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1. Introduction

Hybrid systems exhibit both continuous evolution and instantaneous jumps, integrating essential
features of continuous-time and discrete-time dynamical systems [1–3]. They serve as powerful
modeling tools for a wide range of real-world applications and complex physical phenomena, many
of which cannot be adequately characterized by purely continuous or purely discrete frameworks.
A prominent subclass of hybrid systems is impulsive systems, which are particularly well-suited
to capturing abrupt state changes in practical scenarios, such as those arising in neural networks,
networked control systems, multi-agent systems [4,5], and biological systems [6,7]. Owing to their
extensive applicability, researchers have devoted substantial effort to investigating the fundamental
theoretical foundations of impulsive differential systems, leading to a wealth of impactful results [8,9].

Time delays are ubiquitous in real-world scenarios, particularly in the transmission of coupling
and communication signals [10]. For example, even information propagating at the speed of light
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requires a finite amount of time to traverse long distances. Likewise, the population dynamics
of biological species are strongly influenced by the developmental stages of immature individuals
[11]. Consequently, the evolution of a system is determined not only by its current state but also
by its historical behavior. Existing studies have shown that time delays can adversely affect system
performance, potentially inducing instability and impairing controllability. Conversely, they can also
be harnessed as a regulatory tool to stabilize control systems [12,13]. Neglecting time delays may
lead to defective control strategies or even entirely erroneous analytical conclusions. Importantly,
time delays are rarely constant in practice; instead, they often exhibit time-varying characteristics,
necessitating the use of diverse mathematical methodologies to characterize them with high precision.

Over the past few decades, impulsive stochastic functional differential equations (ISFDEs) have
attracted significant attention, owing to their wide-ranging and impactful applications across fields
such as electronics, economics, automatic control, and population dynamics [14–16]. Consequently,
investigating the stability and exponential stability of ISFDEs is not merely valuable but also
indispensable, which has led to the development of a rich body of stability theories. For instance,
Chen [17] studied the pth moment exponential stability of mild solutions to ISFDEs by constructing
an impulsive-integral inequality. Building on this work, Gao and Li [18] extended Chen’s inequality
and, by employing the Mönch fixed point theorem, derived results on the existence and mean-square
exponential stability of mild solutions for ISFDEs with time-varying delays. Separately, Xiao and
Chen [19] applied the Banach fixed point theorem together with inequality techniques to examine
the existence and exponential stability of ISFDEs. It is noteworthy that although the Razumikhin
technique is a relatively simple yet effective tool for analyzing ISFDE stability, it was not utilized
in the aforementioned studies by Chen [17], Gao and Li [18], and Xiao and Chen [19]. In contrast,
several researchers have employed Razumikhin techniques to analyze ISFDE with impulses occurring
at deterministic times. For example, Kao et al. [20] established multiple stability criteria by combining
the Razumikhin technique with Gronwall’s inequality; Huang and Li [21,22]. investigated the pth
moment exponential stability of ISFDEs using the Razumikhin technique, the comparison principle,
Lyapunov functions; and Guo et al. [23] explored both pth moment and almost sure exponential
stability of ISFDEs with both bounded and unbounded time-varying delays, also relying on the
Razumikhin technique. Additional contributions to the application of Razumikhin methods in this
context can be found in Li et al. [24], Peng and Zhang [25], Cao and Zhu [26], and Yu et al. [27].

Most existing studies on impulsive dynamical systems have focused on deterministic impulses.
However, neglecting the randomness of impulsive timings in real-world scenarios may severely limit
the practical applicability of impulsive stochastic systems in engineering contexts [28,29]. When
addressing random impulses, two core characteristics required attention: random impulsive density
and random impulsive intensity. For example, Tang et al. [30] investigated the input-to-state
stability of nonlinear ordinary differential systems that incorporate both random impulsive intensity
and random impulsive density. In particular, Hu and Zhu [31,32] successfully examined the pth
moment exponential stability for a class of impulsive stochastic functional differential equations with
randomly occurring impulses have been shown to yield meaningful results. An interesting observation,
however, is that the upper bound coefficient of the Lyapunov differential operator established in prior
work is assumed to be a positive constant-a setting that may fail to accurately capture the dynamic
characteristics of such systems. This raises an important question: is it feasible to develop stability
criteria that do not impose this constant-coefficient restriction? Furthermore, the aforementioned
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results seldom account for scenarios involving indefinite continuous dynamics-a common feature in
stochastic systems with time-varying coefficients. Motivated by this observation, this brief investigates
the pth moment exponential stability of stochastic functional differential equations (SFDEs) with
random impulses, where the continuous dynamics of the addressed systems are indefinite.

The main contributions of this article are summarized as follows:
(i) While previous studies [17–21] examined impulsive stochastic functional differential equations

(ISFDEs) with deterministically timed impulses, the present work investigates the case where impulses
occur at random instants.

(ii) We treat the upper-bound coefficient of the Lyapunov differential operator as a bounded time-
varying function. This approach generalizes the findings of Hu and Zhu [31,32], where the coefficient
was restricted to either a positive or negative constant. As elaborated in Remark 3.3, our results provide
a more comprehensive characterization than Theorem 1 in Hu and Zhu [31] and Theorem III.1 in Hu
and Zhu [32].

(iii) In contrast to Hu and Zhu [31], we explicitly clarify the quantitative relationship between the
impulse intensity η, the upper bound of the Lyapunov differential operator β, and the distribution of
impulse intervals λ.

The paper is structured as follows: Section 2 introduces the necessary notations, lemmas, and
definitions that lay the foundation for subsequent analysis. Section 3 is devoted to analyzing the pth
moment exponential stability of stochastic functional differential equations with randomly occurring
impulsive effects. To verify the effectiveness of the proposed theoretical results, two numerical
examples are presented in Section 4. Finally, Sections 5 summarizes the key findings of this work
and offers concluding remarks.

2. Preliminaries

Notations: R = (−∞,+∞), R+ = (0,∞), N = {1, 2, · · ·} and Rn stand for n-dimensional Euclidean
space; (Ω,F , {Ft}t≥0,P) is a complete probability space with a natural filtration {Ft}t≥0 satisfying the
usual conditions; C([t0,∞),R) denotes the family of continuous function from [t0,∞) to R; C2(Rn,R+)
denotes the family of nonnegative, twice continuously differentiable functions; PC([−τ, 0],Rn) = {ξ :
[−τ, 0] → Rn} denotes the family of piecewise right-continuous functions ξ, with norm defined by
∥ξ∥ = sup−τ≤θ≤0 |ξ(θ)|;PCb

F0
([−τ, 0],Rn)(PCb

Ft
([−τ, 0],Rn)) denote the families of all F0-measurable (Ft-

measurable) PC-valued random function ξ; w(t) is an m-dimensional Brownian motion defined on the
complete probability space (Ω,F , {Ft}t≥0,P) satisfying E{dw(t)} = 0 and E{[dw(t)]2} = dt.

Consider the impulsive stochastic functional differential equations as follows:
dx(t) = f (t, xt)dt + g(t, xt)dw(t), tk < t < tk+1, t ≥ 0,
∆x(tk) = x(tk) − x(t−k ) = Ik(x(t−k )), k = 1, 2, · · ·,
x0(θ) = ζ(θ), θ ∈ [−τ, 0],

(2.1)

where f : [t0,∞) × PCb
Ft

([−τ, 0],Rn) −→ Rn, g : [t0,∞) × PCb
Ft

([−τ, 0],Rn) −→ Rn×m, xt is regarded
as a PC-valued stochastic process, with xt = x(t + θ), where θ ∈ [−τ, 0]. Ik(x(t−k )) denote the impulsive
perturbation of x at time tk is Ft−k

-measurable. x(t+k ) and x(t−k ) denote the right and left limits at tk,
respectively. Let t0 = 0, tk =

∑k
i=1 ri, where {ri}

∞
i=1 is a sequence of independent exponentially

distribution random variables with parameter λ > 0 and is independent of w(t). For the initial condition
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ζ ∈ PCb
F0

([−τ, 0],Rn), we further assume that f (t, ξ) and g(t, ξ) are continuous and both satisfy the local
Lipschitz condition and the linear growth condition in ξ, and |Ik(ξ)| < ∞. For any ζ ∈ PCb

F0
([−τ, 0],Rn),

system (2.1) has a unique solution x(t, t0, ζ). Moreover, when f (t, 0) = 0, g(t, 0) = 0 and Ik(0) = 0 for
all t ≥ t0, system (2.1) has a trivial solution x(t) = 0.

Based on system (2.1), the number of impulses up to time t follows a Poisson process, denoted by Nt.
We also assume that the standard Brownian motion w(t) and the Poisson process Nt are independent.
The notation xNt(t, ζ) represents the state of the stochastic process x(t, ζ) with Nt impulses occurring up
to time t. The notation x(n)

r (t; ζ) refers to the state of the process x(t, ζ) with n impulses having occurred
up to time t, where the exact positions of these impulses are unspecified. In contrast, x(n)(t, ζ) denotes
the state of x(t, ζ) with n impulses having occurred up to time t, and their positions are predetermined.

Definition 2.1. (see [31]) For a function V : C1,2([t0 − τ,∞) × Rn,R+), ζ ∈ PCb
Ft

([−τ, 0],Rn), the
operator L associated with system (2.1), defined as

LV(t, ξ) =
∂V(t, ξ(0))
∂t

+
∂V(t, ξ(0))
∂x

f (t, ξ) +
1
2

trace
[
gT (t, ξ)

∂V2(t, ξ(0))
∂x2 g(t, ξ)

]
.

For more details about the X-valued stochastic integral of an L0
2(Y, X)-valued, Ft-adapted predictable

process h(t) with respect to the Q-Wiener process ω(t), see reference [1].

Definition 2.2. (see [32]) The trivial solution of system (2.1) is termed pth moment exponentially
stable if there exist positive constants ε and M such that

E|xNt(t, ζ)|
p < ME∥ζ∥pe−εt, ζ ∈ PCb

F0
([−τ, 0],Rn), t ≥ 0.

Lemma 2.1. ( see [31]) Suppose the number of impulses Nt = n, the joint density of t1, t2, · · ·, tn is
f (t1, t2, · · ·, tn) = n!

tn , 0 < t1 < t2 < · · · < tn < t.

3. Main results

Theorem 3.1. Suppose there exists a function V ∈ C1,2([t0 − τ,∞) × Rn,R+) along with positive
constants p ≥ 2, c1, c2, η, β and σ > 0, such that
(H1) c1|x|p ≤ V(t, x) ≤ c2|x|p;
(H2) ∀k ∈ N and x ∈ Rn, EV(t, x + Ik(x)) ≤ ηEV(t, x);
(H3) For t ≥ t0, t , tk, k ∈ N and ξ ∈ PCFt([−τ, 0];Rn), if EV(t + θ, ξ(θ)) ≤ qEV(t, ξ(0)), then
ELV(t + θ, ξ) ≤ µ(t)EV(t, ξ(0)), where q ≥ max{η, 1

η
}eστ, µ : [t0,∞)→ (−∞, β];

(H4)
λmin{η, 1η }

λ−(σ+β) < 1 and σ + (1 − η)λ > 0.
Then, system (2.1) is pth moment exponentially stable.

Proof. At the beginning, with the help of the Fubini theorem and Lemma 3.2 in reference [33], one
has

dEV(t, x(k)(t)) = ELV(t, xt)dt, t ∈ [tk, tk + rk+1), k ∈ N ∪ {0}. (3.1)

Next, we divide the proof into the following two cases: 0 < η < 1 and η ≥ 1.

AIMS Mathematics Volume 10, Issue 12, 30623–30636.



30627

Case 1. 0 < η < 1. Since η > 0, there exists M1 > 0 such that c2 ≤ ηM1. In order to obtain the
desired result, we need to prove below that

EV(t, x(k)(t)) ≤ M1E∥ζ∥
pe−σt, t ∈ [tk, tk + rk+1), k ∈ N ∪ {0}. (3.2)

According to the previous assumptions, there is no impulse occurs at [t0 − τ, t0], that is

EV(t, x(0)(t)) ≤ EV(t + θ, x(0)(θ)) ≤ c2E∥ζ∥
p

≤ ηM1E∥ζ∥
p ≤ M1E∥ζ∥

p, t ∈ [t0 − τ, t0]. (3.3)

For t ∈ [t0, t0+r1), there is still no impulse. If (3.2) is false on [t0, t0+r1), there exist some t ∈ [t0, t0+r1)
such that

eσtEV(t, x(0)(t)) > M1E∥ζ∥
p > ηM1E∥ζ∥

p. (3.4)

Without loss of generality, let t∗ = inf{t ∈ [t0, t0 + r1) : eσtEV(t, x(0)(t)) > M1E∥ζ∥
p}. Since

eσtEV(t, x(0)(t)) is continuous on any interval [tk, tk + rk+1), k ∈ N ∪ {0}, one has

eσt∗EV(t∗, x(0)(t∗)) = M1E∥ζ∥
p; eσtEV(t, x(0)(t)) < M1E∥ζ∥

p, t ∈ [t0, t∗). (3.5)

Define t∗ = sup{t ∈ [t0 − τ, t∗) : eσtEV(t, x(0)(t)) ≤ ηM1E∥ζ∥
p}. The same method can be easily adjusted

to obtain

eσt∗EV(t∗, x(0)(t∗)) = ηM1E∥ζ∥
p; eσtEV(t, x(0)(t)) > ηM1E∥ζ∥

p, t ∈ (t∗, t∗]. (3.6)

In view of (3.5) and (3.6) for θ ∈ [−τ, 0], one can see

eσ(t+θ)EV(t + θ, x(0)(t + θ)) ≤
1
η

eσt∗EV(t∗, x(0)(t∗)) ≤
1
η

eσtEV(t, x(0)(t)), t ∈ [t∗, t∗]. (3.7)

That is,

EV(t + θ, x(0)(t + θ)) ≤
1
η

e−σθEV(t, x(0)(t)) ≤
1
η

eστEV(t, x(0)(t)) ≤ qEV(t, x(0)(t)), (3.8)

which lmplies that ELV(t + θ, x(0)(t + θ)) ≤ µ(t)EV(t, x(0)(t)) for all t ∈ [t∗, t∗]. From (3.1), (3.5) and
(3.6), one has

EV(t∗, x(0)(t∗)) = EV(t∗, x(0)(t∗))e
∫ t∗

t∗
µ(s)ds

= ηM1E∥ζ∥
pe−σt∗e

∫ t∗

t∗
µ(s)ds

≤ ηM1E∥ζ∥
pe−σt∗e

∫ t∗

t∗
σ+µ(s)ds

≤ ηEV(t∗, x(0)(t∗))e(σ+β)r1 , (3.9)

which means that ηe(σ+β)r1 ≥ 1. Combining properties of the Poisson distribution, it can be concluded
that

1 =
∫ ∞

0
λe−λr1d(r1) ≤

∫ ∞

0
λe−λr1ηe(σ+β)r1d(r1) =

λη

λ − (σ + β)
. (3.10)

Since η = min{η, 1/η} for η ∈ (0, 1), which implies that (3.10) contradiction to the given condition
λmin{η, 1/η}/(λ − (σ + β)) < 1. That is, the inequality (3.2) holds on [t0, t0 + r1). Indeed, further
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assume that (3.2) holds on [t0, tn−1 + rn), n ∈ N. Next, we prove that (3.2) holds on [tn, tn + rn+1), where
tn = tn−1 + rn, n ∈ N. If this does not hold, then there exists some t ∈ [tn, tn + rn+1) such that

eσtEV(t, x(n)(t)) > M1E∥ζ∥
p > ηM1E∥ζ∥

p ≥ ηEV(t−n , x
(n−1)(t−n ))eσt−n

≥ EV(t−n , x
(n−1)(t−n ) + In(x(n−1)(t−n )))eσt−n = eσtnEV(tn, x(n)(tn)). (3.11)

Similarly, select the stopping time t̄∗ = inf{t ∈ [tn, tn + rn+1) : eσtEV(t, x(n)(t)) ≥ M1E∥ζ∥
p} and t̄∗ =

sup{t ∈ [tn, t̄∗) : eσtEV(t, x(0)(t)) ≤ ηM1E∥ζ∥
p} such that

eσt̄∗EV(t̄∗, x(n)(t̄∗)) = M1E∥ζ∥
p, eσtEV(t, x(n)(t)) < M1E∥ζ∥

p, ∀t ∈ [tn, t̄∗); (3.12)
eσt̄∗EV(t̄∗, x(n)(t̄∗)) = ηM1E∥ζ∥

p, eσtEV(t, x(n)(t)) > ηM1E∥ζ∥
p, ∀t ∈ (t̄∗, t̄∗]. (3.13)

By the definitions of t̄∗ and t̄∗ for any t ∈ [t̄∗, t̄∗], it is easy to show that eσt̄∗EV(t̄∗, x(n)(t̄∗)) ≤
eσtEV(t, x(n)(t)) ≤ eσt̄∗EV(t̄∗, x(n)(t̄∗)). For t + θ ≥ tn and θ ∈ [−τ, 0], we have

eσ(t+θ)EV(t + θ, x(n)(t + θ)) ≤ M1E∥ξ∥
p =

1
η

eσt̄∗EV(t̄∗, x(n)(t̄∗)) ≤
1
η

eσtEV(t, x(n)(t)), t ∈ [t̄∗, t̄∗]. (3.14)

Combining (3.14), θ ∈ [−τ, 0] and q ≥ eστ/η gives

EV(t + θ, x(n)(t + θ)) ≤
1
η

e−σθEV(t, x(n)(t)) ≤
1
η

eστEV(t, x(n)(t)) ≤ qEV(t, x(n)(t)). (3.15)

Since (3.2) holds on [t0, tn−1 + rn), n ∈ N, tn = tn−1 + rn and t + θ < tn, which yields

EV(t + θ, x(n)(t + θ)) ≤ M1E∥ξ∥
pe−σ(t+θ) =

1
η

e−σθηM1E∥ξ∥
pe−σt̄∗eσ(t̄∗−t)

≤
1
η

e−σθEV(t̄∗, x(n)(t̄∗)) ≤
1
η

eστEV(t, x(n)(t)) ≤ EV(t, x(n)(t)). (3.16)

In view of (3.16) and (H3), we get

EV(t̄∗, x(n)(t̄∗)) = EV(t̄∗, x(n)(t̄∗))e
∫ t̄∗

t̄∗
µ(s)ds

= ηM1E∥ζ∥
pe−σt̄∗e

∫ t̄∗

t̄∗
µ(s)ds

≤ ηM1E∥ζ∥
pe−σt̄∗e

∫ t̄∗

t̄∗
σ+µ(s)ds

≤ ηEV(t̄∗, x(n)(t̄∗))e(σ+β)rn , t ∈ [t̄∗, t̄∗], (3.17)

which implies that ηe(σ+β)rn ≥ 1. Notice that the random variable rn follows an exponential distribution,
which leads to the following estimate

1 =
∫ ∞

0
λe−λrnd(rn) ≤

∫ ∞

0
λe−λrnηe(σ+β)rnd(rn) =

λη

λ − (σ + β)
, (3.18)

which is contradicts the condition λη/(λ − (σ + β)) < 1 given in (H4). Therefore, (3.2) holds on
[tn, tn + rn+1), we further assert that (3.2) is true via the mathematical induction.

Finally, the Lemma 2.1 and (3.2) gives EV(t, x(k)
r (t)) ≤ M1E∥ζ∥

pe−σt, t ≥ t0. Meanwhile, From the
(2) of reference [11] and (H1), it is obtained that

E|xNt(t)|
p ≤

M1

c1
E∥ζ∥pe−σt, xNt(t) = xNt(t, ζ). (3.19)
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Case 2. η ≥ 1. There exist a constant M2 such that c2 ≤
M2
η

. Next, we verify that

EV(t, x(k)(t)) ≤ M2η
kE∥ζ∥pe−σt, t ∈ [tk, tk + rk+1). (3.20)

For t ∈ [t0, t0 + r1), there is no impulse. If (3.20) is not true, there exist some t ∈ [t0, t0 + r1) such that

eσtEV(t, x(0)(t)) > M2E∥ζ∥
p >

M2

η
E∥ζ∥p. (3.21)

Thus, let t̃∗ = inf{t ∈ [t0, t0 + r1) : eσtEV(t, x(0)(t)) > M2E∥ζ∥
p}. From the continuity property of the

function eσtEV(t, x(0)(t)) on the interval [t0, t0 + r1), which yields

eσt̃∗EV(t̃∗, x(0)(t̃∗)) = M2E∥ζ∥
p; eσtEV(t, x(0)(t)) < M2E∥ζ∥

p, t ∈ [t0, t̃∗). (3.22)

Let t̃∗ = sup{t ∈ [t0 − τ, t̃∗) : eσtEV(t, x(0)(t)) ≤ M2
η
E∥ζ∥p}. The same procedure may be easily adapted

to obtain that  eσt̃∗EV(t̃∗, x(0)(t̃∗)) = M2
η
E∥ζ∥p,

eσtEV(t, x(0)(t)) > M2
η
E∥ζ∥p, ∀t ∈ (t̃∗, t̃∗],

(3.23)

Noting that (3.22) and (3.23) for θ ∈ [−τ, 0], it immediately follows that

eσ(t+θ)EV(t + θ, x(0)(t + θ)) ≤ M2E∥ζ∥
p = ηeσt∗EV(t∗, x(0)(t∗)) ≤ ηeσtEV(t, x(0)(t)), t ∈ [t∗, t∗]. (3.24)

In view of (3.24), η = max{η, 1/η}, ηeστ ≤ q for θ ∈ [−τ, 0], which yields

EV(t + θ, x(0)(t + θ)) ≤ ηe−σθEV(t, x(0)(t)) ≤ ηeστEV(t, x(0)(t)) ≤ qEV(t, x(0)(t)). (3.25)

By (3.25) and (H3), we have

EV(t̃∗, x(0)(t̃∗)) = EV(t̃∗, x(0)(t̃∗))e
∫ t̃∗

t̃∗
µ(s)ds

=
M2

η
E∥ζ∥pe−σt̃∗e

∫ t̃∗

t̃∗
µ(s)ds

≤
M2

η
E∥ζ∥pe−σt̃∗e

∫ t̃∗

t̃∗
σ+µ(s)ds

≤
1
η
EV(t̃∗, x(0)(t̃∗))e(σ+β)r1 , (3.26)

which implies that 1
η
e(σ+β)r1 ≥ 1. Similarly to (3.10), we obtain 1 ≤ λ/(η[λ−(σ+β)]), which contradicts

condition λ/(η[λ − (σ + β)]) < 1. Thus, inequality (3.20) holds on the interval [t0, t0 + r1). In general,
assume that (3.20) holds on the interval [t0, tn−1 + rn). By repeating the above analytical process, we
obtain that inequality (3.20) valid for k = n. Then,

EV(t, xNt) =
∞∑

k=0

EV(t, x(k)
r )

e−λt(λt)k

k!
≤ M2E∥ζ∥

pe−(σ+λ)t
∞∑

k=0

(λt)kηk

k!
≤ M2E∥ζ∥

pe−(σ+(1−η)λ)t. (3.27)

Combining (3.27) and (H1), we get

E|xNt |
p ≤

M2

c1
E∥ζ∥pe−(σ+(1−η)λ)t. (3.28)
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In view of (3.19), (3.28), and Definition 2.2, we conclude that system (2.1) is pth moment exponentially
stable. This completes the proof.

Corollary 3.1. Assume that there exists a function V ∈ C1,2([t0 − τ,∞) × Rn,R+) together with
positive constants p, c1, c2, σ > 0, β, ηk > −1, k ∈ N such that the following conditions are satisfied:
(H5): c1|x|p ≤ V(t, x) ≤ c2|x|p;
(H6): For k ∈ N and x ∈ Rn, EV(t, x + Ik(x)) ≤ (1 + ηk)EV(t, x);
(H7): For t ≥ t0, t , tk, k ∈ N and ξ ∈ PCFt([−τ, 0],Rn), if EV(t + θ, ξ(θ)) ≤ qEV(t, ξ(0)), then
ELV(t + θ, ξ) ≤ µ(t)EV(t, ξ(0)), where q ≥ max{1 + ηk,

1
1+ηk
}eστ, µ : [t0,∞)→ R and µ(t) ≤ β;

(H8):
λmin{1+ηk ,

1
1+ηk
}

λ−(σ+β) < 1 and σ − ηkλ > 0 for all k ∈ N.
Then, system (2.1) is pth moment exponentially stable.

Remark 3.1. According to Theorem 3.1, the system can be stabilized by impulsive control for
any η ∈ (0, 1), regardless of whether the underlying continuous-time dynamics are stable (β ≤ 0) or
potentially unstable (β > 0). For the case η ∈ [1,∞), Condition (H4) specifies the extent to which
the system can tolerate impulsive effects without compromising stability. In particular, stability is
guaranteed provided that 1 ≤ η < σ

λ
+ 1.

Remark 3.2. It is evident that exponential stability of system (2.1) cannot be achieved under fixed
impulse times when β > 0. However, our results not only reinforce the conclusions reported in [31, 32],
which demonstrate that randomness in the impulse instants plays a crucial role in stabilizing the system,
but also reveal that the impulse intensity η, the upper bound β of the Lyapunov differential operator,
and the distribution parameter λ of the impulsive intervals must satisfy the condition λmin{η, 1/η}/[λ−
(σ + β)] < 1.

Remark 3.3. In Hu and Zhu [31], the coefficient of the upper bound of the Lyapunov differential
operator is taken as a positive constant, namely, ELV(t, ξ) ≤ νEV(ξ(0)), ν > 0. In Hu and Zhu [32],
ELV(t, ξ) ≤ −γEV(ξ(0)), with γ > 0. For systems with time-varying coefficients, as considered in
this paper and in Hu and Zhu [31], identifying a suitable constant that satisfies the required condition
is challenging. Even if such a constant were found, the condition would fail to accurately capture
the properties of impulsive systems in which the continuous dynamics alternate between stable and
unstable states. On the one hand, Theorem 3.1 provides a broader result that encompasses Hu and
Zhu [31, 32], namely, ELV(t, ξ) ≤ µ(t)EV(ξ(0)), where µ(·) : [t0,∞) → (−∞, β]. On the other hand,
the constants M > 1 and c1 in Hu and Zhu [31] are required to simultaneously satisfy the constraints
c1Me−γr > 1 and c1e−γr ≤ 1. However, our findings show that the restriction on c1 in Hu and Zhu [31]
is unnecessary, and this observation becomes particularly evident when M = max{η, 1/η}.

4. Examples

In this section, we substantiate our main results by presenting effective illustrative examples as
follows:

Example 4.1. Consider the following two-dimensional ISDEs:
dx1(t) = 1

8 x1(t)e−2tdt + 1
5 x1(t − 0.5) sin tdw1(t)

dx2(t) = 1
10 x2(t)e−2tdt + 1

5 x2(t − 0.5) sin tdw2(t), tk < t < tk+1,

△x1(tk) = −0.5x1(t−k ), △x2(tk) = −0.5x2(t−k ), t = tk, k = 1, 2, · · ·,
x1(0) = ξ1(θ), x2(0) = ξ2(θ), θ ∈ [−0.5, 0].

(4.1)
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where tk =
∑k

i=1 ri, {ri}
∞
i=1 is a sequence and follows an independent exponential distribution of

parameter λ = 0.9,

A =
[ 1

8 0
0 1

10

]
,B =

[ 1
5 0
0 1

5

]
.

Let V(t, x) = |x|2, which yields V(tk, x(tk)) = |x(tk)|2 ≤ 0.25|x(t−k )|2 and

ELV(t, ξ) ≤ E{(2ξT (0)Ae−2tξ(0)) + [(ξ(−0.5) sin t)T BT B(ξ(−0.5) sin t)]}

≤ 2∥A∥e−2tE|ξ(0)|2 + ∥B∥2E(|ξ(−0.5)|2 sin2 t) ≤
1
4
E|ξ(0)|2 +

1
25
E|ξ(−0.5)|2. (4.2)

Then, let σ = 0.1, η = 0.25, q = 4eστ, β = 0.5 in Theorem 3.1. Based on this, we have

λmin{η, 1
η
}

λ − (σ + β)
=

0.25 × 0.9
0.9 − (0.5 + 0.1)

< 1, σ + (1 − η)λ = 0.775 > 0. (4.3)

From (4.2) and (4.3), it follows that system (4.1) satisfies the conditions of Theorem 3.1. According to
Theorem 3.1, system (4.1) is exponentially stable, and the corresponding simulation is shown in Figure
1. In the left subfigure of Figure 1, three sample paths of the impulsive stochastic delay system are
depicted for both state components x1(t) and x2(t). The trajectories illustrate the influence of stochastic
perturbations and exponentially distributed impulse times (with parameter λ = 1), highlighting the
qualitative behavior generated by the drift, diffusion, and impulsive dynamics. In the right subfigure of
Figure 1, the curve of log(E|x(t)|2) − t computed from 100 simulated paths. The approximately linear
decreasing trend provides numerical evidence of exponential stability, consistent with the theoretical
results established in this manuscript.

AIMS Mathematics Volume 10, Issue 12, 30623–30636.



30632

0 5 10 15 20 25 30
t

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

S
ta

te
 t

ra
je

ct
o

ri
es

x1 path 1

x1 path 2

x1 path 3

x2 path 1

x2 path 2

x2 path 3

0 5 10 15 20 25 30
t

-80

-70

-60

-50

-40

-30

-20

-10

0

lo
g

(E
|x

(t
)|

2 )

Figure 1. Sample paths of system (4.1) under different initial conditions. Evolution of
E|x(t)|2 for system (4.1) across multiple sample paths.

Example 4.2. Consider the following two-dimensional ISDEs:
dx1(t) = −x1(t)dt + x1(t − τ)dw1(t)
dx2(t) = −x2(t)dt + x2(t − τ)dw2(t), tk < t < tk+1,

△x1(tk) = 0.1x1(t−k ), △x2(tk) = 0.1x2(t−k ), t = tk, k = 1, 2, · · ·,
x1(0) = ξ1(θ), x2(0) = ξ2(θ), θ ∈ [−0.5, 0],

(4.4)

where tk =
∑k

i=1 ri is a sequence and follows a Poisson distribution of parameter λ = 1,

A =
[
−1 0
0 −1

]
,B =

[
1 0
0 1

]
.

Let V(t, x) = |x|2, which yields V(tk, x(tk)) = |x(tk)|2 ≤ 1.21|x(t−k )|2 and

ELV(t, ξ) ≤ E{(2ξT (0)Aξ(0)) + (ξ(−0.5)BT B(ξ(−0.5))}
≤ 2∥A∥e−2tE|ξ(0)|2 + ∥B∥2E|ξ(−0.5)|2 ≤ −2E|ξ(0)|2 + E|ξ(−0.5)|2. (4.5)
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Let σ = 0.3, η = 1.21, q = 1.21eστ, β = −0.5 in Theorem 3.1. Based on this, we get

λmin{η, 1
η
}

λ − (σ + β)
=

1
1.21[1 − (0.3 − 0.5)]

< 1, σ + (1 − η)λ = 0.3 + (1 − 1.21)1 = 0.09 > 0. (4.6)

From (4.5) and (4.6), it follows that system (4.4) satisfies the conditions of Theorem 3.1. According to
Theorem 3.1, system (4.4) is exponentially stable, and the corresponding simulation is shown in Figure
2.
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Figure 2. Sample paths of system (4.4) under different initial conditions. Evolution of
E|x(t)|2 for system (4.4) across multiple sample paths.

5. Conclusions

In this paper, we establish novel criteria for the pth-moment exponential stability of stochastic
functional differential equations (SFDEs) with randomly occurring impulses, employing the
Razumikhin-type condition, Ito’s formula, and stochastic analysis theory. To demonstrate the
effectiveness and practicality of the proposed criteria, two illustrative examples are presented. For
future research, we aim to extend this work by investigating the stability of such equations under
both impulsive intensity and impulsive density, with particular emphasis on the application of vector
Lyapunov functions.
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