Hahn multiplicative calculus is the generalization of quantum multiplicative ($ \mathit{q} $-multiplicative) calculus. In this manuscript, we defined novel definitions for derivative and definite integral called left Hahn multiplicative derivative and definite integral in the Hahn multiplicative calculus. In addition, we derived fundamental results for this newly defined integral. Furthermore, we constructed left Hahn multiplicative Hermite-Hadamard inequalities. Additionally, we defined new definitions for the derivative and definite integral in the Hahn calculus, which enabled us to define further definitions in Hahn multiplicative calculus called the right Hahn multiplicative derivative and definite integral. Moreover, we construct the power rule of the newly defined definite integral in the Hahn calculus, which assisted us in deriving the right Hahn multiplicative Hermite-Hadamard inequalities. Finally, we gave an application of the newly established Hermite-Hadamard inequalities through an example wherein it could be seen that these inequalities were crucial for finding the lower and upper bounds of the range of those functions whose Hahn multiplicative definite integrals were very difficult to find.
Citation: Muhammad Nasim Aftab, Saad Ihsan Butt, Mohammed Alammar, Youngsoo Seol. Multiplicative view point analysis of Hahn calculus and their applications to inequality theory[J]. AIMS Mathematics, 2025, 10(12): 30478-30506. doi: 10.3934/math.20251337
Hahn multiplicative calculus is the generalization of quantum multiplicative ($ \mathit{q} $-multiplicative) calculus. In this manuscript, we defined novel definitions for derivative and definite integral called left Hahn multiplicative derivative and definite integral in the Hahn multiplicative calculus. In addition, we derived fundamental results for this newly defined integral. Furthermore, we constructed left Hahn multiplicative Hermite-Hadamard inequalities. Additionally, we defined new definitions for the derivative and definite integral in the Hahn calculus, which enabled us to define further definitions in Hahn multiplicative calculus called the right Hahn multiplicative derivative and definite integral. Moreover, we construct the power rule of the newly defined definite integral in the Hahn calculus, which assisted us in deriving the right Hahn multiplicative Hermite-Hadamard inequalities. Finally, we gave an application of the newly established Hermite-Hadamard inequalities through an example wherein it could be seen that these inequalities were crucial for finding the lower and upper bounds of the range of those functions whose Hahn multiplicative definite integrals were very difficult to find.
| [1] |
E. Set, M. Z. Sarikaya, M. E. $\ddot{O}$zdemir, H. Yildirim, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Mod., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
|
| [2] |
N. Alp, M. Z. Sarikaya, M. Kunt, I. Işcan, $\mathit{q}$-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007
|
| [3] |
S. Bermudo, P. Kórus, J. E. N. Valdes, On q-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hungar., 162 (2020), 364–374. https://doi.org/10.1007/s10474-020-01025-6 doi: 10.1007/s10474-020-01025-6
|
| [4] |
J. L. Cardoso, E. M. Shehata, Hermite-Hadamard inequalities for quantum integrals: A unified approach, Appl. Math. Comput., 463 (2024), 128345. https://doi.org/10.1016/j.amc.2023.128345 doi: 10.1016/j.amc.2023.128345
|
| [5] |
E. Nwaeze, Set inclusions of the Hermite-Hadamard type for $\mathit{m}$ polynomial harmonically convex interval valued functions, Constr. Math. Anal., 4 (2021), 260–273. https://doi.org/10.33205/cma.793456 doi: 10.33205/cma.793456
|
| [6] | D. R. Anderson, Taylor's formula and integral inequalities for conformable fractional derivatives, In Contributions in Mathematics and Engineering: In Honor of Constantin Carath$\acute{e}$odory, Cham: Springer International Publishing, 2016, 25–43. |
| [7] |
S. Asawasamrit, C. Sudprasert, S. K. Ntouyas, J. Tariboon, Some results on quantum Hahn integral inequalities, J. Inequal. Appl., 2019 (2019), 154. https://doi.org/10.1186/s13660-019-2101-z doi: 10.1186/s13660-019-2101-z
|
| [8] |
S. I. Butt, M. N. Aftab, H. A. Nabwey, S. Etemad, Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus, AIMS Math., 9 (2024), 5523–5549. https://doi.org/10.3934/math.2024268 doi: 10.3934/math.2024268
|
| [9] |
S. I. Butt, M. N. Aftab, Y. Seol, Symmetric quantum inequalities on finite rectangular plane, Mathematics, 12 (2024), 1517. https://doi.org/10.3390/math12101517 doi: 10.3390/math12101517
|
| [10] |
S. I. Butt, M. N. Aftab, A. Fahad, Y. Wang, B. B. Mohsin, Novel notions of symmetric Hahn calculus and related inequalities, J. Inequal. Appl., 2024 (2024), 147. https://doi.org/10.1186/s13660-024-03228-9 doi: 10.1186/s13660-024-03228-9
|
| [11] | S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Science direct working paper, (S1574-0358), 2003, 04. |
| [12] |
H. Budak, S. Khan, M. A. Ali, Y. M. Chu, Refinements of quantum Hermite-Hadamard-type inequalities, Open Math., 19 (2021), 724–734. https://doi.org/10.1515/math-2021-0029 doi: 10.1515/math-2021-0029
|
| [13] |
A. B. Malinowska, D. F. Torres, The Hahn quantum variational calculus, J. Optim. Theory Appl., 147 (2010), 419–442. https://doi.org/10.1007/s10957-010-9730-1 doi: 10.1007/s10957-010-9730-1
|
| [14] | I. Işcan, Hermite-Hadamard-Fej$\acute{e}$r type inequalities for convex functions via fractional integrals, Acta Math. Univers. Come., 83 (2014), 119–126. |
| [15] |
A. E. Bashirov, E. M. Kurpınar, A. $\ddot{O}$zyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081
|
| [16] | Y. L. V. Daletskii, N. I. Teterina, Multiplicative stochastic integrals, Usp. Mat. Nauk, 27 (1972), 167–168. |
| [17] | A. E. Bashirov, M. Riza, On complex multiplicative differentiation, TWMS J. App. Eng. Math., 1 (2011), 75–85. |
| [18] |
A. E. Bashirov, E. Mısırlı, Y. Tando$\breve{g}$du, A. $\ddot{O}$zyapıcı, On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ., 26 (2011), 425–438. https://doi.org/10.1007/s11766-011-2767-6 doi: 10.1007/s11766-011-2767-6
|
| [19] | M. A. Ali, M. Abbas, A. A. Zafar, On some Hermite-Hadamard integral inequalities in multiplicative calculus, J. Inequal. Spec. Funct., 10 (2019), 111–-122. |
| [20] | S. $\ddot{O}$zcan, Hermite-Hadamard type inequalities for multiplicatively $h$-convex functions, Konur. J. Math., 8 (2020), 158–164. |
| [21] |
S. $\ddot{O}$zcan, Hermite-Hadamard type inequalities for multiplicatively $h$-preinvex functions, Turk. J. Math. Anal. Number Theory, 9 (2021), 65–70. https://doi.org/10.12691/tjant-9-3-5 doi: 10.12691/tjant-9-3-5
|
| [22] |
S. $\ddot{O}$zcan, S. I. Butt, Hermite–Hadamard type inequalities for multiplicatively harmonic convex functions, J. Inequal. Appl., 2023 (2023), 120. https://doi.org/10.1186/s13660-023-03020-1 doi: 10.1186/s13660-023-03020-1
|
| [23] | V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
| [24] |
W. S. Chung, T. Kim, H. I. Kwon, On the $q$-analog of the Laplace transform, Russ. J. Math. Phys., 21 (2014), 156–168. https://doi.org/10.1134/S1061920814020034 doi: 10.1134/S1061920814020034
|
| [25] |
V. Gupta, T. Kim, On a $q$-analog of the Baskakov basis functions, Russ. J. Math. Phys., 20 (2013), 276–282. https://doi.org/10.1134/S1061920813030035 doi: 10.1134/S1061920813030035
|
| [26] |
W. Hahn, $\rm \ddot{U}$ber Polynome, die gleichzeitig zwei verschiedenen Orthogonalsystemen angeh$\rm \ddot{o}$ren, Math. Nachr., 2 (1949), 263–278. https://doi.org/10.1002/mana.19490020103 doi: 10.1002/mana.19490020103
|
| [27] |
A. E. Hamza, S. M. Ahmed, Existence and uniqueness of solutions of Hahn difference equations, Adv. Differ. Equ., 2013 (2013), 1–15. https://doi.org/10.1186/1687-1847-2013-316 doi: 10.1186/1687-1847-2013-316
|
| [28] | A. E. Hamza, S. M. Ahmed, Theory of linear Hahn difference equations, J. Adv. Math., 4 (2013), 441–461. |
| [29] | M. H. Annaby, A. E. Hamza, S. D. Makharesh, A Sturm–Liouville theory for Hahn difference operator, In Frontiers in Orthogonal Polynomials and $\mathit{q}$-Series, 2018, 35–83. https://doi.org/10.1142/9789813228887_0004 |
| [30] |
M. A. Annaby, H. A. Hassan, Sampling theorems for Jackson–Nörlund transforms associated with Hahn-difference operators, J. Math. Anal. Appl., 464 (2018), 493–506. https://doi.org/10.1016/j.jmaa.2018.04.016 doi: 10.1016/j.jmaa.2018.04.016
|
| [31] |
M. H. Annaby, A. E. Hamza, K. A. Aldwoah, Hahn difference operator and associated Jackson N$\ddot{o}$rlund integrals, J. Optim. Theory App., 154 (2012), 133–-153. https://doi.org/10.1007/s10957-012-9987-7 doi: 10.1007/s10957-012-9987-7
|
| [32] |
J. Tariboon, S. K. Ntouyas, W. Sudsutad, New concepts of Hahn calculus and impulsive Hahn difference equations, Adv. Differ. Equ., 2016 (2016), 1–19. https://doi.org/10.1186/s13662-016-0982-4 doi: 10.1186/s13662-016-0982-4
|
| [33] |
S. Asawasamrit, C. Sudprasert, S. K. Ntouyas, J. Tariboon, Some results on quantum Hanh integral inequalities, J. Inequal. Appl., 2019 (2019), 1–18. https://doi.org/10.1186/s13660-019-2101-z doi: 10.1186/s13660-019-2101-z
|
| [34] |
B. P. Allahverdiev, H. Tuna, Hahn multiplicative calculus, Le Mat., 77 (2022), 389-–405. https://doi.org/10.4418/2022.77.2.7 doi: 10.4418/2022.77.2.7
|
| [35] | M. N. Aftab, S. I. Butt, Y. Seol, Fundamentals of right Hahn $\mathit{q}$-symmetric calculus and related inequalities, J. Funct. Space., in Press, 2025. |
| [36] |
M. N. Aftab, S. I. Butt, M. Alammar, Y. Seol, Analysis of quantum multiplicative calculus and related inequalities, Mathematics, 13 (2025), 3381. https://doi.org/10.3390/math13213381 doi: 10.3390/math13213381
|
| [37] |
T. Kim, D. S. Kim, Heterogeneous Stirling numbers and heterogeneous Bell polynomials, Russ. J. Math. Phys., 32 (2025), 498–509. https://doi.org/10.1134/S1061920825601065 doi: 10.1134/S1061920825601065
|