weighted geometric aggregation operator were defined within the proposed $ \mathfrak{M} $-polar 3-spherical $ \mathcal{Q} $-fuzzy soft set framework. The new model enhanced flexibility and effectiveness in managing vagueness and uncertainty in complex decision-making problems. An application to artificial intelligence (AI) model selection and multi-criteria decision-making (MCDM) demonstrated the advantages of the proposed framework.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
    [2] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sciences, 8 (1975), 199–249.
    [3] S. M. Chen, C. L. Hwang, Fuzzy Multiple Attribute Decision Making: Methods and Applications, Springer Science & Business Media, 1992.
    [4] D. Molodtsov, Soft set theory—First results, Comput. Math. Appl., 37 (1999), 19–31.
    [5] B. Roy and D. Bouyssou, Aide multicritère à la décision: Méthodes et applications, Economica, 2007.
    [6] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1999), 87–96.
    [7] S. K. Maji, More on intuitionistic fuzzy soft sets, J. Comput. Appl. Math., 232 (2009), 51–57.
    [8] Y. Peng, H. Yang, Some properties and applications of Pythagorean fuzzy sets, Int. J. Fuzzy Syst., 17 (2015), 294–305.
    [9] S. Broumi, F. Smarandache, Theory of Fermatean fuzzy neutrosophic graphs and their applications, Neutrosophic Sets Sy., 40 (2022), 55–74.
    [10] Z. Zhang, Yin–yang bipolar fuzzy sets, Fuzzy Set. Syst., 100 (1998), 199–210.
    [11] S. Abdullah, I. Saleh, Bipolar fuzzy soft sets and their applications, J. Comput. Appl. Math., 254 (2014), 139–149.
    [12] M. Alghamdi, M. Alharbi, Multi-criteria decision-making in bipolar fuzzy environments, Comput. Ind. Eng., 118 (2018), 23–34.
    [13] M. Adam, M. Fadil, Q-fuzzy soft sets: Definition and applications, Comput. Math. Appl., 68 (2014), 1300–1310.
    [14] M. Adam, M. Fadil, Operations on Q-fuzzy soft sets, J. Comput. Appl. Math., 265 (2014), 136–145.
    [15] M. Adam, M. Fadil, Properties of multi-Q-fuzzy soft matrices, Comput. Math. Appl., 68 (2014), 2157–2167.
    [16] M. Adam, M. Fadil, Multi-Q-fuzzy sets and multi-Q-fuzzy parameterized soft sets, Appl. Math. Comput., 229 (2014), 37–46.
    [17] M. Adam. M. Fadil, Multi-Q-fuzzy parameterized soft sets in decision making, Appl. Math. Comput., 255 (2015), 499–508.
    [18] S. Mahmood, Novel T-bipolar soft sets and their applications, Math. Method. Appl. Sci., 43 (2020), 28–40.
    [19] S. M. Chen, C. L. Hwang, MCDM generalized aggregation of bipolar fuzzy soft sets, Math. Method. Appl. Sci., 37 (2014), 1629–1639.
    [20] A. Khalil, Y. Li, Possibility theory-based fuzzy decision-making with $\mathfrak{M}$-polar fuzzy soft sets, Soft Comput., 23 (2019), 1451–1464.
    [21] S. Zahedi, A. Shafie, Novel aggregation operators for $\mathfrak{M}$-polar fuzzy soft sets, Comput. Intell., 34 (2018), 1023–1039.
    [22] U. Naeem, M. Sharif, Some properties of Pythagorean $\mathfrak{M}$-polar fuzzy sets, J. Comput. Appl. Math., 384 (2021), 113097.
    [23] M. Akram, S. Majeed, Parameterized models of $\mathfrak{M}$-polar fuzzy soft information, Math. Method. Appl. Sci., 44 (2021), 3240–3253.
    [24] W. Ali, M. Khan, Novel AGO operators for MCDM: Algorithm and characteristics, Appl. Math. Model., 66 (2024), 764–776.
    [25] T. D. Cuong, V. Kreinovich, Picture fuzzy sets and their applications in decision-making, J. Appl. Math. Comput., 40 (2013), 69–78.
    [26] X. Kong, Picture fuzzy sets in voting situations, Comput. Ind. Eng., 82 (2015), 195–202.
    [27] N. Gundogdu, C. Kahraman, Spherical fuzzy sets in decision-making, Soft Comput., 22 (2018), 3015–3027.
    [28] A. Kutlu, D. Cetinkaya, Three-dimensional spherical fuzzy sets for MCDM, Mathematics, 7 (2019), 523.
    [29] I. Ashraf, A. Mohyuddin, Spherical fuzzy sets in MCDM, Fuzzy Set. Syst., 366 (2019), 1–17.
    [30] S. Perveen, I. Ahmed, Spherical fuzzy soft sets for MCDM, Appl. Soft Comput., 75 (2019), 52–65.
    [31] A. Kutlu, A. Yavuz, Properties of spherical fuzzy sets and applications, J. Comput. Appl. Math., 366 (2020), 112407.
    [32] Z. Guner, M. Kilic, Spherical fuzzy soft set aggregation for MCDM, Soft Comput., 26 (2022), 1395–1412.
    [33] M. Ahmmad, S. Shamsuddin, Some aggregation operators for spherical fuzzy soft sets, Comput. Intell., 37 (2021), 1121–1134.
    [34] M. Riaz, M. Akram, Novel $\mathfrak{M}$-polar spherical fuzzy sets, Math. Method. Appl. Sci., 44 (2021), 2932–2950.
    [35] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965.
    [36] P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280.
    [37] H. Garg, Sine trigonometric operational laws and their based Pythagorean fuzzy aggregation operators for the group decision-making process, Artif. Intell. Rev., 54 (2021), 4421–4447.
    [38] M. K. Sayadi, M. Heydari, K. Shahanaghi, Extension of the VIKOR method for decision making problem with interval numbers, Appl. Math. Model., 33 (2009), 2257–2262.
    [39] J. Qin, X. Liu, W. Pedrycz, An extended TODIM multi-criteria group decision-making method for green supplier selection in an interval type-2 fuzzy environment, Eur. J. Oper. Res., 258 (2017), 626–638.
    [40] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844.
    [41] B. Farhadinia, A novel method of ranking hesitant fuzzy values for multiple attribute decision-making problems, Int. J. Intell. Syst., 28 (2013), 752–767.
    [42] H. Liao, H. Zhang, C. Zhang, X. Wu, A. Mardani, A. Al-Barakati, A q-rung orthopair fuzzy GLDS method for investment evaluation of BE angel capital in China, Technol. Econ. Dev. Eco., 26 (2020), 103–134.
    [43] G. Wei, H. Gao, Y. Wei, Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making, Int. J. Intell. Syst., 33 (2018), 1426–1458.
    [44] Q. Mou, Z. Xu, H. Liao, A graph-based group decision approach with intuitionistic fuzzy preference relations, Comput. Ind. Eng., 110 (2017), 138–150.
    [45] T. Mahmood, M. Ali, M. Shabir, T-spherical fuzzy sets and their applications, J. Intell. Fuzzy Syst., 36 (2019), 4743–4756.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(56) PDF downloads(13) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(16)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog